

A63 Castle Street Improvements, Hull

Environmental Statement

Appendix 11.4 Groundwater report

Rev No	Date	Originator	Checker	Approver	Status	Suitability
P01.1	11./03.14	E Spencer	H Carlyle		S0	For review
P01.2	08.04.14	E Spencer	H Carlyle		S0	Updated
P01.3	24.09.14	E Spencer	H Carlyle		S0	Updated
P01.4	03.05.18	C Ball	H Carlyle	J McKenna	S0	Updated
P01	31.07.18	C Ball	H Carlyle	J McKenna	Shared	S4
P02	06.09.18	C Ball	H Carlyle	J McKenna	Shared	S4

This document has been prepared on behalf of Highways England by Mott MacDonald Sweco JV for Highways England's Collaborative Delivery Framework (CDF). It is issued for the party which commissioned it and for specific purposes connected with the above-captioned project only. It should not be relied upon by any other party or used for any other purpose. Mott MacDonald Sweco JV accepts no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from Highways England.

Prepared for:

Highways England Lateral 8 City Walk Leeds LS11 9AT

Prepared by:

Mott MacDonald Sweco JV Stoneham Place, Stoneham Lane Southampton, Hampshire SO50 9NW

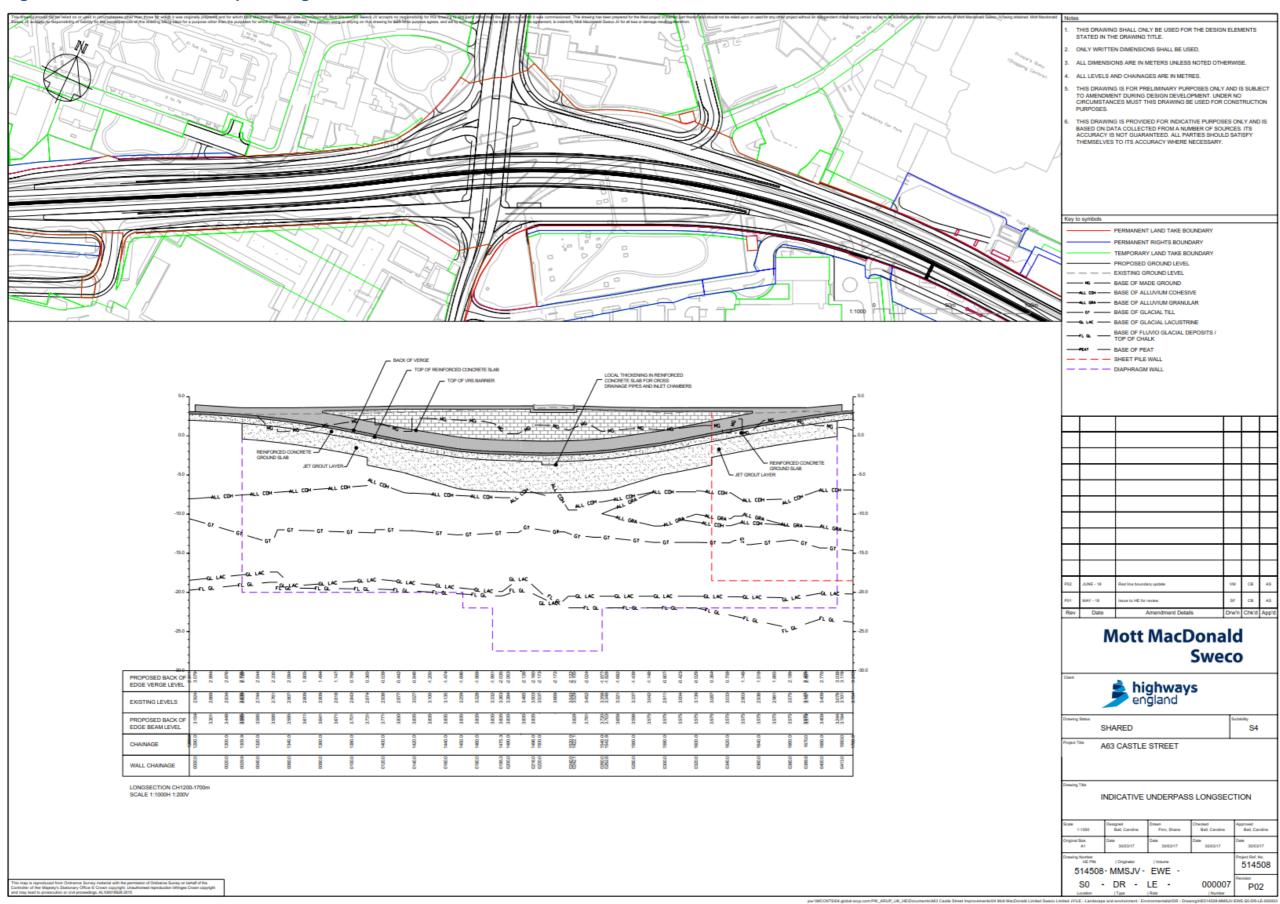
Cor	ntents	Page
1.	Introduction	7
1.1	Scheme description	7
1.2	Background to groundwater investigation	9
1.3	Consultation	10
1.4	Scope of this report	11
1.5	Report layout	11
2.	Baseline conditions	13
2.1	Methodology for the determination of baseline conditions	13
2.2	Topography and land use	25
2.3	Regional geology	25
2.4	Local geology	30
2.5	Regional hydrogeology	33
2.6	Local hydrogeology	47
2.7	Summary of hydrogeological conceptual understanding	92
3.	Receptors	94
3.2	Groundwater receptors	94
3.3	Surface water receptors	94
3.4	Abstractions	95
3.5	Environmentally sensitive sites	95
3.6	Structures	96
3.7	Cultural heritage	96
4.	Proposed works	97
4.1	Overview	97
4.2	Underpass	98
4.3	Trinity Burial Ground	100
4.4	Holiday Inn retaining wall	101
4.5	Bridges	101
4.6	Pumping station and rising main outfalls	101
4.7	Yorkshire Water sewer diversion	102
4.8	Site compounds and public open space	102

4.9	Construction phasing	103
5 .	Potential impacts to groundwater receptors	105
5.1	Overview	105
5.2	Groundwater model	105
5.3	Potential impacts during construction	108
5.4	Potential impacts during operation	118
6.	Conclusions and recommendations	122
6.1	Conclusions	122
6.2	Recommendations	125
7.	Annexes	126
Tabl	es	
Table	e 11.4.1: Summary of key elements of the Scheme	14
Table	e 11.4.2: Summary of desk study information	16
Table	e 11.4.3: Summary of the geology underlying the Scheme	31
Table	e 11.4.4: Licensed groundwater abstractions within the study area	42
Table	e 11.4.5: Summary of key surface water features in the area	44
Table	e 11.4.6: Water body status and objectives	46
Table	e 11.4.7: Summary of Monitoring Boreholes	54
Table	e 11.4.8: Groundwater head ranges and tidal responses	76
	e 11.4.9: Hydraulic conductivity (K) values derived from permeability tests – supe sits (Geotechnics Ltd., 2013)	
	e 11.4.10: Hydraulic conductivity (K) values derived from permeability tests – Cha etechnics Ltd., 2013)	
Table	e 11.4.11: Summary of hydraulic conductivity (K) values by geological unit	85
Table	e 11.4.12: Aquifer properties derived from LDBH01 pumping test	85
Table	e 11.4.13: Diaphragm wall depths	98
Table	e 11.4.14: Construction phases	103

Figures

Figure 11.4.1: Indicative underpass long section	8
Figure 11.4.2: The study area	.14
Figure 11.4.3: Regional geology overview of East Yorkshire ²⁸	.27
Figure 11.4.4: British Geological Survey model output – superficial deposits ¹⁷	.29
Figure 11.4.5: Hydrogeological features location plan	.37
Figure 11.4.6: Yorkshire chalk redox schematic ⁴²	.39
Figure 11.4.7: Rainfall data	.41
Figure 11.4.8: Chalk hydrographs across the study area	.49
Figure 11.4.9: Chalk hydrographs for saline intrusion monitoring boreholes	.50
Figure 11.4.10: Chalk groundwater level contours, February 2017; high tide	.51
Figure 11.4.11: Chalk groundwater level contours, February 2017; low tide	.52
Figure 11.4.12: Groundwater monitoring installations	.57
Figure 11.4.13: Hydrographs for Scheme boreholes in superficial deposits – made grour (from Arup, 2018)	
Figure 11.4.14: Hydrographs for Scheme boreholes in superficial deposits – cohesive alluvium (from Arup, 2018)	.60
Figure 11.4.15: Hydrographs for Scheme boreholes in superficial deposits – granular alluvium (from Arup, 2018)	.61
Figure 11.4.16: Hydrographs for Scheme boreholes in superficial deposits – glacial till (from Arup, 2018)	.62
Figure 11.4.17: Hydrographs for Scheme boreholes in superficial deposits – glaciolacustrine deposits (from Arup, 2018)	.63
Figure 11.4.18: Hydrographs for Scheme boreholes in superficial deposits – fluvio-glacia deposits (from Arup, 2018)	
Figure 11.4.19: Hydrographs for Scheme boreholes in Chalk (from Arup, 2018)	.65
Figure 11.4.20: LDBH01 pumping test hydrographs	.66
Figure 11.4.21: Hydrographs for boreholes monitored using dataloggers – January 2014	ŀ67
Figure 11.4.22: Hydrographs for boreholes monitored using dataloggers – January to August 2014	.68

Figure 11.4.23: Hydrographs for boreholes adjacent to Trinity Burial Ground – April 2016 69
Figure 11.4.24: Hydrographs for boreholes adjacent to Princes Quay Bridge – September o October 2015
Figure 11.4.25: Chalk groundwater levels at high tide and low tide, 28 February 201771
Figure 11.4.26: Geological section along centre line (a – c)72
Figure 11.4.27: Geological section A – A'75
Figure 11.4.28: Box and whisker plots showing major ions90
Figure 11.4.29: Chloride levels in the chalk plotted against tide times91
Figure 11.4.30: Hydrogeological conceptual model107
Figure 11.4.31: Modelled steady state drawdown in the cohesive alluvium for the construction scenario
Figure 11.4.32: Groundwater levels at Trinity Burial Ground in comparison to excavation
Figure 11.4.33: Modelled steady state drawdown in the cohesive alluvium for the operational scenario


1. Introduction

1.1 Scheme description

- 1.1.1 The A63, Castle Street, Hull is located to the south of Hull city centre. The current road is a dual carriageway that provides a vital route link between the M62 motorway, the Humber Bridge and A15 to the west of the city, and the Port of Humber to the east of the city. The route is reputed to be one of the busiest sections of road within East Yorkshire, where the current daily traffic flow along Castle Street is in excess of 54,000 annual average daily traffic (AADT). The route currently experiences congestion, particularly around the Mytongate Junction, due to the traffic signals and high proportion of heavy goods vehicles.
- 1.1.2 Highways England is proposing to relieve congestion and provide better access to the Port of Hull by improving the A63 Castle Street between the St James Street/ Porter Street junctions and the Market Place/Queen Street junctions (the Scheme).
- 1.1.3 The preferred option comprises a grade separated junction with the alignment of the A63 lowered approximately 7m below ground level (bgl). To provide the grade separated geometry in the congested urban environment of Hull, an embedded retaining wall solution is proposed. A cast in-situ concrete slab is to be constructed at the maximum excavation depth, acting as the permanent prop and providing the foundation to the new carriageway. Tension piles are required beneath the slab to counteract the uplift pressures induced by the shallow groundwater conditions across the Scheme. In addition to the grade separated junction, a number of other structures are to be constructed as part of the Scheme, including the Mytongate Bridge, two footbridges, an offline pumping station, and an additional retaining wall between between the Mytongate Junction westbound diverge sliproad and the grounds of the Holiday Inn. The proposed works are described in more detail in Section 4.
- 1.1.4 A plan of the proposed Scheme, including the A63 proposed realignment is presented in Volume 2, Figure 2.3 Scheme site boundary, and the locations of site compounds are shown in Volume 2, Figure 2.12 Construction site compound locations.
- 1.1.5 Figure 11.4.1 shows an indicative section along the main line of the grade separated junction (referred to in this report as the underpass). The chainages included in this figure are referenced throughout this report.

Figure 11.4.1: Indicative underpass long section

1.2 Background to groundwater investigation

1.2.1 Groundwater levels in the centre of Hull are sub-artesian in both the superficial deposits and underlying chalk aquifers. These, coupled with difficult ground conditions, have contributed to the failure of two major construction schemes in the area in recent years, as described below. Both scheme failures highlight the need for a comprehensive ground and groundwater investigation due to the geological and hydrogeological complexity of the area, as well as the need for careful design.

Kingston upon Hull wastewater tunnel collapse (Yorkshire Water humbercare sewerage tunnel)

- 1.2.2 In 1999, this large-diameter sewerage tunnel was around 80% complete when a collapse occurred 200m behind the tunnel boring machine (TBM)¹. The area where the collapse occurred is located approximately 50 to 100m south of the eastern end of the proposed A63 Castle Street Improvement Scheme. As such, the ground conditions that are thought to have contributed to the collapse of the tunnel are likely to be similar to those present beneath the Scheme.
- 1.2.3 Following the collapse, a supplementary ground investigation was undertaken, which concluded that the collapse was primarily caused by ground conditions and water pressures as summarised below:
 - The collapse occurred in an area where the tunnel horizon was entirely within alluvium. In other locations the tunnel horizon had been within glacial deposits. This variation was thought to be due to encountering the former channel of the River Hull.
 - The collapse was the result of a leak that occurred in the area where an
 access shaft joined the tunnel. The leak was thought have resulted from
 movement between the access shaft and tunnel liner, possibly triggered by
 stress release in peat/compressible strata present in the area of the
 connection.
 - The leak continued and worsened due to high water pressures in an underlying layer of laminated clay containing a layer of single sized sand particles. Under pressure, water, sand and clay flowed into the tunnel and it was calculated that approximately 2000m³ of material had entered the tunnel, resulting in significant localised surface settlement.
- 1.2.4 To recover the TBM and complete the tunnel, a ground freezing technique was deployed, using liquid nitrogen as this was considered the safest and most reliable

¹ Grose, W. J. and Benton, L. (2005) Hull wastewater flow transfer tunnel: tunnel collapse and causation investigation. Geotechnical Engineering. Issue 158. Paper 13799. October 2005.

method. Rapid freezing resulted in a high integrity frozen structure and did not alter the salinity of the surrounding groundwater. Conventional groundwater control and excavation was discounted due to the instability of the alluvial material, the likelihood of causing extreme settlement at surface and the high groundwater pressures encountered².

Ennerdale link road, River Hull - flooded cofferdam

- 1.2.5 This scheme involved the attempted construction of an 81m long cut and cover tunnel through the bed of the River Hull. The works were part of a 2.5km dual carriageway designed to relieve congestion in eastern Hull and provide direct access to Hull's docks.
- 1.2.6 Ground conditions from the initial investigations identified alluvium over Boulder Clay (glacial till) over the Chalk. Groundwater was present within the alluvium and confined within the Chalk aquifer. The cofferdam was constructed primarily using sheet piles driven into the Boulder Clay to cut off the groundwater within the alluvium. The Boulder Clay was a minimum of 4m thick and confined the Chalk aquifer so preventing groundwater ingress into the base of the excavation.
- 1.2.7 Whilst initial dewatering operations were underway, a 2m diameter sink hole opened up in the river bed close to the northwest corner of the cofferdam and another within the cofferdam itself. The cofferdam excavation filled with water overnight. After an extensive investigation, the cofferdam's exposed faces were jet grouted whilst a permanent solution was found. The tunnel was eventually abandoned and a lift bridge was constructed at an abortive cost of £10 million.
- 1.2.8 It was eventually understood that the Boulder Clay was thinner than expected and may have contained perched water lenses. It was thought that water flooding the cofferdam originated from the river and most likely entered through declutched sheet piles. Piping of the sands within the alluvium possibly created a pathway from the river bed into the cofferdam.
- 1.2.9 Discussions with the dewatering contractor (WJ Groundwater) indicated that dewatering of the Chalk aquifer was required to lower the groundwater head so as to minimise the risk of upwards leakage through Boulder Clay and the potential risk of ground heave. The Environment Agency required the abstracted water to be reinjected into the Chalk so as to minimise the potential for seawater intrusion.

1.3 Consultation

_

1.3.1 Our approach to this groundwater assessment was discussed and agreed in principle with the Environment Agency in 2014. A full summary of consultation undertaken is provided in the Environmental Statement.

² Brown, D. A. (2004) Hull wastewater flow transfer tunnel: recovery of tunnel collapse by ground freezing. Geotechnical Engineering, Volume 157, Issue 2, April 2004.

1.3.2 Consultation with stakeholders such as British Waterways Marinas Ltd, the Marine Management Organisation, landowners and local residents was held throughout the planning and implementation of the chalk pumping test. This is detailed in the Pumping Test Report (Appendix 11.5).

1.4 Scope of this report

- 1.4.1 This report has the following aims:
 - to develop a baseline hydrogeological conceptual model of the A63 Castle Street based on the findings of previous studies and the 2013 and 2015/16 ground investigations (GI), testing and subsequent monitoring;
 - to outline the potential risks from groundwater during the construction and operation of the new road, to inform the detailed design; and
 - to assess the potential impacts of key structures associated with the construction and operation of the Scheme on groundwater receptors.
- 1.4.2 This Appendix Report informs Chapter 11 Road Drainage and the water environment of the Environmental Statement, where a full groundwater impact assessment based on DMRB guidance is provided.
- 1.4.3 This Appendix Report is supported by the following key supplementary reports (also provided as in Volume 3 as appendices to the Environmental Statement), which are cross-referenced in the text where relevant:
 - Appendix 11.5 Pumping test report 1168-10-223-RE-002-PD1³
 - Appendix 11.6 Groundwater modelling report 1168-10-223-RE-003-PD1⁴
 - Appendix 11.7 Groundwater modelling update HE514508-MMSJV-EWE-S0-RP-LE-000006⁵

1.5 Report layout

- 1.5.1 This report is presented in the following structure: -
 - Section 1 Introduction
 - Section 2 Baseline Conditions
 - Section 3 Groundwater Receptors

³ MMG JV (2014) A63 Castle Street Improvements, Hull - Pumping Test Report 1168-10-223-RE-002-PD1

⁴ JBA (2014) A63 Castle Street, Hull: Groundwater Modelling Report 1168-10-223-RE-003-PD1 for Mott MacDonald Grontmij Joint Venture (MMG JV)

Mott MacDonald Sweco JV (2018) A63 Castle Street Improvements, Hull - Environmental Statement - Groundwater Modelling Update HE514508-MMSJV-EWE-SO-RP-LE-000006

- Section 4 Proposed Works
- Section 5 Potential Impacts on Groundwater Receptors
- Section 6 Conclusions

2. Baseline conditions

2.1 Methodology for the determination of baseline conditions

Overview

- 2.1.1 Prior to commencement of the Scheme, there had been few hydrogeological investigations covering the centre of Hull and groundwater conditions were not particularly well understood. In view of the potentially critical risks from groundwater to the construction and operational Phases of the Scheme, a detailed investigation was considered necessary to gain a clearer understanding of the baseline groundwater regime.
- 2.1.2 This groundwater assessment is based on the findings of a desk study, ground investigations and monitoring undertaken between 2013 and 2017, and a numerical groundwater model developed for the Scheme. The study area is shown in Figure 11.4.2. This encompasses the Scheme Site Boundary and a 4km buffer around it, extended to include source protection zones for Hull area sources (as discussed further in Section 2.5).
- 2.1.3 The Scheme encompasses a 1.6km section of the A63 between Ropery Street (NGR TA 0868 2806) and High Street (TA 1013 2845), between Hull City Centre and the docks area, plus a number of site compounds and materials storage areas. The centreline of the proposed A63 carriageway deviates from the existing centreline of the A63 by up to 20m and encroaches into Trinity Burial Ground land. The Scheme also extends southwards towards the Humber Estuary where a rising main is to be installed between the Mytongate Junction pumping station and the Humber Estuary. Table 11.4.1 summarises key elements of the Scheme that have been considered in this investigation. These key areas are also shown in Figure 11.4.2 for reference.

Figure 11.4.2: The study area

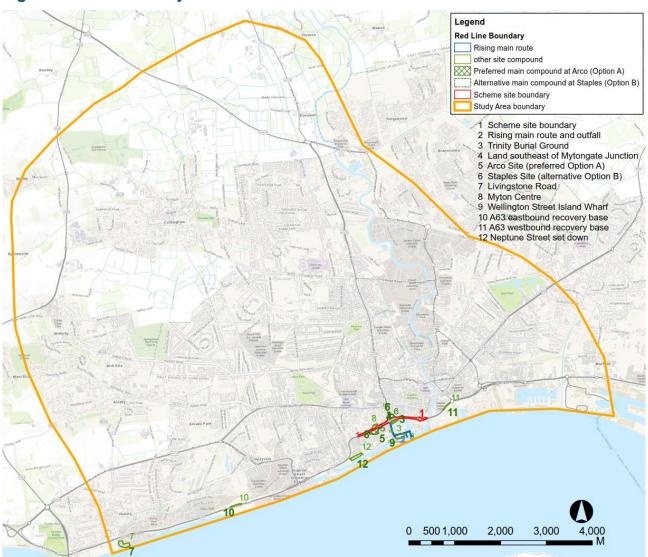


Table 11.4.1: Summary of key elements of the Scheme

	Area reference	NGR	Description	Additional comments
1	A63 / Construction Footprint	TA087281 - TA101285	Linear route of A63 realignment, running approximately east – west. Mytongate Junction located roughly in the centre along the route at TA093284.	Proposed realignment diverts from current route by up to 20m to the south at Mytongate Junction, and into the Trinity Burial Ground land
2	Underpass drainage rising main	TA093284 - TA098280	Linear route running from Mytongate Junction south along Commercial Road and east along Wellington Street Island Wharf before discharging into the Humber Estuary.	
3	Trinity Burial Ground	TA094283	Historic burial ground.	Part of the burial ground is to be excavated and human remains exhumed as part of ground works.

	Area reference	NGR	Description	Additional comments
	Yorkshire Water sewer diversion route ⁶	TA094283	Yorkshire water's proposed sewer diversion runs between the Trinity Burial Ground and the Holiday Inn	Other diversion route options are being considered.
4	Land southeast of Mytongate Junction	TA093283	Pumping station to be constructed within grassed area adjacent to the burial ground.	Remaining land to be used as site compound for the Trinity Burial Ground works
5	Arco Site	TA090281	Site compound to the south of the A63, approximately 200m to the west of Mytongate Junction.	Preferred option (option a) for main compound, including bentonite, jet grouting and concrete batching plants, materials treatment and storage
6	Staples Site	TA093285	Site compound to the northeast of the Mytongate Junction	Alternative option (option b) for main compound, including bentonite, jet grouting and concrete batching plants, materials treatment and storage
7	Livingstone Road	TA035256	Site compound to the south of the A63, and adjacent to Fleet Drain and the Humber Estuary (approximately 6.4km to west of Mytongate Junction).	Materials Compound
8	Myton Centre	TA090282	Buildings to be demolished and the site restored as public open space.	Site may be used car parking during construction phase
9	Wellington Street Island Wharf	TA095280	Site compound to the south of Mytongate Junction, and adjacent to Albert Dock entrance and the Humber Estuary.	Main site offices, accommodation.
10	A63 eastbound recovery base	TA062266	A63 layby eastbound to the north of St Andrews Quay, approximately 3.1km west of the Scheme.	Used for recovery vehicles during construction
11	A63 westbound recovery base	TA105287	A63 bus layby west of Roger Millard Way Roundabout, approximately 400m east of the Scheme.	Used for recovery vehicles during construction
12	Neptune Street set down compound	TA086276	Site compound to the south of the A63, approximately 365m to the southwest of the Scheme.	Princes Quay Bridge compound, recovery vehicle drop-off and TM during the improvements

Desk study

2.1.4 The desk study assessment of baseline groundwater conditions included a review of the following information and reports:

⁶ Sewer diversion routes not shown on Figure 11.4.2. See Options Assessment Report for the Yorkshire Water Sewer Diversion at Mytongate Junction (Arup, 2018; HE514508-ARP-HDG-SO_JN_HI-RP-CD-00503) for further details.

Table 11.4.2: Summary of desk study information

Source	Source detail	Information available / Study conclusions
Acer & AEG	Acer (1995) ⁷ Ground Investigation Report for the A63 Castle Street, describing the findings of the ground investigation undertaken by Allied Engineering & Geotechnics (AEG) ⁸ in 1994	Ground conditions at the site and limited information on aquifer properties, groundwater levels and groundwater quality. Groundwater monitoring was restricted to some short periods of daily water level readings in 16 monitoring boreholes between February and May 1994, three rounds of water level measurements in 1995 and one day of hourly monitoring in four boreholes to assess tidal impacts.
Arup	Ground Investigation Report for A63 Castle Street Improvement (2016) ⁹	This report presents the findings of further ground investigation works carried out in 2015 and 2016. It includes details of geotechnical features and relevant data, and confirms or amplifies the issues identified in the Pell Frischmann PSSR and subsequent investigations. This report includes a geotechnical evaluation of the information, stating the assumptions made in the interpretation of the data. This report aims to identify the geotechnical risks to the Scheme. This report has been written considering the design elements, geometry and construction techniques proposed for the Scheme as outlined in the Arup/Balfour Beatty value engineering design.
Arup	Approval in Principle (AIP) ¹⁰ reports for the underpass, pumping station ¹¹ , Holiday Inn retaining wall ¹² and Porter Street Bridge (2016)	These reports provide details of the 'approval in principle' value engineering design for the underpass, the pumping station, the Holiday Inn retaining wall and Porter Street Bridge.
Arup	Geotechnical Design Report (2016) ¹³	This report identifies geotechnical design parameters, makes design recommendations and identifies risks to the Scheme. Separate appendix reports available for the Porter Street pedestrian, cycle and disabled user bridge, Holiday Inn retaining wall, pumping station, underpass and Mytongate Bridge.
Arup	Options Assessment Report for the Yorkshire Water Sewer Diversion at Mytongate Junction (2018) ¹⁴	This report presents a number of options for Yorkshire Water sewer diversion routes. The diversion is required as the existing sewers pass below the area where the Mytongate grade separated junction is to be constructed.

⁷ Acer (1995) A63 Trunk Road Improvements, Castle Street, Hull – Geotechnical Interpretative Report on Ground Investigation

⁸ Allied Exploration & Geotechnics Ltd. (AEG) (1994) A63 Trunk Road Improvement, Castle Street Hull – Ground Investigation

⁹ Arup (2016) Ground Investigation Report, A63 Castle Street Improvements, Version P01

¹⁰ Arup (2016) A63 Castle Street, Underpass – Approval in Principle, Issue 2

¹¹ Arup (2016) A63 Castle Street, Mytongate Pumping Station – Approval in Principle, Issue 2

¹² Arup (2016) A63 Castle Street, Holiday Inn Retaining Wall – Approval in Principle, Issue 2

¹³ Arup (2016) Geotechnical Design Report, A63 Castle Street Improvements, Version P01

¹⁴ Arup (2018) A63 Castle Street Improvement – Options Assessment Report for the Yorkshire Water Sewer Diversion at Mytongate Junction. HE514508-ARP-HDG-SO_JN_HI-RP-CD-00503. P03

Source	Source detail	Information available / Study conclusions
British Geological Survey (BGS)	1:50,000 geological map - Sheet 80 - Kingston upon Hull (1983) ¹⁵ . Existing borehole records ¹⁶ LithoFrame viewer v2.0	Geological information, including approximate extents of granular alluvium. Limited hydrogeological information including water strikes from historical well records. LithoFrame viewer software tool allows viewing and querying of complex 3D geological models constructed by BGS, including the Holderness model (see below)
British Geological Survey (BGS)	A 3D geological model of the superficial deposits of the Holderness Area (Burke et al., 2010) ¹⁷ Lithoframe-50 ESRI data for the area around the A63 in Hull (BGS, 2013) ¹⁸	3D geological model of the superficial deposits lithology across Hull and Holderness using 1398 BGS borehole records and 74 cross-sections to create an "egg crate" model, from which gridded surfaces were generated for 28 made ground and superficial deposits layers. Gridded data derived from the geological model
Environment Agency	Hull and East Riding Abstraction Licensing Strategy (CAMS) (2013) ¹⁹	Baseline information regarding the abstraction licensing strategy for surface water and groundwater bodies in the Hull area, including the East Yorkshire Chalk.
Environment Agency	The Humber Environment in Focus (2011) ²⁰	Baseline information including groundwater designations, regional influences and environmental considerations.
Environment Agency	What's in your backyard interactive maps ²¹	Nitrate vulnerable zones (NVZ), groundwater source protection zones (SPZ), groundwater vulnerability, aquifer designations, and Water Framework Directive (WFD) River Basin Management Plans (RBMP) ²² water bodies, and their current and predicted status, objectives and pressures.

¹⁵ British Geological Survey (BGS) (1983) Sheet 80 Kingston upon Hull, 1:50,000 scale, Drift Edition

¹⁶ http://mapapps2.bgs.ac.uk/geoindex/home.html Accessed 31 January 2017

¹⁷ Burke, H. F., Morgan, D. J., Kessler, H. and Cooper, A. H. (2010) A 3D geological model of the superficial deposits of the Holderness area. British Geological Survey commissioned report No. CR/09/132. Available online at http://nora.nerc.ac.uk/id/eprint/16850/1/CR09132N.pdf

¹⁸ British Geological Survey (BGS) (2013). Lithoframe-50 ESRI data for the area around the A63 in Hull

¹⁹ Environment Agency (2013) Hull and East Riding Abstraction Licensing Strategy. Reference LIT 7867. Available online at https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/305452/lit_7867_a7b9fe.pdf

²⁰ Environment Agency (2011) The Humber Environment in Focus 2011. Available online at https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/297466/gene0611btzc-e-e.pdf

²¹ http://www.environment-agency.gov.uk/homeandleisure/37793.aspx_Accessed 3 May 2017

²² Environment Agency (2009) River Basin Management Plan: Humber River Basin District. Available online at https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/297488/gene0910bsqr-e-e.pdf

Source	Source detail	Information available / Study conclusions
Environment Agency	Information request (February 2017)	Licensed abstraction information within the study areafor the Scheme. Associated borehole records, and pumping test details including water quality.
ESG	Factual Report on Ground Investigations for A63 Castle Street (2016) ²³	Balfour Beatty and Ove Arup commissioned further Gls, covering the areas within the Scheme Site Boundary, the Trinity Burial Ground ²⁴ and the Princes Quay pedestrian, cycle and disabled user bridge ²⁵ . The Factual reports include borehole logs and groundwater level measurements, as well as other geotechnical and geoenvironmental field and laboratory test results.
ESI	East Yorkshire Chalk Aquifer: Conceptual Model Report (ESI, 2010) ²⁶	Baseline information regarding the Chalk aquifer including geology, recharge and regional groundwater flow.
ESI	East Yorkshire Chalk Model: Model Update and Refinement (2015) ²⁷	Conceptual model refinement includes inclusion of additional data in the Hull area to improve understanding of hydraulic relationships between Chalk, superficial deposits and the Humber Estuary.
Gale and Rutter	The Chalk Aquifer of Yorkshire. BGS Research Report RR/06/04 (2010) ²⁸	Detailed baseline information regarding the Chalk Aquifer.
Geotechnics	Ground Investigation for A63 Castle Street (2013) ²⁹	MMG JV commissioned a comprehensive ground investigation (GI) of the Scheme footprint. The GI report summarised local ground conditions and included data collected as part of the GI, including borehole logs, groundwater level dip data, aquifer properties derived from falling head and packer tests, and water quality data.

_

²³ ESG (2016) A63 Garrison Road, Castle Street Improvement, Hull, Factual Report on Ground Investigation. Report No A5066-15A. For Balfour Beatty Limited and Ove Arup & Partners

²⁴ ESG (2016) Trinity Burial Ground, A63 Castle Street Improvement, Hull, Factual Report on Ground Investigation. Report No A5049-15. For Balfour Beatty Limited and Ove Arup & Partners

²⁵ ESG (2016) Princess Quay Footbridge, A63 Castle Street Improvement, Hull, Factual Report on Ground Investigation. Report No A5066-15. For Balfour Beatty Limited and Ove Arup & Partners

²⁶ ESI (2010) East Yorkshire Chalk Aquifer: Conceptual Model. Prepared for the Environment Agency. Ref: 602711R1D1

²⁷ ESI (2015) East Yorkshire Chalk Aquifer Investigation: Model Update and Recalibration. Prepared for the Environment Agency. Ref: 62986 R2, June 2015

²⁸ Gale, I. N. and Rutter, H. K. (2006) The Chalk Aquifer of Yorkshire. British Geological Survey. Research Report RR/06/04

²⁹ Geotechnics Ltd. (2013) Ground Investigation at A63 Castle Street Improvements. For MottMacDonald Grontmij Joint Venture (JV).

Source	Source detail	Information available / Study conclusions
Highways Agency ³⁰	Design Manual for Roads and Bridges (DMRB) Volume 11 Environmental Assessment (2009) ³¹	Relevant groundwater legislation and impact assessment methodology.
Hull City Council	Information request (February 2017)	Unlicensed abstractions within of the study areafor the Scheme.
Landmark Information Group Services	Envirocheck report (2013) ³²	Environmental data e.g. designated sites, abstraction locations.
MMG JV ³³	Environmental Statement Scoping Report (2013) ³⁴	Report setting out the proposed scope of work and methods to be applied in carrying out the Stage 3 EIA for the Preferred Option, and the proposed structure of the ES. The Drainage and Water Environment chapter summarised baseline conditions and the potential effects of construction and operation of the highway on the quality of surface water and groundwater, on water resources and on flood risk, based on the work carried out to date. Groundwater risks highlighted in this report included: The potential for groundwater movement through cohesive superficial deposits classified as unproductive. Evidence from other major below-ground construction projects in the area suggests that more permeable horizons within the superficial deposits associated with granular deposits and the differential groundwater heads between these can result in groundwater leakage and potential ground failure due to running sand under some conditions. The more permeable horizons within the superficial deposits, particularly within the shallow, alluvial deposits may also act as pathways for the lateral migration of near-surface groundwater levels and potential
		 High groundwater levels and potential upwards leakage from the underlying chalk are likely to require managing within

³⁰ From April 2015 Highways Agency was rebranded Highways England

³¹ The Highways Agency, Scottish Government, Welsh Assembly Government Llywodraeth Cynulliad Cymru and The Department for Regional Development Northern Ireland (2009) Design Manual for Roads and Bridges. Available online at http://www.standardsforhighways.co.uk/ha/standards/dmrb/vol11/section1.htm

³² Landmark Information Group Services (2013) Report Ref. 43865337-1, Envirocheck Report on Castle Street, Hull

³³ From April 2016 Grontmij was rebranded Sweco and MMG JV became MMS JV (Mott Macdonald Sweco Joint Venture)

³⁴ MMG JV (2013) A63 Castle Street Improvements, Hull – Environmental Statement Scoping Report - 1168-10-221-RE-001-PD1

Source	Source detail	Information available / Study conclusions
		excavations during construction through dewatering. Due consideration of potential groundwater contaminants which that may be present as a result of land contamination will be required and shall be assessed as part of the planned intrusive investigations and follow-up monitoring.
		Both the construction and operation phases have the potential to impact on local groundwater levels outside the Scheme Site Boundary.
		The report indicated that the following would be carried out to inform the ES:
		 A detailed groundwater assessment, taking into account the findings of previous investigations as well as the 2013 site investigation. The assessment would take into account WFD requirements.
		 Development of a numerical groundwater model to both inform the design and to assess the impact on groundwater receptors up- and down-gradient of the Scheme, as well as the impact of mitigation measures.
		 Assessment of groundwater quality and potential impacts during construction and operation.
		It was not anticipated that pumped groundwater will be discharged to soakaway during either the construction or operation phases and therefore assessments relating to these would not be undertaken.
Pell Frischmann	Preliminary Sources Study Report (PSSR) (2004) ³⁵	The PSSR provided information on five options for the improvement of the A63 Castle Street, Hull. The PSSR details (but is not limited to) topography and site history (historical mapping review), geology, mineral extraction, aerial photography, ground conditions, contaminated land, seismicity, hydrogeology, hydrology, flooding land use and archaeology. Details of the programme of statutory consultations that were undertaken are also presented.
Pell Frischmann	Environmental Assessment Report (EAR) (Options Selection Stage) (2010) ³⁶	Stage 2 Environmental Assessment of two preferred options for improvement of the A63 Castle Street, including identification and assessment of adverse and/or beneficial impacts, proposals to mitigate adverse impacts and consideration of opportunities for environmental enhancement. The preferred options comprised:

³⁵ Pell Freshman (2004) A63 Castle Street Improvements, Hull, Project Support Framework – Preliminary Sources Study Report, Report Reference W11189/VAA/02 Revision 1.

³⁶ Pell Frischmann (2010) A63 Castle Street Improvement Hull - Environmental Assessment Report (Options Selection Stage), Report Reference W11189/T13/02 Final Rev 2

Source	Source detail	Information available / Study conclusions
		 A63 in cutting at Mytongate Junction (the "Underground Option")
		 A63 on flyover at Mytongate Junction (the "Overground Option")
		The EAR assigned a qualitative ranking to each preferred option. Both options were ranked equal in terms of an overall water environment impact of "neutral".
		The EAR noted that preliminary design work had shown that secant pile walls extending into the glacial till would be needed to support the Underground Option excavation and that this would eliminate groundwater ingress into the structure. It also noted that a previous report had showed, via the use of flow nets, that groundwater seepage into the excavation could be adequately managed using sump pumps and that it was unlikely that this would have a significant effect on groundwater levels outside the excavation. The EAR included a baseline hydrogeological assessment. This appears to be based on publicly available information only and it makes no reference to the previous (1994) GI by AEG. The assessment concluded that the magnitude of impact was minor adverse but that the significance was neutral owning to the low groundwater quality
Pell Frischmann	Environmental Statement Scoping Report (ESSR) (2011) ³⁷	Preliminary design stage environmental scoping report for the Preferred Option (Underground Option) for the improvement of the A63 Castle Street.
		The report set out how the Scheme was to be assessed and the scope of the Environmental Impact Assessment (EIA), and was circulated to statutory environmental bodies and other key stakeholders for consultation and comment.
		Groundwater issues were covered in the Road Drainage and Water Environment chapter. This made reference to the findings of the EAR and concluded that a Detailed Assessment was required that included in the scope of work:
		 an update of baseline information including abstraction licences;
		 a full flood risk assessment (FRA); and
		 identification of mitigation measures in the design where required.
		However, as no discharges to groundwater were being considered, a DRMB Volume 11 Method C – Assessment of Pollution Impacts from Runoff to Groundwater would not be required. Moreover, further groundwater assessment of the Operational Phase would also not be required.

³⁷ Pell Frischmann (2011) A63 Castle Street Improvements – Environmental Statement Scoping Report

Source	Source detail	Information available / Study conclusions
Pell Frischmann	Scheme Handover Report (2011) ³⁸	Handover report summarising the history of the Scheme to date and details of work undertaken in the preliminary design stage. This included a summary of groundwater strike and level data collected to date, including that collected during the 1994 ground investigation and a very small amount of information from investigations predating
The Planning	Scoping Opinion	this (Acer in 1990; Holst in 1977; and Soil Mechanics in 1987). Comments relating to groundwater aspects of the
Inspectorate	Proposed A63 Castle Street Improvements, Hull (2013) ³⁹	Drainage and Water Environment chapter of the ES are detailed below: The Environmental Statement Scoping Report addresses the issues we would wish to see in the Environmental Impact Assessment relating to groundwater and contaminated land. Details of the hydrogeological assessments referred to in sections 10.6.3 and 15.6.15 [these relate to pumping tests] must be agreed with the Environment Agency prior to carrying out any works where pumping of groundwater is proposed. Consent may be required under Section 32/3 of the Water Resources Act 1991 and pumping
		tests may not be approved. This is because the status of the Hull and East Riding Chalk groundwater body is poor due to intrusion of saline water in the Hull area. Additional pumping in this area may have a detrimental effect on water quality in this important aquifer. The assessment within this topic chapter will inform
		other assessments within the ES, in particular the assessment of impact to groundwater and soils. It will also inform the Nature Conservation assessment, and it is noted that ecological receptors are identified in Paragraph 15.5.1 of the Scoping Report. Under this section impacts on features of Cultural Heritage interest (particularly buried assets) are not identified as potential receptors however, this is identified as a potential effect in Section 7 of the Scoping Report. The SoS considers that the drainage chapter should also inform the Cultural Heritage assessment and that potential impacts on heritage assets should be identified within this topic chapter.
Riley, M.	Note of the A63 Castle Street Pumping Test. (2015) ⁴⁰	Alternative approach to analysis of the 2013 pumping test (see Appendix 11.5 pumping test report). Transmissivity values agreed with analytical values presented in Appendix 11.5 Pumping test report.

 $^{^{\}rm 38}$ Pell Freshman (2011) A63 Castle Street Improvements – Scheme Handover Report

³⁹ The Planning Inspectorate (2013) Scoping Opinion Proposed A63 Castle Street Improvements, Hull

 $^{^{\}rm 40}$ Riley, M. (2015) A note on the A63 Castle Street Pumping Test

Source	Source detail	Information available / Study conclusions
Various	Ennerdale Link Tunnel and Humbercare Sewerage Tunnel failures and lessons learnt (articles)	Ground conditions and predicted groundwater conditions to the east of the A63 Castle Street Scheme.

2.1.5 The above list is not exhaustive. A number of studies covering the regional geology, hydrogeology and groundwater quality have also been reviewed to inform understanding of the baseline hydrogeological regime. Where these studies or any additional information has been used, these are referenced in the body of the report.

Ground investigation

2.1.6 GIs have been undertaken within the Scheme Site Boundary in 2013 and 2015/16 to inform the Project design.

2013 GI

- 2.1.7 The 2013 GI is described in detail in the Ground Investigation Report (GIR) (Annex A). The purpose of this intrusive investigation was to confirm and supplement the geotechnical and hydrogeological findings from the PSSR and other previous investigations, and to inform the preliminary design and ES.
- 2.1.8 The 2013 GI intrusive investigation comprised exploratory boreholes, trial pits, window samples, self-boring pressure meter tests (SBPT) and archaeological standard cone penetration tests (SCPTs). These were supplemented by geophysical surveys, permeability tests, a pumping test, and groundwater level and quality monitoring. The investigation was restricted to the construction footprint of the Scheme.
- 2.1.9 The following aspects are of particular relevance to this groundwater investigation:
 - Water strike information for the 51 exploratory boreholes
 - Completion of seven chalk boreholes and 35 superficial deposits exploratory boreholes as 50mm diameter observation boreholes
 - Collection of manual dip data in completed observation boreholes at approximately daily intervals between July 2013 and October 2013 while the intrusive investigation was ongoing, and less frequently between October 2013 and January 2014. Additional data was collected on a monthly basis between May and August 2014
 - Installation of groundwater dataloggers in selected monitoring boreholes between November 2013 and August 2014
 - Groundwater quality sampling

- Falling head tests and packer tests undertaken during construction and following completion of monitoring installations
- Completion of two larger diameter boreholes in the Chalk and superficial deposits, and test pumping of the Chalk borehole in December 2013
- 2.1.10 The permeability test programme and analyses are described in detail in Section 2.6.
- 2.1.11 The larger diameter borehole drilling and test pumping programme, results and analysis are described in detail in the LDBH01 Pumping Test Report (Appendix 11.5). The findings of the pumping test and associated monitoring are summarised in Section 2.6.
- 2.1.12 The 2013 groundwater quality investigation is described in detail in the GIR (Annex A) and the findings included in Volume 3 Appendix 12.1 Ground contamination assessment. The findings are also considered in this report, both in terms of baseline conditions and potential groundwater quality impacts during the construction and Operational Phases of the Scheme.

2015/16 GI

- 2.1.13 The purpose of the 2015/16 GI was to confirm and supplement the geotechnical and hydrogeological findings of the previous studies, and to inform the detailed design and construction of the Scheme. The 2015/16 GI focussed on the Trinity Burial Ground and the Princes Quay footprint, as well as also covering the main realignment route. Factual reports for the 2015/16 GIs are provided in Annex B D.
- 2.1.14 The 2015/16 GI intrusive investigation comprised exploratory boreholes, window samples, cone penetration tests (CPTs), and geotechnical and geoenvironmental laboratory testing. The investigation was restricted to the Scheme Site Boundary.
- 2.1.15 The following aspects were of particular relevance to this groundwater investigation:-
 - Water strike information for the 31 exploratory boreholes
 - Completion of two chalk boreholes and 21 superficial deposits exploratory boreholes as 50mm diameter observation boreholes
 - Collection of manual dip data in all the completed observation boreholes whilst the intrusive investigation was ongoing
 - Collection of groundwater level from data loggers in all the completed observation boreholes. Additional data was collected following completion of the GI, to give a monitoring record of at least six months

2.2 Topography and land use

- 2.2.1 The Scheme is low-lying and of relatively low relief, with ground levels varying from about 3m above Ordnance Datum (AOD) to 5m AOD and-use at the site is urban, with an existing road and junction. Domestic, industrial and commercials buildings are located along the entire route, with green areas limited to within the current Mytongate traffic island, the Trinity Burial Ground and land surrounding William Booth House and the Myton Centre. Docks associated with the River Humber are situated immediately to the north and south of the Scheme near the Princes Quay shopping centre, and to the south of Trinity Burial Ground.
- 2.2.2 Historic aerial photos available on Google Earth Pro⁴¹ suggest that the proposed site compounds at Livingstone Road, Wellington Street Island Wharf and the Neptune Street set down compound are brownfield sites that are currently either partially vegetated wasteland or semi-permeable hardstanding for vehicle parking or storage. The Arco and Staples sites, and the Myton Centre are currently a mixture of buildings, car parking and public open space. The eastbound and westbound recovery bases are located in existing road laybys.

2.3 Regional geology

Bedrock

- 2.3.1 The bedrock underlying the city of Hull consists of Cretaceous Chalk. This extends as far as Flamborough Head to the north, the Yorkshire Wolds to the west, the Humber Estuary to the south, and the North Sea to the east.
- 2.3.2 The Yorkshire Wolds largely comprise Chalk downland, consisting of steep west and north facing escarpments, with a dip slope gently south and eastwards beneath Quaternary deposits, which thicken to the east. The Chalk typically dips between 1- 2° eastwards⁴² and is contorted in places with some minor faulting (though this is not apparent in the vicinity of the construction footprint).
- 2.3.3 The Chalk Group of Yorkshire is part of the Northern Province Chalk, and is split into four lithostratigraphic units. In ascending order these are the Ferriby Chalk, Welton Chalk, Burnham Chalk and Flamborough Chalk formations²⁸. The chalk beneath Hull is part of the Burnham Chalk Formation.
- 2.3.4 North of the Humber Estuary, the Burnham Chalk is approximately 140m thick and is characterised by thinly bedded chalks with discontinuous and tabular flint bands²⁸.

⁴¹ Accessed 19 January 2018

⁴² Smedley, P. L., Neumann, I. and Farrel, R. (2004) Baseline Report Series: 10. The Chalk Aquifer of Yorkshire and North Humberside. British Geological Survey. CR/04/128N. Environment Agency Technical Report NC/99/74/10

- 2.3.5 The Chalk rockhead strongly influences topography in the region. Upland areas of the Yorkshire Wolds where the Chalk outcrops extensively to form the crest and plateau areas reach elevations of around 180m, but elevations quickly decrease to the east. In the area around the Humber Estuary where the Quaternary superficial deposits become thicker, the land is a relatively low lying coastal plain, draining to the Humber Estuary and the North Sea.
- 2.3.6 A buried sea cliff formed in the Ipswichian interglacial stage can be traced beneath the Quaternary cover from the current coastline near Bridlington down to the Humber Estuary near Hessle and Barton. This significantly influences aquifer productivity and groundwater chemistry in the region (see Section 2.6).
- 2.3.7 Figure 11.4.3 shows the regional distribution of the Cretaceous Chalk bedrock and Quaternary cover in the Yorkshire area along with the location of the buried cliff line and the River Hull.

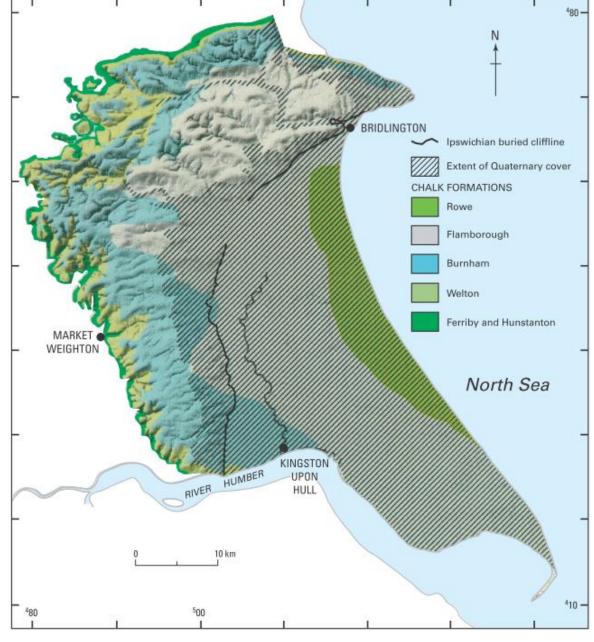
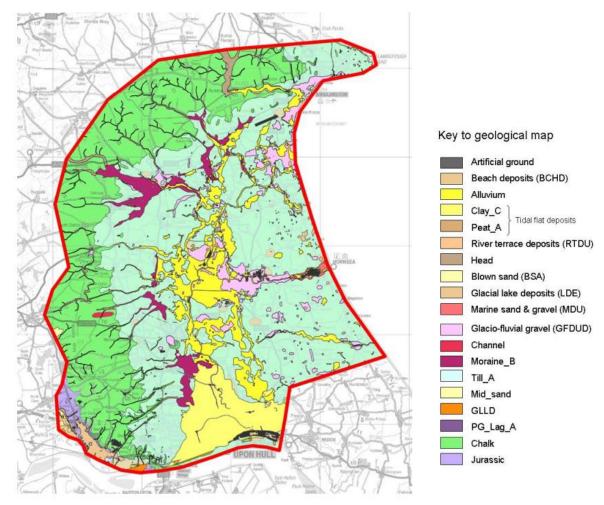


Figure 11.4.3: Regional geology overview of East Yorkshire²⁸

Soils

2.3.8 ESI (2010) report seasonally wet deep clay and seasonably wet deep loam as the dominant soil types.

Superficial Deposits


The British Geological Survey (BGS) created a 3D model showing the thickness and distribution of Quaternary deposits in the Holderness area¹⁷. The model used borehole logs from the region to interpret the spatial distribution and thicknesses of different superficial deposits.

2.3.9	Figure 11.4.4 shows a summary of the superficial deposits across the Holderness
	plain.

Figure 11.4.4: British Geological Survey model output – superficial deposits¹⁷

Based on OS topography © Crown Copyright. All rights reserved. BGS 100017897/2010. 10km grid squares.

Notes on Key: Mid_sand = glaciofluvial sand and gravel lenses in glacial till, GLLD = glaciolacustrine clay near middle glacial sequence, PG Lag A = glaciofluvial sand and gravel at the base of the glacial sequence.

- 2.3.10 The Quaternary deposits in the eastern parts of the Yorkshire and Holderness region are mainly Devensian (late Pleistocene) glacial tills, glacial sands and gravels, and post-glacial (Holocene) coastal and marsh sediments. In the lowland areas of Holderness, these are commonly between 20 and 30m thick, and can locally exceed 50m to the south²⁸.
- 2.3.11 The regional superficial deposits are characterised by deposits laid down during periods of glaciation and inter-glaciation, and subsequently post-glacial estuarine environments. It is subject to lateral and vertical variation on a localised scale, and as such is highly complex. However a summary of the Quaternary geology directly relevant to the Hull area is provided below, to add context to the local geology.
- 2.3.12 Directly overlying the Chalk are fluvio-glacial sands and gravels, which are discontinuous across the region. A layer of fine grained and well sorted blown sand (aeolian) overlies the fluvio-glacial deposits. These are considered to have been deposited during a period of denudation, and are discontinuous due to

- subsequent periods of erosion. Locally, where present, the blown sands are difficult to differentiate from the fluvio-glacial deposits.
- 2.3.13 The glaciolacustrine deposits overlie the fluvio-glacial and aeolian deposits, which were subsequently overlain by glacial till from a subsequent phase of glaciation. Alluvial deposits are present as channel features cutting down into the glacial till, for example the former channel of the River Hull that crosses the Scheme (Section 2.5). Highly variable alluvial deposits cover the region. These cohesive deposits contain layers of peat, particularly towards the base and reflect the marshland environment found even up until development of the area.
- 2.3.14 Sand lenses, bands and horizons are found throughout the superficial deposits, reflecting fluctuations in the depositional environment and historical channels associated with braided river systems.
- 2.3.15 This section of the report focusses on providing an overview of the regional geology in context with the geology which is important beneath the Scheme. The general regional geology of East Yorkshire and the Holderness plain, including aquifer units which are not present beneath the site, are described in much more detail in a number of published studies. Key publications are referenced in Table 11.4.2.

2.4 Local geology

2.4.1 Geological details for the Scheme and for the site compounds are provided separately below.

The Scheme

- 2.4.2 The understanding of the local geology is based upon exploratory boreholes constructed as part of the 1994, 2013 and 2015/16 ground investigations. Locations of the 2013 GI exploratory boreholes are presented in Drawing 1168-09-01-DR-001-PD8 of the 2013 GIR (Annex A). Geological cross sections based on the 1994^{7,8,43} and 2013²⁹ GI exploratory borehole logs have been created to show the geology underlying the site (Drawing Nos.1168-09-01-DR-004 to 015 of the GIR; see Annex A).
- 2.4.3 Made ground, comprising both granular and cohesive material, is recorded across the full extent of the Scheme. The composition of the made ground varies, depending on previous land use and the presence of historical structures.
- 2.4.4 The made ground is directly underlain by superficial deposits of the Quaternary Period. These comprise varying thicknesses of cohesive and granular estuarine alluvial deposits, and peat, underlain by cohesive and granular glacial deposits.

⁴³ Acer (1995) A63 Trunk Road Improvements, Castle Street, Hull – Geotechnical Interpretative Report on Ground Investigation

- 2.4.5 A channel feature is present below the eastern half of the Scheme, where glacial deposits (the glacial till, glaciolacustrine and fluvio-glacial deposits) were locally eroded and subsequently infilled with granular alluvium. A review of BGS borehole logs across the Hull area suggest that the alluvial channel has an approximately northwest southeast orientation and extends towards the Humber Estuary. The superficial deposits are underlain by chalk bedrock of the Burnham Chalk Formation. Chalk rockhead is typically 20 30mbgl across the Scheme. It is characterised by a layer of weathered chalk up to 9m thick, overlying more intact chalk.
- 2.4.6 Table 11.4.3: summarises the geology underlying the Scheme.

Table 11.4.3: Summary of the geology underlying the Scheme

Lithology	Description
Made ground	Made ground is encountered across the full extent of the Scheme. The greatest thickness is recorded at approximately Ch. 850, near the Humber Docks, but the made ground thickness is generally variable, ranging from 0.3m to 13.0m. Trial pits have identified old walls, floors and foundations, old service pipes and an old brick culvert within the made ground between 0.5m and 2.2m depth. The granular made ground occurs between ground surface and 13.0mbgl, and has a maximum recorded thickness of 9.2m. It is described as slightly to very gravelly clayey to silty SAND with occasional cobbles. The gravel comprises fine to coarse limestone, sandstone, flint, brick and concrete. Cobbles typically comprise chalk, brick or concrete. The cohesive made ground occurs between ground surface and a maximum recorded depth of 12.0mbgl, and has a maximum recorded thickness of 8.0m. It is described as slightly gravelly to gravelly slightly sandy to sandy CLAY with a low cobble content in some areas. Cobbles typically comprise chalk, brick or concrete.
Cohesive alluvium	The cohesive and granular made ground are locally interbedded. Cohesive alluvium is continuously present beneath the made ground within the Scheme between 0.6mbgl and 15.8mbgl. The thickness of the deposits varies from 0.7m to 11.6m. Field logs describe the cohesive alluvium as very soft to firm slightly sandy
	CLAY with some peat pockets and bands of organic material. In some areas, the cohesive alluvium is described as sandy SILT. Comparison between field descriptions and particle size distribution data suggests that all of the cohesive alluvial deposits may be described as slightly sandy SILT. The silt is slightly gravelly in some areas, very soft to soft, occasionally firm and commonly organic. A firm clay is often observed at the base of the unit.
	Locally, peat and granular alluvium are interbedded within the cohesive alluvium.
Granular alluvium	Granular alluvium deposits were encountered mainly towards the eastern end of the Scheme at chainages over Ch. 600. The granular alluvium was encountered directly under the cohesive alluvium between 4.1mbgl and 24.0mbgl. The thickness of the deposit varies between 0.05m and 13.6m, with the greatest thickness in the area of the Humber Docks. Field logs and particle size distribution data describe the granular alluvium
	as comprising slightly silty to silty, gravelly SAND to sandy GRAVEL with occasional cobbles. The gravel is of various content including flint and chalk. confirms this description.

Lithology	Description
Peat	Layers of relic peat and organic lenses were found within the alluvium. These layers are discontinuous and encountered mainly in the central and western parts of the Scheme. The peat layers, where present, vary between 0.2m and 1.8m thick and were encountered at depths ranging from 6.9mbgl to 22.6mbgl. The peat layers are described as firm brown to black slightly clayey
	pseudo- fibrous PEAT. Locally the peat is described as soft or very soft.
Glacial till	Glacial till was encountered directly below the alluvium across the majority of the Scheme. The only area where it is not present is in the area of the Humber Docks. The glacial till was encountered between 8.2mbgl and 23.5mbgl, with the thickness of between 0.4m and 6.8m. The glacial till is predominantly cohesive, and field logs describe the deposits as firm to stiff slightly sandy to sandy slightly gravelly to gravelly CLAY. The gravel is fine to medium of chalk and some flint.
Glaciolacustrine deposits	Glaciolacustrine material is present across the entire Scheme, typically underlying the glacial till but occasionally immediately underlying the alluvium. The glaciolacustrine deposits were encountered between 13.3mbgl and 26.6mbgl, with a thickness of between 3.4m and 9.7m. They are at their thickest in the middle and western parts of the Scheme, and become thinner towards the east.
	Field logs and the single particle size distribution (PSD) analysis describe the material as firm to stiff thinly laminated slightly sandy CLAY with occasional sand and silt partings. In some areas the material is slightly gravelly slightly sandy CLAY.
Fluvio-glacial deposits	The base of the superficial deposits comprises fluvio-glacial material. This overlies the Chalk bedrock across most of the Scheme, but is thickest towards the eastern end. The fluvio-glacial deposits are encountered between 19.0mbgl and 33.6mbgl, and vary in thickness between 1.0m and 9.6m.
	The deposits are described as silty to very silty gravelly SAND to sandy GRAVEL. The gravel comprises fine to coarse chalk and some flint.
	A relatively thin horizon $(0-5m)$ of fine to medium grained sand was identified to the east of Mytongate Junction in the 2015/16 GI, which may represent blown (aeolian) sand. It is assumed that previous GIs did not differentiate between this horizon and the fluvio-glacial deposits. For the purposes of this hydrogeological assessment, the blown sand is considered part of the fluvio-glacial deposits horizon.
Chalk	Chalk bedrock was encountered across the Scheme. A layer of weathered chalk overlaying more intact chalk is characteristic of the upper horizon of this formation. The top of the weathered chalk is at a minimum recorded depth of 20.6mbgl (-17.94 m AOD) in Borehole BH04 and at a maximum depth of 33.6m (-28.96m AOD) in Borehole BH45. The maximum recorded thickness of weathered chalk is 9.0m, with an average thickness of 4.6m.
	The weathered chalk is described as very weak to medium and structureless. It is generally recovered as strong sub-angular to angular gravel and cobbles. Flints are recorded throughout.

- 2.4.7 Full descriptions of the geological units described above and their tested properties can be found in the GIR (Annex A D).
- 2.4.8 There are no known faults or dissolution features below the Scheme. There is also no historical or current mining activity in or near this area.

Site compounds and public spaces

- 2.4.9 A summary of the geology underlying the site compounds and rising main route, based on existing borehole records available from BGS is provided in Annex E. Key differences from the geology within the Scheme Site Boundary are provided below:
 - Along the rising main route and at the Wellington Street Island Wharf compound, there are greater thicknesses of made ground adjacent to the Humber Estuary and Albert Dock.
 - The granular alluvium is absent or only partially present beneath all site compounds, including the A63 westbound recovery base located to the east of the River Hull. The granular alluvium is only present in some borehole logs at the land south east of Mytongate Junction and at the Staples site.
 - At Livingstone Road, the Chalk rockhead is at much shallower depths (9 12mbgl) than within the Scheme Site Boundary. Fluvio-glacial deposits directly underlie the alluvium in two boreholes, and Chalk directly underlies the alluvium in one borehole.
 - 'Warp clay' (soft laminated silt and clay) is identified in some borehole logs at Livingstone Road and the Neptune Street set down compound.
 - At the Staples site, the glacial till is granular.

2.5 Regional hydrogeology

Chalk

Overview

- 2.5.1 The Chalk aquifer is a major source of water supply to Hull, Driffield and other urban centres in East Yorkshire. Discharge from the Chalk is the primary source of baseflow to watercourses in the Holderness Plain, including the Gypsey Race and the River Hull. The Chalk also provides baseflow to streams draining to the north and west, within the catchments of the rivers Derwent and Foulness.
- 2.5.2 Regional groundwater movement tends to follow the dip of the Chalk with a significant groundwater divide along the Chalk escarpment of the Yorkshire Wolds. The Chalk aquifer is unconfined across the Wolds where it outcrops but becomes confined to the east by impermeable superficial deposits. Clay bands within the Chalk may also act as locally confining layers.
- 2.5.3 The unconfined/confined boundary generally coincides with the buried cliff line, to the east of which the thickness of the superficial deposits increases markedly²⁸. Much of the groundwater flowing down-gradient from the Wolds to the east emerges as springs or is pumped from the aquifer in the vicinity of this buried cliff line.

2.5.4 Seasonal changes in groundwater head are low in the confined aquifer but can be as much as 30m in the unconfined aquifer. Historically, the Chalk underlying Hull was artesian and groundwater discharged from springs adjacent to the Humber Estuary. However, a long-term decline in groundwater heads due to abstraction caused the springs to dry up and reversed the hydraulic gradient, leading to saline intrusion^{26,28}. The Environment Agency and Yorkshire Water are currently conducting investigations into the current extent of saline intrusion below Hull.

Aquifer properties

- 2.5.5 The Chalk is described as a dual porosity aquifer with groundwater flow occurring within both the matrix (primary porosity) and through fractures (secondary porosity). Although the chalk matrix has a high primary porosity, the small pore throat size means a very low hydraulic conductivity (K) of less than 10⁻³m/day for laboratory tested samples²⁸. The secondary porosity due to fractures and fissures is relatively low, but most groundwater flow occurs through these and the secondary hydraulic conductivity can be high.
- 2.5.6 As the Northern Province Chalk is harder and better cemented in comparison to southern chalks, it tends to have cleaner fractures of increased frequency and greater secondary permeability²⁶. It also means that the weathered chalk tends to be in the form of more permeable rubbly chalk "bearings" as opposed to the fine-grained putty chalk found in the south of England^{28,44} ⁴⁵.
- 2.5.7 Although the thickness of the Chalk is considerable, there is a significant variation in hydraulic properties with depth. The effective aquifer thickness is greater in the unconfined Chalk where there is a better developed secondary hydraulic conductivity, particularly in the zone of water table fluctuation where fracture hydraulic conductivity is enhanced by dissolution. The effective aquifer thickness is usually significantly reduced in the confined aquifer and flow tends to be associated with particular horizons of higher hydraulic conductivity (which can be associated with flint bands). ESI assumed the effective aquifer thickness to be the upper 30 to 50m of unconfined Chalk and the upper 10 to 15m of the confined Chalk²⁶.
- 2.5.8 Transmissivity (T) is a measure of the aquifer's ability to transmit water, where T = Kb (b = saturated aquifer thickness). Transmissivity within the Chalk depends to a great extent on fracture hydraulic conductivity. In the confined Chalk in the east of Holderness, it can be as low as 50m²/d while in the unconfined aquifer, Allen et al⁴⁶ reported values up to over 10,000m²/d.

⁴⁴ Younger, P. L., Teusch, G., and 10 others. (1997) Groundwater resources and climate change effects – GRACE. Final report of EC Framework 3 Environmental Programme Contract CEC EV5V – CT94-0471.

⁴⁵ Price, M., Downing, R. A. and Edmunds, W. M. (1993) The Chalk as an Aquifer. 35 – 58 in The hydrogeology of the chalk of North-West Europe. Oxford: Clarendon Press).

⁴⁶ Allen, D. J., Brewerton, L. J., Coleby, L. M., Gibbs, B. R. Lewis, M. A., MacDonald, A. M., Wagstaff, S. J. and Williams, A. T. (1997) The physical properties of major aquifers in England and Wales. British Geological Survey Technical Report, WD/97/34.

2.5.9 Allen et al. collated storage values estimated for the Northern Province Chalk as a whole⁴⁶. These ranged from 1.5 x 10^{-4} to 1.0 x 10^{-1} with a geometric mean of 7.2 x 10^{-3} . Higher storage values (above 0.01) are associated with the presence of chalk bearings at the top of the confined chalk²⁸.

Designations

- 2.5.10 The following information is taken from the Environment Agency's What's in your backyard website⁴⁷.
- 2.5.11 The Chalk underlying Hull is classed as a principal aquifer. The Environment Agency uses aquifer designations that are consistent with the WFD and are based on BGS geological mapping. These designations reflect the importance of aquifers in terms of groundwater as a resource (drinking water supply) but also their role in supporting surface water flows and wetland ecosystems. Principal aquifers are defined by the Environment Agency as 'geological strata that have high permeability and usually provide a high level of water storage. They are capable of supporting water supply on a strategic scale and are often of major importance to river base flow'. In most cases, principal aquifers were formerly known as major aquifers.
- 2.5.12 The Environment Agency's groundwater vulnerability classification for the Chalk underlying central Hull (and also across the Scheme Site Boundary) is Low due to the soil and overlying geology, which will limit the transport of contaminants to the Chalk. To the west and northwest, the Chalk is classified as Medium and Medium—High. The Chalk is also classified as Medium High along the banks of the Humber Estuary.
- 2.5.13 Within the WFD Humber River Basin Management Plan, the Schemeis located within the Humber GW Management Catchment and the Hull and East Riding Chalk Operational Catchment, and the Chalk is identified as water body ID GB40401G700700 (Hull & East Riding Chalk). The Cycle 2 review (2016)⁴⁸ classified the groundwater body as having poor quantitative status (due to saline intrusion and dependent surface water body elements) and poor chemical status (general chemical test, drinking water protected area and saline intrusion elements). Chemical pressures include diffuse pollution (agricultural nutrient management and also suspected pollution from towns, cities and transport) and point source pollution (discharge from sewage treatment plant or untreated sewage discharge plus agricultural point sources), while quantitative pressures include saline intrusion due to abstraction. The groundwater body is designated as a drinking water protected area (DrWPA) under WFD.

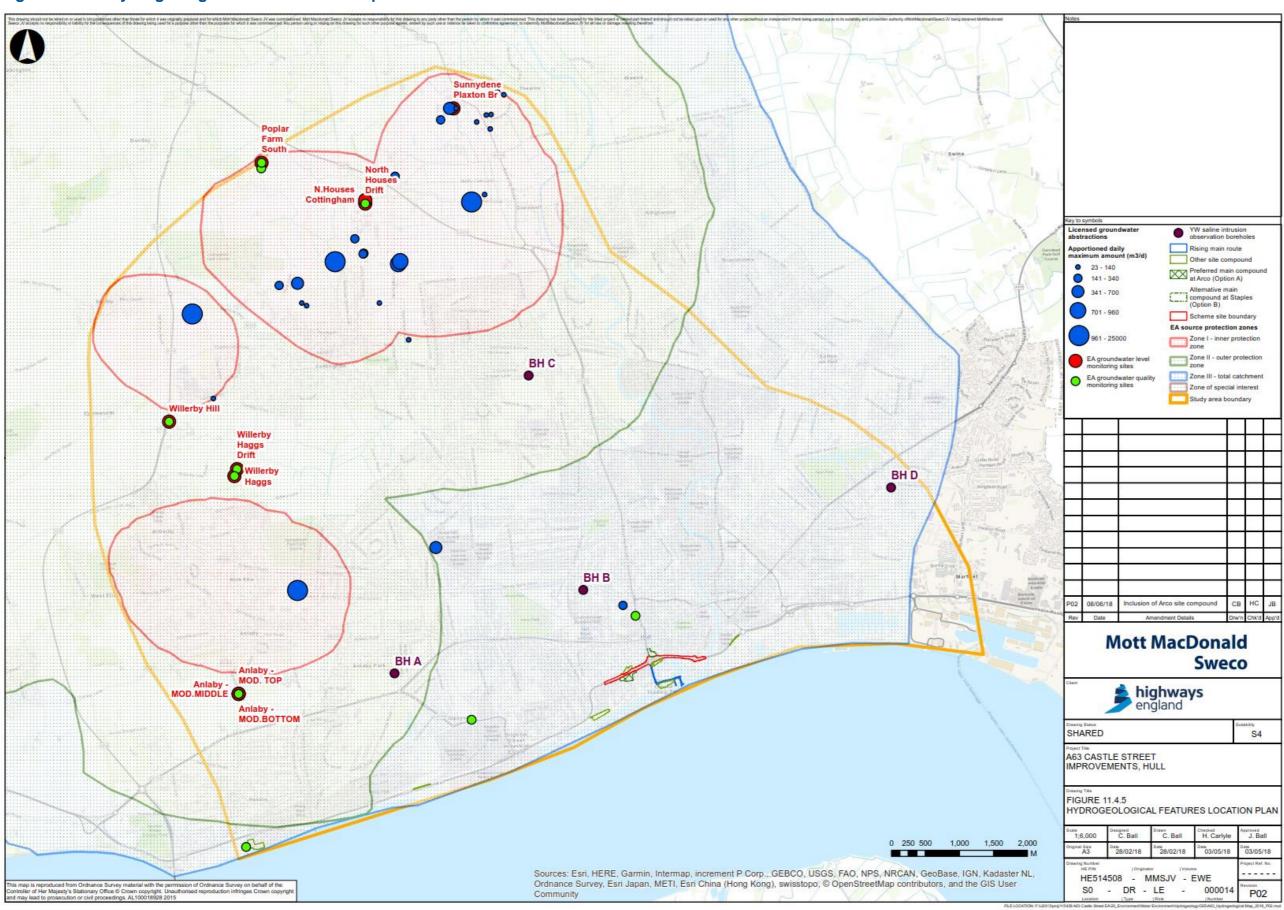
⁴⁷ http://apps.environment-agency.gov.uk/wiyby/ Accessed 19 January 2018.

⁴⁸ http://environment.data.gov.uk/catchment-planning/OperationalCatchment/1101 Accessed 19 January 2018.

- 2.5.14 To the west of Hull and the Scheme is Nitrate Vulnerable Zone (NVZ) G106; Yorkshire Chalk. Site compounds located to the west of the Scheme Site Boundary and adjacent to Fleet Drain are situated within this NVZ. The Scheme is also within an area delineated as a non-statutory groundwater Safeguard Zone for nitrate by the Environment Agency.
- 2.5.15 The Chalk underlying Hull is included in Groundwater Management Unit (GWMU) South in the Environment Agency's Hull and East Riding Abstraction Licensing Strategy¹⁹. Water is available for licensing but restrictions will be placed on licences to protect both groundwater and surface water resources, as well as to minimise the risk of saline intrusion.
- 2.5.16 The Environment Agency's Groundwater Source Protection Zones for the Hull area are presented in Figure 11.4.5⁴⁹. The Scheme lies within SPZ3 (total catchment) for a number of public and private water supply groundwater abstractions that are located approximately 8km to the north west of the Scheme Site Boundary. SPZ3 is defined as the area around a source within which all groundwater recharge is presumed to be discharged at the source.
- 2.5.17 Groundwater abstractions are discussed in more detail below.
- 2.5.18 There are no statutory designated groundwater-dependent terrestrial ecosystems within the study area⁵⁰.

Superficial deposits

Overview


- 2.5.19 The main component of the Quaternary cover across the Holderness Plain is glacial till as described in Table 11.4.3:. The low permeability clays within the till (and more locally, the glaciolacustrine deposits) confine the underlying Chalk in most areas. However, where there are lenses of sand and gravel within the till, the Chalk aquifer can be in local hydraulic continuity with the superficial deposits above.
- 2.5.20 In some areas, including in Hull, fluvio-glacial sands and gravels directly overlie and are in hydraulic continuity with the Chalk. Where these deposits are thick, they can provide significant additional storage to the Chalk aquifer^{26,27}.

⁴⁹ http://maps.environmentagency.gov.uk/wiyby/wiybyController?x=357683&y=355134&scale=1&layerGroups=default&ep=map&textonly=off&lang=_e&topic=grou ndwater Accessed 19 January 2018

⁵⁰ http://www.natureonthemap.naturalengland.org.uk/MagicMap.aspx Accessed 19 January 2018

Figure 11.4.5: Hydrogeological features location plan

- 2.5.21 The alluvium overlying the glacial till largely consists of peat, silt and clay and is generally of low hydraulic conductivity. However, localised, perched groundwater is present where sandy horizons occur within the alluvium, and particularly within the alluvial channel where extensive granular alluvium is present.
- 2.5.22 Similarly, localised, perched aguifers are present in the made ground.

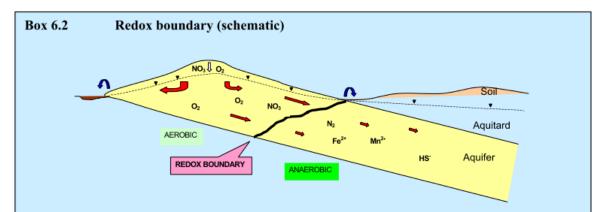
Designations

2.5.23 Although the superficial deposits across the region are generally designated as Secondary A or Secondary (undifferentiated) aquifers, they are not designated as an aquifer beneath Hull and directly below the Scheme, and are classed by the Environment Agency as unproductive strata that have negligible significance for water supply or river base flow. However, this does not necessarily mean that they do not contain permeable horizons that transmit groundwater.

Groundwater quality

- 2.5.24 The unconfined Chalk aquifer is vulnerable to the effects of pollution, particularly from diffuse agricultural sources, which are a major issue for water supply. Nitrate concentrations frequently exceed the UK drinking water standard (DWS) of 11.3 mg/l nitrate-N and pesticides can also be a significant issue. Further to the east where the Chalk becomes confined, reducing conditions are present, leading to the dissolution of metals such as arsenic, boron, iron and manganese, and denitrification. Figure 11.4.6 shows a schematic of the redox boundary and summarises major reactions that are likely to occur in the confined, reducing aquifer environment (Smedley *et al.*, 2004).
- 2.5.25 The confined Chalk underlying Hull is also affected by saline intrusion from the River Humber due to historical over-abstraction from the early 1900s onwards. Foster *et al.*⁵¹ concluded that the saline water present comprise a mix of connate or old formation water and recent saline water from the Humber Estuary. Chadha⁵² suggested that there was little evidence of ingress of poor quality water from the River Hull or associated alluvial deposits. Howard and Lloyd's 1983⁵³ study of groundwater major ion composition indicated the presence of 'Type B' saline water in the Hull area (referred to as 'Type 2' by Chadha⁵²), along with the more recent saline intrusion from the Humber estuary. Type B saline water is relatively shallow saline water related to the Middle/Late Flandrian marine transgressions.

⁵¹ Foster, S. S. D., Parry, E. L. and Chilton, P. J. (1976) Groundwater resource development and saline water intrusion in the Chalk aquifer of North Humberside. Rep. Inst. Geol. Sci. No. 76/4. HMSO. 34 pp.


⁵² Chadha, D. S. (1986) Saline intrusion in the Chalk aquifer of North Humberside, UK. Bockelman, R. H. Et al. (editors). Proceedings of the 9th Salt Water Intrusion Meeting (SWIM), Delft, The Netherlands.

⁵³ Howard, K. W. F. And Lloyd, J. W. (1983) Major Ion Characterization of Coastal Saline Ground Waters. GROUNDWATER. Vol. 21, No. 4, July – August.

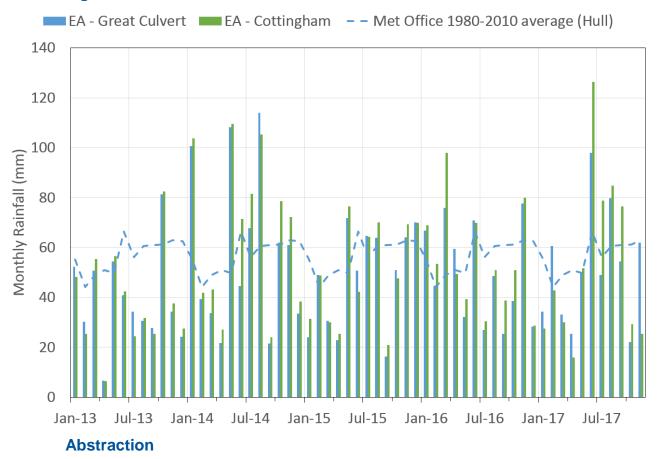
- 2.5.26 Chadha⁵² also proposed that the saline front had stabilised. Little work has been carried out until recently to investigate the position of the saline front beneath Hull, and the relationship between the Chalk aquifer and the Humber Estuary is still not fully understood. Four monitoring boreholes were constructed in December 2016 to inform a Yorkshire Water and Environment Agency joint saline intrusion study. The locations of the monitoring boreholes are shown in Figure 11.4.5. Data loggers collect information on water level and electrical conductivity.
- 2.5.27 Groundwater quality in the superficial deposits and made ground is dependent on a number of factors, including the nature of the material, the degree of hydraulic continuity with other aguifer units and the presence of contaminants.

Figure 11.4.6: Yorkshire chalk redox schematic⁴²

Recharging water is generally saturated with dissolved oxygen at the partial pressure of the atmosphere (10–12 mg l⁻¹ depending upon barometric conditions). Passing through the soil and the unsaturated zone some of this O₂ will react as a result of microbiological processes and oxidation-reduction reactions. However, almost all water reaching the water table still contains several mg l⁻¹ dissolved O₂. Geochemical reactions (oxidation of traces of pyrite, organic matter and Fe²⁺ present in minerals) progressively remove the O₂ along flow lines. Once all the oxygen has reacted, an abrupt change of water chemistry takes place. This zone is known as the redox boundary. Other changes may occur at and further down-gradient of the redox boundary, especially denitrification and increased concentrations of dissolved iron (Fe²⁺) concentrations. Sulphate reduction and the production of sulphide (H₂S as HS⁻ in solution) may also occur at greater depths.

Rainfall and recharge

- 2.5.28 Rainfall across East Yorkshire had a long term average (LTA) of 685 mm between 1981 and 2010²⁷. Rainfall is orographic (i.e. controlled by topographic variations), with LTAs varying from 832mm at the top of the Chalk escarpment in the Wolds to 584 mm in the southern part of the Holderness Plain. Seasonal variations typical for the UK climate is evident, with the greatest rainfall occurring in autumn and winter, and the lowest rainfall occurring in spring and summer.
- 2.5.29 Recharge to the Chalk aquifer is a complex combination of slow matrix flow and rapid bypass flow controlled by the effective rainfall, the thickness and hydraulic conductivity of the superficial deposits, the thickness and lithology of the unsaturated zone and the potential for rapid bypass flow²⁸. The aquifer is largely



supplied by direct recharge through the unconfined chalk where it outcrops in the Yorkshire Wolds, with bypass recharge being the most significant recharge mechanism, whereby rainfall bypasses the soil zone and rapidly reaches the water table via preferential pathways such as fractures.

- 2.5.30 The time taken for recharge to reach the Chalk is estimated to be between seven and 46 days²⁶. The dominant bypass recharge mechanism means that there does not appear to be a direct correlation between unsaturated zone thickness and recharge lag time, except where the unsaturated thickness is very large²⁶.
- 2.5.31 Smedley *et al.*⁴² report that the long-term average effective recharge is estimated to be around 300 mm per year, usually concentrated in the months October to March.
- 2.5.32 Indirect recharge of the Chalk through the superficial deposits will depend on the presence of more permeable horizons (sands and gravels), their lateral and vertical extent, the degree of interconnectivity between them and the underlying Chalk and the hydraulic gradient. Where there is an upwards hydraulic gradient between the Chalk and superficial deposits and the more impermeable deposits separating them are relatively thin, upwards leakage from the Chalk will contribute to recharge of the superficial deposits.
- 2.5.33 The recharge/discharge relationship between the Chalk aquifer and Humber Estuary is not well understood. However, there is evidence of springs along the bank of the Humber, for example close to the Humber Bridge in Hessle, although these have mostly dried up due to the impact of long-term abstraction.
- 2.5.34 Monthly rainfall data is available from the Environment Agency Great Culvert (national grid reference TA 11455 35556) and Cottingham (national grid reference TA 04791 34188) rain gauges over the monitoring period and are presented in Figure 11.4.7, along with Met Office 1981 2010 averages for Hull. This shows that generally speaking the majority of 2014 and summer 2017 were wetter than average, and summer 2013, winter/spring 2015 and summer 2016 spring 2017 were drier than average.

Figure 11.4.7: Rainfall data

- 2.5.35 Most of the major abstractions from the southern Yorkshire Chalk are located close to the divide between the unconfined and confined aquifers, and are used for public water supply (PWS). While some springs still flow in the area (e.g. north of Beverley), urbanisation has led to changes in the natural groundwater flow conditions. Over a century ago, shaft and adit systems were built to increase groundwater abstraction for public water supply from locations including Cottingham, Springhead and Dunswell. As a result of heavy abstraction, particularly from Cottingham pumping station, most springs between Beverley and Hull have dried up over the last century⁵², and the former artesian boreholes in this area now require pumping.
- 2.5.36 Historically, groundwater abstraction for public water supply, and industrial, domestic and agricultural uses has not only resulted in the drying up of springs in the Yorkshire Chalk, but has also reduced flows in the River Hull. In the first half of the 20th century, many industries in the Hull area relied on their own boreholes for water supply and the combined abstraction resulted in saline intrusion. Many of these boreholes have now been abandoned and the remaining groundwater abstraction in the region is managed to ensure that the saline front is stable or retreating. Chadha⁵² suggested that the saline front had stabilised by the mid 80's, but there is some uncertainty as to the current situation as there is little groundwater quality monitoring in central Hull. Elsewhere, abstraction is managed to ensure that environmental needs are sustained, particularly in relation to river flows.

- 2.5.37 The Environment Agency has supplied groundwater abstraction licence information for the study area⁵⁴. The locations of licensed abstractions are shown in Figure 11.4.5 and details given in Table 11.4.4. All abstractions are from the Chalk, with the exception of two that are from the superficial deposits.
- 2.5.38 Hull City Council is not aware of any additional unlicensed groundwater abstractions within the study area.

Table 11.4.4: Licensed groundwater abstractions within the study area

Licence No.	Name	Use	Abstraction horizon	Grid reference	Max Daily Quantity (m ³ /d)
2/26/32/0 26	STADIUM (VICAR LANE) LTD	Agriculture (Horticulture & Nurseries) - Spray Irrigation Direct	Chalk	TA 0580 3310	122.7
2/26/32/0 45	ANCHOR NURSERIES LTD	Agriculture (Horticulture & Nurseries) - Spray Irrigation Direct	Chalk (two boreholes)	TA 0694 3640 TA 0701 3641	273
2/26/32/0 53	LAWSON	Agriculture (General) - Spray Irrigation Direct	Superficial deposits	TA 0423 3364	68.2
2/26/32/0 59	IDEAL STANDARD MANUFACT URING (UK) LTD	Industrial, Commercial and Public Services (Machinery & Electronics) - General Use (medium loss)	Chalk	TA 0620 3005	700
2/26/32/0 87	WHELDON NURSERIES	Agriculture (Horticulture & Nurseries) - Spray Irrigation Direct	Superficial deposits	TA 0720 3670	109.1
2/26/32/1 26	YORKSHIRE WATER SERVICES LTD	Water Supply (Public) - Potable Water Supply	Chalk (four adit sources)	TA 02 33 ¹ TA 04 29 ¹ TA 04 34 ¹ TA 06 35 ¹	100000
2/26/32/1 34	KEYGROWI NG LTD	Agriculture (Horticulture & Nurseries) - Spray Irrigation Direct	Chalk	TA 0640 3650	600
2/26/32/2 04	SEWELL	Amenity (Private Non-Industrial) - Make-up or Top Up Water	Chalk	TA 0430 3360	68

⁵⁴ Data provided 29 December 2017

2/26/32/2 06	C H PLAXTON & CO	Agriculture (General) - Spray Irrigation Direct	Chalk	TA 0700 3620	90.9
2/26/32/2 17	KEYGROWI NG LTD	Agriculture (Horticulture & Nurseries) - Spray Irrigation Direct	Chalk	TA 0627 3633	340
2/26/32/2 35	GLEN AVON SERVICES	Agriculture (Horticulture & Nurseries) - Spray Irrigation Direct	Chalk	TA 0417 3393	450
2/26/32/2 65	TWINACRE NURSERIES LTD	Agriculture (Horticulture & Nurseries) - Spray Irrigation Direct	Chalk	TA 0293 3224	23
2/26/32/2 79	J LANCASTE R & SON	Agriculture (Horticulture & Nurseries) - Spray Irrigation Direct	Chalk	TA 0650 3650	114
2/26/32/2 88	COLETTA & TYSON LTD	Agriculture (General) - Spray Irrigation Direct	Chalk (two boreholes)	TA 0560 3550 TA 0560 3550	381.2
2/26/32/3 44	COLETTA & TYSON LTD	Agriculture (Horticulture & Nurseries) - Spray Irrigation Direct	Chalk	TA 0710 3675	140
2/26/32/4 23	Hull Truck Theatre Co Ltd	Industrial, Commercial and Public Services (Other) - Non- evapourative Cooling	Chalk	TA 0895 2920	168
NE/026/0 032/024	COLETTA & TYSON LTD	Agriculture (Horticulture & Nurseries) - Spray Irrigation Direct	Chalk	TA 05131 34361	160
NE/026/0 032/025	COLETTA & TYSON LTD	Agriculture (Horticulture & Nurseries) - Spray Irrigation Direct	Chalk	TA 06917 35233	82
NE/026/0 032/026	COLETTA & TYSON LTD	Agriculture (Horticulture & Nurseries) - Spray Irrigation Direct	Chalk	TA 06800 36300	82
NE/026/0 032/033	Kirk	Agriculture (General) - Spray Irrigation Direct	Chalk	TA 05370 33640	91
NE/026/0 032/035	J P COLBRIDGE LTD	Agriculture (Horticulture & Nurseries) - Spray Irrigation Direct	Chalk	TA 03898 33899	250

NE/026/0 032/046	RED ROOFS NURSERY LTD	Agriculture (General) - Spray Irrigation Direct	Chalk	TA 05012 34586	200
NE/026/0 032/048	Durnford	Agriculture (Horticulture & Nurseries) - Heat Pump	Chalk (two boreholes)	TA 05650 34215 TA 05677 34252	1920

Notes: 1 Precise grid references not given

Surface water

Overview

2.5.39 There are two principal natural surface water features in the area, the Humber Estuary and the River Hull. Details of these and key surface water features within 1km of the Scheme (including the site compounds) are summarised in Table 11.4.5, together with distances from the Scheme.

Table 11.4.5: Summary of key surface water features in the area

Water features	Approximate distance from Scheme (m)	Location in relation to the Scheme	Additional comments
Humber Estuary	540m south	Proposed rising main to discharge to Humber Estuary. Wellington Street Island Wharf and Livingstone Road site compounds adjacent to Humber Estuary.	The tidal Humber estuary is formed by the confluence of the tidal rivers Ouse and Trent at Trent Falls, Faxfleet. Upstream of Hull, the Market Weighton Canal meets the estuary on its northern shore, while the River Ancholm discharges to the estuary on its southern shore.
River Hull	80m east	Located approximately 50m to the east of the Scheme Site Boundary. A63 westbound recovery base approximately 425m east of the River Hull.	Tidal in lower reaches. River flows in southwards through Hull and discharges to the River Humber close to the eastern extent of the Scheme. It is protected from flooding by a tidal barrier at the mouth of the river.
Beverley and Barmston Drain	1.23km north	Discharges to the River Hull 1.23km north of the Scheme Site Boundary.	
Ganstead / Holderness Drain	3km east	Located approximately 3km to the east of the Scheme Site Boundary.	Discharges to the Humber Estuary Hydraulically isolated from the Chalk
Fleet Drain	5.5km west	Livingstone Road site compound adjacent to Fleet Drain.	Discharges to the Humber Estuary
Albert Dock	385m south	Wellington Street Island Wharf site compound and Neptune Street set down compound adjacent to Albert Dock.	Connected to the Humber Estuary via lock (lock opens for three hours either side of high tide). Approx. area: 2.73ha
Railway Dock	73m south	Located immediately south of the Scheme Site Boundary.	Connected to Humber Dock. Approx. area: 10,000m ²

Water features	Approximate distance from Scheme (m)	Location in relation to the Scheme	Additional comments
		Yorkshire Water sewer diversion routes may run adjacent to Railway Dock.	
Humber Dock (Marina)	20m south	Princes Quay Bridge to be constructed adjacent to Humber Dock	Connected to the Humber Estuary via locks and the Humber Dock Basin. 6.4 – 7.9m deep (depending on tides). Topped up by pumping from the Humber Estuary (water lost by normal use of lock gates). Impound pumps set to keep levels at an optimum for the marina pontoons ⁵⁵ Approx. area: 27,000m ²
Princes Dock	20m north	Princes Quay Bridge to be constructed adjacent to Princes Dock	Historically connected to the Humber Dock, now hydraulically isolated. Average depth: 5.8m. Prince's Quay shopping centre built over part of Prince's Dock on stilts.

Docks

- 2.5.40 Details of the construction of Humber Dock and Princes Dock are available⁵⁶ and are summarised as follows.
 - The dock walls are brick built and faced with a coarse grit sandstone (Millstone Grit) above average tide and pointed with a pozzuolana mortar (lime mortar with pozzuolanic ash added to ensure the mortar set and endured in wet environments).
 - The dock walls are around 1.8 to 2.7m thick with more than 1m of infill behind, and 8 to 9m deep. They are underlain by wooden piled foundations.
- 2.5.41 During construction of the Humber Dock lock pit, a freshwater spring was found. This caused problems during construction and created subsidence issues thereafter, and remedial works were required as a result.
- 2.5.42 BH503 was drilled through the base of Humber Dock as part of the 2015/16 GI. Below the 5m water column, the base of the dock was found to be underlain by 1m of clayey silts (interpreted as dock silts), 1m of sandy slightly clayey gravel with low cobble content (made ground) and 3.3m of clayey silt and silty clay (cohesive alluvium).

⁵⁵ MMG JV (2014) A63 Castle Street Improvements, Hull – Underpass Drainage Outfall Location Review 1168-08-005-RE-003

⁵⁶ Timperley, J. (1836). "An Account of the Harbour and Docks at Kingston-Upon-Hull. (Including Plates)". ICE Transactions. 1 (1836): 1. doi:10.1680/itrcs.1836.24437.

Designations

2.5.43 The current (2016 Cycle 2) RBMP status and objectives of surface water bodies are summarised in Table 11.4.6.

Table 11.4.6: Water body status and objectives⁵⁷

Water body ID	GB104026067210	GB530402609202	GB104026066750
Water Body Name	River Hull from Arram Beck to Humber	Humber Middle	Fleet Drain
Hydromorphological Designation	Heavily modified	Heavily Modified due to flood protection	Artificial
Current Ecological Quality (2016)	Moderate Potential	Moderate Potential	Moderate
Current Chemical Quality (2016)	Good	Fail	Good
Ecological Objectives	Good by 2027	Moderate by 2015	Good by 2027
Chemical Objectives	Good by 2015	Good by 2015	Good by 2015
Linked Protected	N.,	Conservation of Wild Birds Directive	Nitrates Directive
Area	Nitrates Directive	Habitats Directive	
		Nitrates Directive	

2.5.44 The Humber Estuary is designated as a Site of Special Scientific Interest (SSSI), Special Protection Area and Special Area of Conservation (SAC) for its nationally important habitats, which include coastal saltmarsh, intertidal mudflats and sandflats, saline lagoons and sand dunes. The estuary is also a wetland of international importance and is therefore designated as a RAMSAR site⁵⁸.

Abstraction

2.5.45 There are no surface water abstractions within a 1km radius of the Scheme. There are surface water abstractions located further afield, but these are upstream of the Scheme and are therefore not considered to the groundwater assessment.

Surface water – groundwater interaction

2.5.46 The hydraulic connection between the Humber Estuary and underlying groundwater is not well understood. As the Chalk beneath Hull is confined by significant thicknesses of low permeability superficial deposits, it is unlikely that watercourses receive any significant baseflow from the Chalk, although north of Hull where superficial deposits are less extensive, the River Hull and other surface water bodies do receive baseflow from the Chalk²⁶.

⁵⁷ http://environment.data.gov.uk/catchment-planning/OperationalCatchment/3274 Accessed 19 January 2018

⁵⁸ http://www.natureonthemap.naturalengland.org.uk/ Accessed 19 January 2019

- 2.5.47 Historically, groundwater discharged from submarine springs and seepages such as the Hessle Whelps, although this is no longer the case as heavy abstraction from the Chalk aquifer caused the springs to dry up and has reversed hydraulic gradients. Saline intrusion from the estuary into the aquifer has more recently been an issue although investigations during the drought of 1976 suggested that this has in fact now ceased. It has been suggested that this may be as a result of the clogging of macro-pores in the estuary bed by fine sediment with the onset of leakage²⁶
- 2.5.48 Site investigations for the Humber Gas Pipeline Replacement Project⁵⁹ between Goxhill (Lincolnshire) and Paull have found there to be variable thicknesses of superficial deposits horizons underlying the Humber Estuary, affecting the hydraulic connection between the Chalk and the Humber. Near Goxhill, for example, no hydraulic barrier was identified between permeable alluvial deposits and the Chalk beneath the Humber Estuary, whereas further northeast towards Paull, low permeability glacial till deposits thickened beneath the estuary and are overlain by less than 1m of alluvial deposits.
- 2.5.49 As part of the Environment Agency's East Chalk model update²⁷, which takes into account the findings of the A63 hydrogeological investigations, the southern boundary (Humber Estuary) conditions were updated to allow a degree of connection between the Chalk aquifer and the River Humber. This was found to better replicate the zone of influence of the PWS abstractions to the north and west of Hull and naturalised heads along the southern boundary. The updated model suggests that under high groundwater level conditions, the Humber Estuary gains water from the Chalk aquifer, whereas under extreme low groundwater level conditions, (i.e. drought conditions), along much of the estuary it forms a source of water to the aquifer, probably supporting groundwater abstraction from the Chalk.
- 2.5.50 It is possible that there is some leakage through the base of the docks, although the extent of which is not fully understood, especially in the Humber Marina where water levels are maintained by pumping from the Humber Estuary.

2.6 Local hydrogeology

Groundwater levels

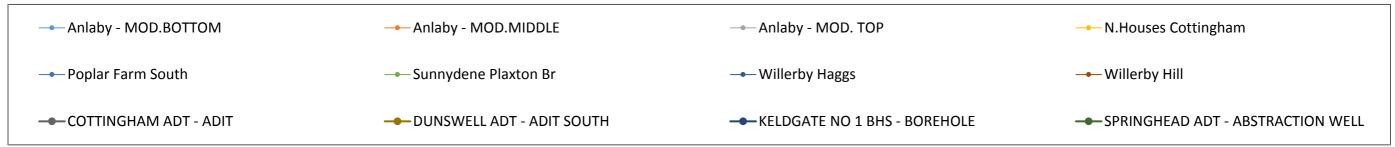
The study area

The study area

2.6.1 The Environment Agency has a number of monitoring boreholes in the study area, all located on the west and north western outskirts of Hull, and with response zones in the confined Chalk. The locations are shown in Figure 11.4.5, along with the locations of Yorkshire Water's public water supply boreholes and saline

⁵⁹ Hyder (2015) River Humber Gas Pipeline Replacement Project. Environmental Statement Document 6.13.3 – Hydrogeological Impact Assessment for National Grid

intrusion monitoring boreholes⁶⁰ in central Hull. Hydrographs for these boreholes are provided in Figure 11.4.8 and Figure 11.4.9. Groundwater level contours for February 2017 are presented in Figure 11.4.10 and Figure 11.4.11 for high tide and low tide respectively.


- 2.6.2 Figure 11.4.8 indicates that the seasonal groundwater head variation within the confined Chalk in the study area is between 5 and 10m. Groundwater levels to the west of the study area are generally higher, indicative of their presence in relation to the buried cliff line, the limits of the confined Chalk, and recharge through the unconfined Chalk of the Yorkshire Wolds. To the north and northwest, groundwater levels are controlled by abstractions from the public water supply sources. These controls are thought to extend as far south as the saline intrusion monitoring borehole BH C. Further south, and across the Scheme, groundwater levels are relatively flat and controlled by local tidal influences.
- 2.6.3 Figure 11.4.9 shows that there are tidal influences from the Humber Estuary as far north as BH C (approximately 10km from the estuary), although the tidal response varies at each location. This may be due to the fracture geometry in the Chalk and/or the effect of variable thicknesses and composition of superficial deposits underlying the Humber Estuary (see Section 2.5).

Page 48

⁶⁰ Saline intrusion boreholes installed December 2016

Figure 11.4.8: Chalk hydrographs across the study area

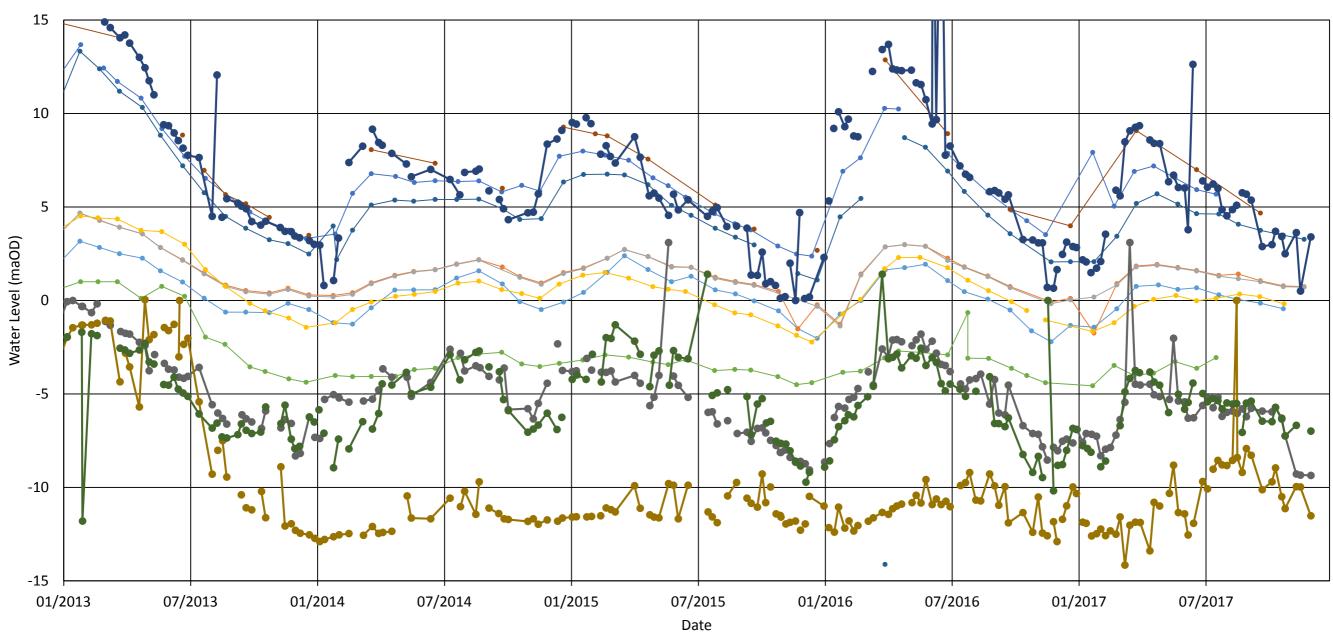


Figure 11.4.9: Chalk hydrographs for saline intrusion monitoring boreholes

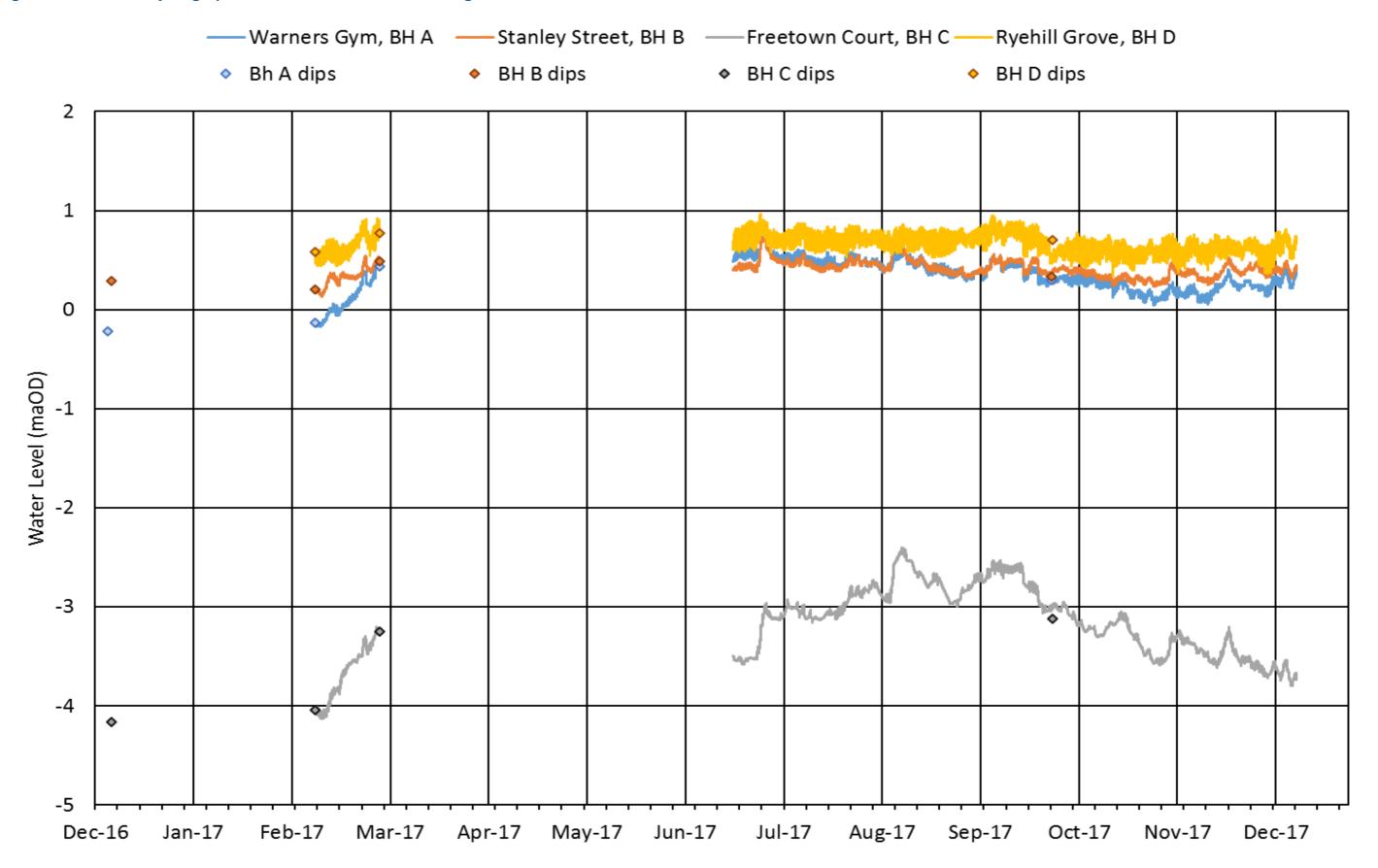


Figure 11.4.10: Chalk groundwater level contours, February 2017; high tide

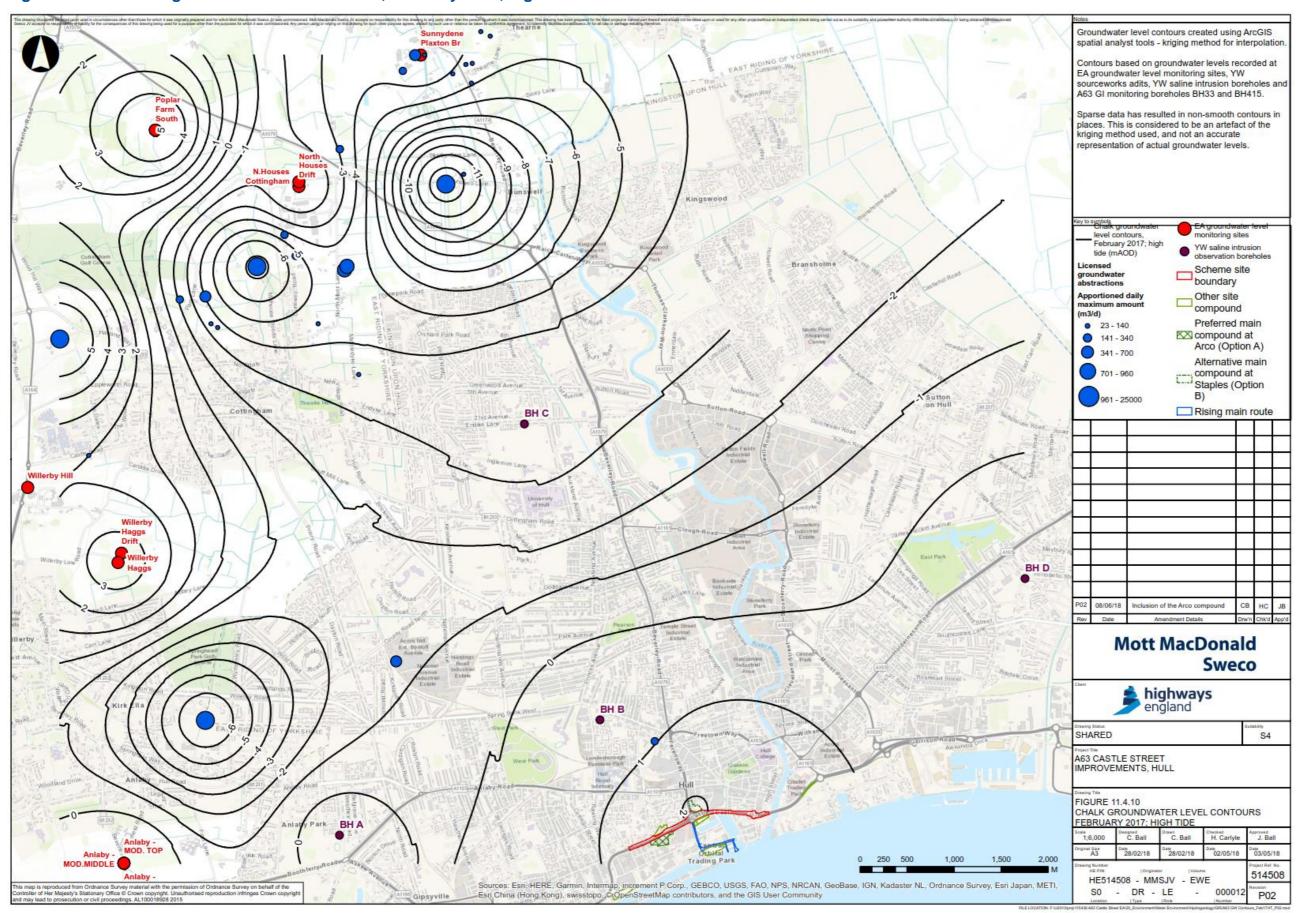
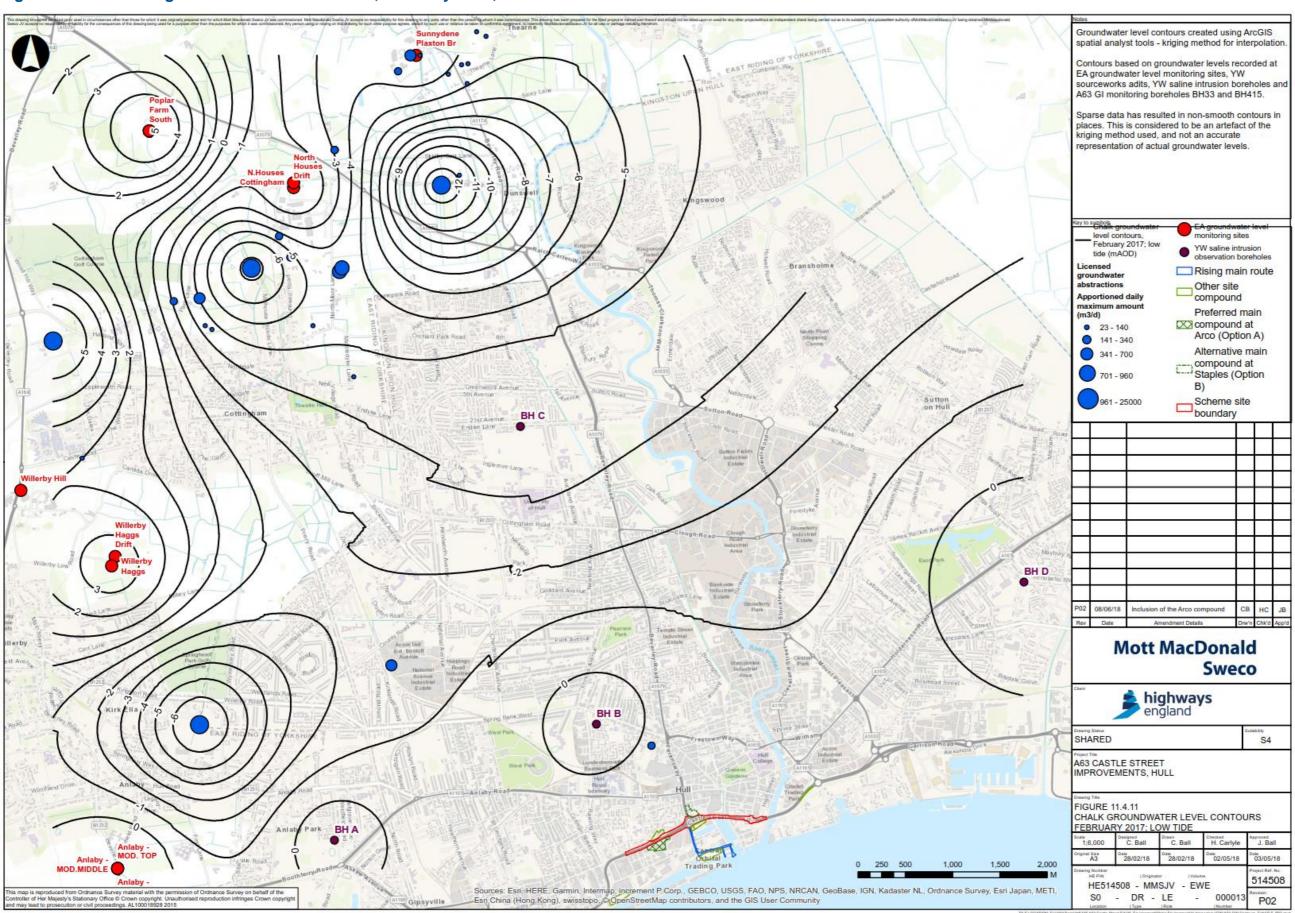



Figure 11.4.11: Chalk groundwater level contours, February 2017; low tide

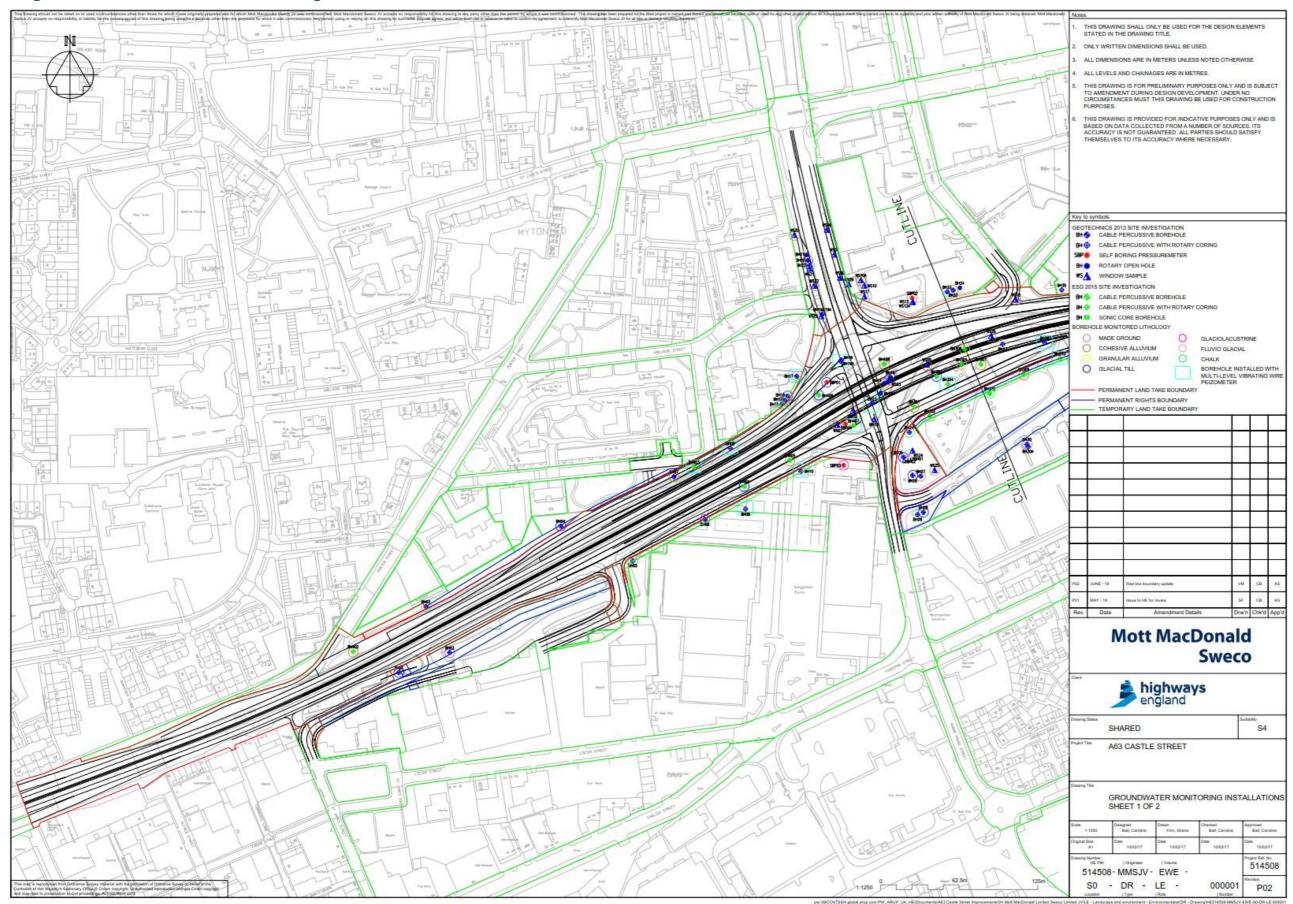
The Scheme - overview

- 2.6.4 The following discussion is based on the findings of the 2013 and 2015/16 GIs (Annex A D), and the subsequent groundwater monitoring programmes. As part of these GIs, a total of nine boreholes in the Chalk and 56 boreholes in the superficial deposits were completed as observation boreholes. A summary of the hydrogeological investigations carried out and data collected as part of the GIs is provided in Section 2.2 of this report. Borehole installation details are summarised in Annex F, while Figure 11.4.12 shows the location of these monitoring boreholes and the response zone lithology.
- 2.6.5 Whilst vibrating wire piezometers were installed as part of both the 2013 and 2015/16 Gls, data collected has not been presented in this report as due to the questionable reliability of some of the early results.
- 2.6.6 Groundwater level monitoring across the Scheme can be summarised into the following key periods:
 - 17 July 4 October 2013: Groundwater dip data was recorded roughly daily while the intrusive works were ongoing for the 2013 GI. The dip monitoring schedule depended on the construction schedule over this period and when each borehole was completed.
 - 6 November 13 December 2013: Groundwater monitoring was undertaken in selected monitoring boreholes in association with the drilling and testing of the two larger diameter pumping test boreholes, LDBH01 and LDBH02. During the LDBH01 pumping test (9 to 13 December 2013), frequent water level data was recorded in LDBH01 (Chalk), BH24 (Chalk), BH25 (glacial till (GT)), BH26 (peat/GT), BH27 (sandy clay cohesive alluvium (CA)), BH28 (GT) and BH29 (Chalk). Dipped water levels were also taken in BH14 (peat), BH15 (GT), BH18A (Chalk) and SPB04 (sandy silt CA).
 - January August 2014: With the agreement of Highways England, MMS JV undertook a further period of monitoring to capture any seasonal variations. Five groundwater data loggers were deployed between January and August, and groundwater level dip data was recorded monthly between May and August for the majority of monitoring boreholes. During this period, the data loggers were deployed in selected boreholes for a few days at a time to determine hydraulic relationships between superficial deposits and the Chalk, and also hydraulic gradients within individual aquifer units.
 - August 2015 October 2017: Monitoring continued in the selected boreholes from the 2013 GI and all monitoring boreholes installed in the 2015/16 GI, as summarised in Table 11.4.7. Full details of the dip and logger data datasets are provided in Annex G.

Table 11.4.7: Summary of Monitoring Boreholes

Response zone	Monitoring Boreholes			
geology	Dip data only	Dip and logger data		
Made Ground		BH416		
Cohesive Alluvium		SBP04, BH32, BH301, BH302, BH307, BH309, BH402, BH405, BH413, BH417		
Granular Alluvium	BH21, BH37, BH38, BH40A, BH42, BH46	BH34, BH308, BH411, BH414, BH502		
Glacial Till	BH01, BH13, BH26	BH303, BH404, BH406		
Glaciolacustrine deposits	BH03, BH06, BH20	BH412, BH501		
Fluvio-glacial deposits	BH42	BH305		
Chalk		BH33, BH306, BH415		

- 2.6.7 Groundwater level monitoring across the Scheme is presented in the following figures. Figure 11.4.12 shows the location of these monitoring boreholes and the response zone lithology.
 - Figure 11.4.13 to Figure 11.4.19 inclusive present dip data and logger data hydrographs for all boreholes in the superficial deposits and Chalk horizons for the full monitoring record (July 2013 to October 2017).
 - Figure 11.4.20 focuses on groundwater levels in both the superficial deposits and Chalk during the LDBH01 pumping test. Full details of the pumping test, including the test analysis, are provided in the Pumping Test Report (MMG JV, 2014c).
 - Figure 11.4.21 to


 Figure 11.4.24 inclusive show the hydrographs for the data loggers deployed in selected boreholes for shorter periods of one to three months. In Figure 11.4.21 and Figure 11.4.22, each hydrograph relates to different sets of boreholes in which the data loggers were installed in the period between January to August 2014. Figure 11.4.23 and

- Figure 11.4.24 focus on logger data for boreholes centred around Trinity Burial Ground and the Princes Quay Bridge location respectively.
- Figure 11.4.25 presents dip data taken at high and low tides on 27 February 2017.
- Figure 11.4.26 and Figure 11.4.27 present a long-section and cross-section respectively through the Scheme. These show the general geology, the lithology encountered in each groundwater monitoring borehole and the response zone for that borehole, and mean groundwater levels based on the initial water level monitoring period (up to and including 24th January 2014). A plan showing borehole locations and the line of section is shown above each geological section.

Figure 11.4.12: Groundwater monitoring installations

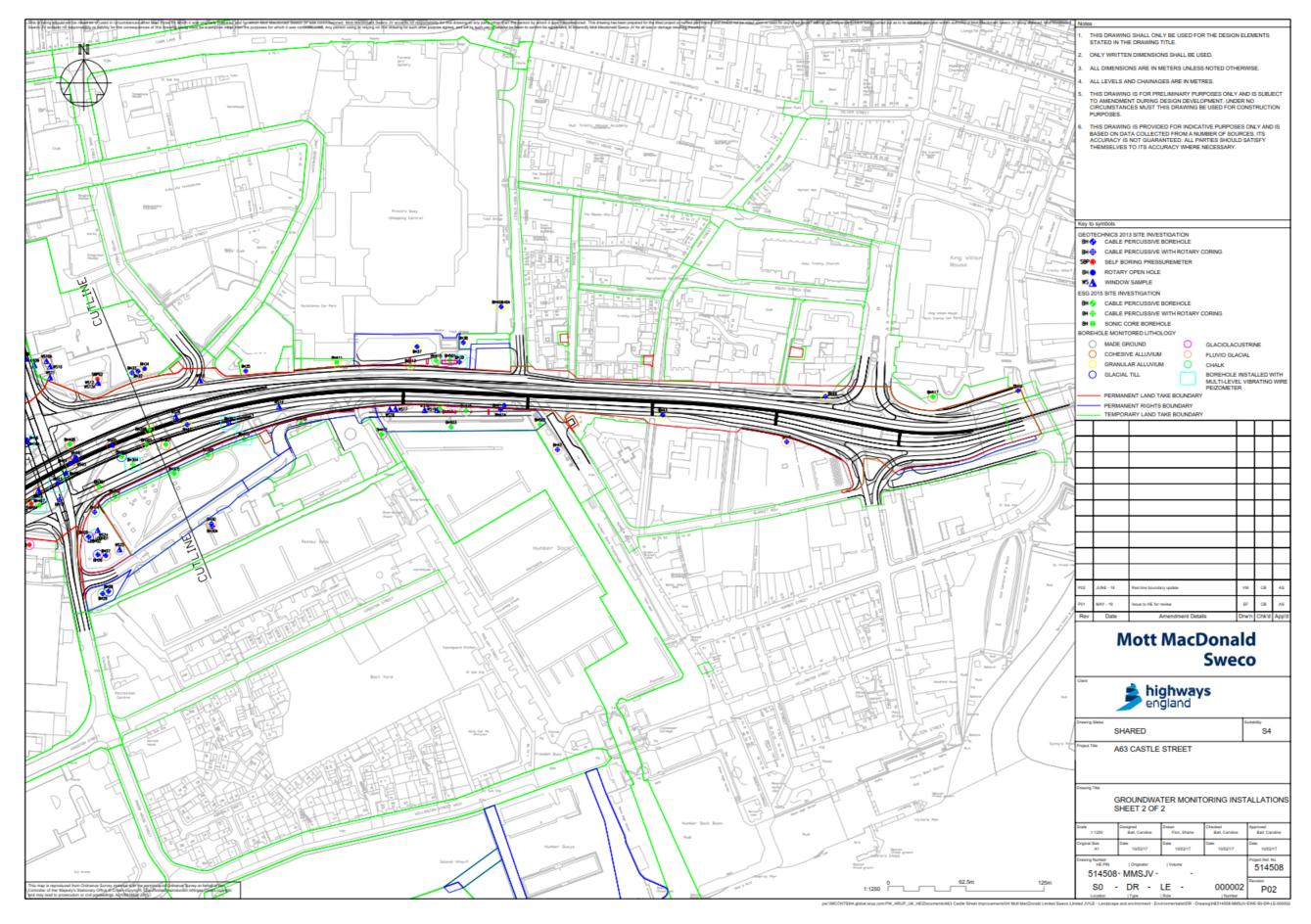
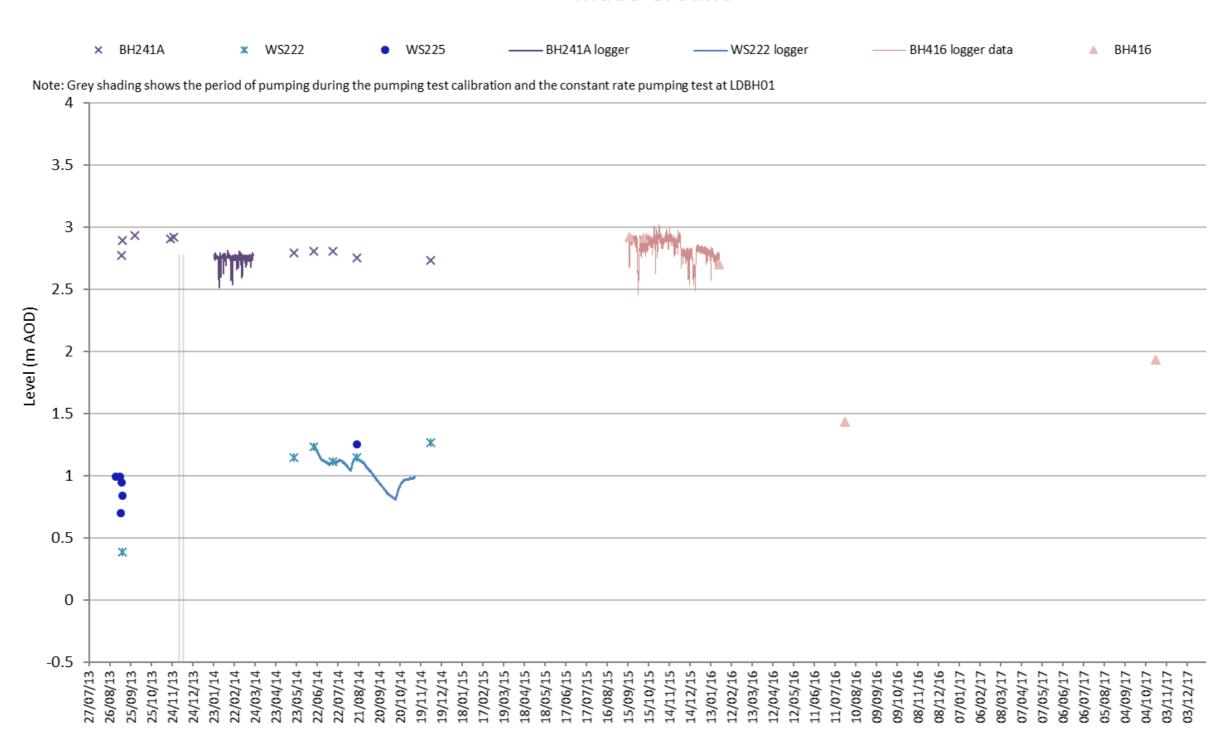
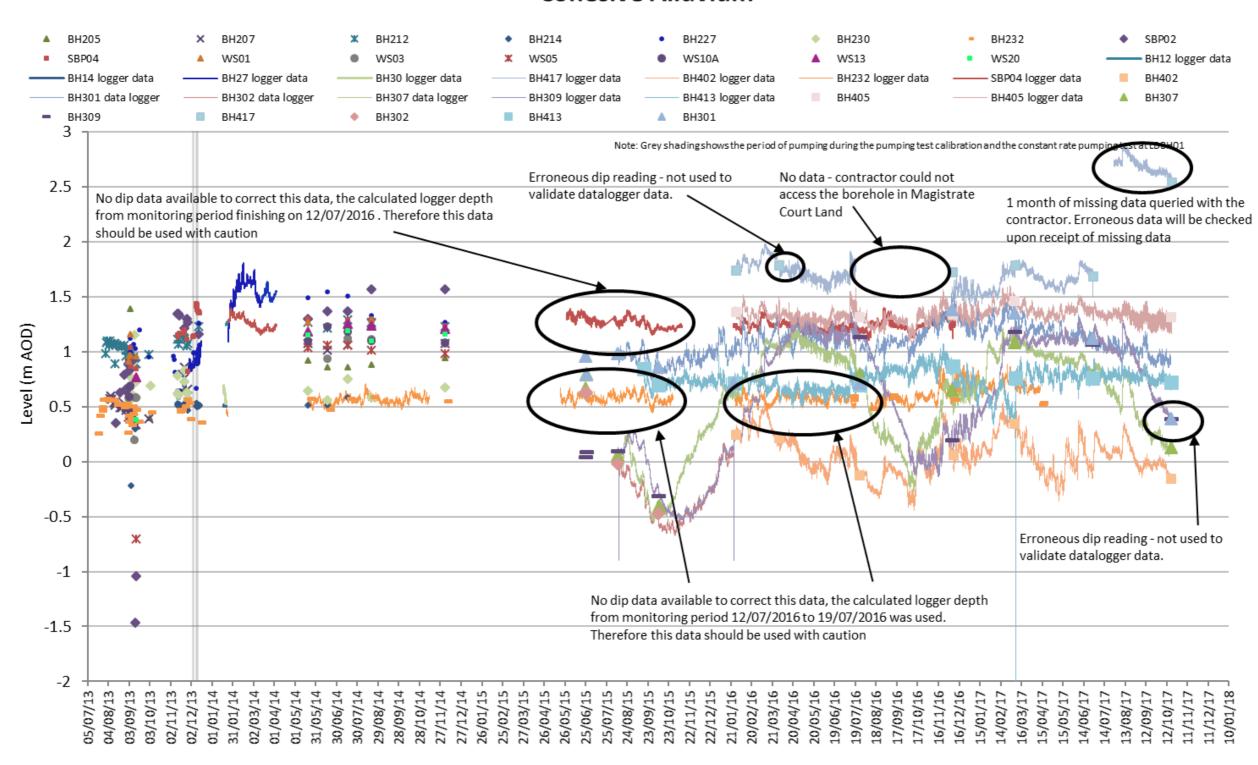



Figure 11.4.13: Hydrographs for Scheme boreholes in superficial deposits – made ground (from Arup, 2018)

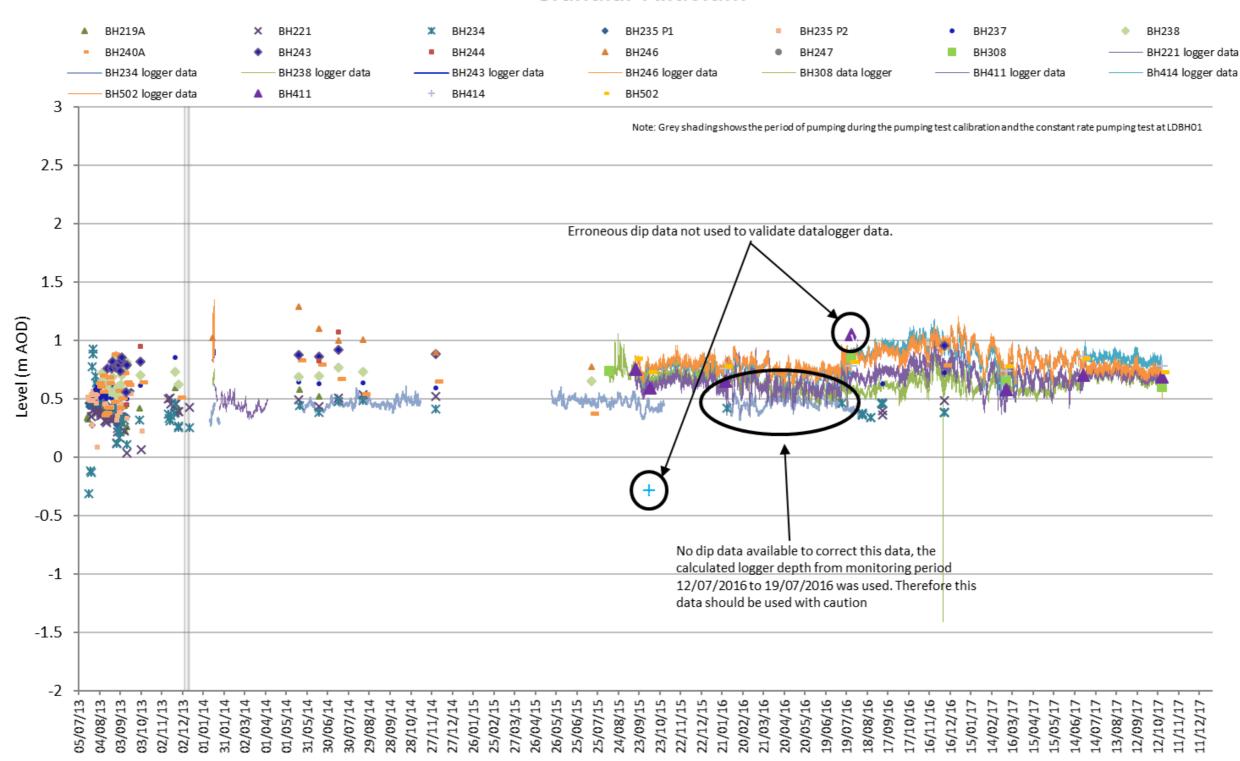
Made Ground



Note: Arup monitoring has placed a 2## prefix to all 2013 GI monitoring installations, i.e. BH41A becomes BH241A

Figure 11.4.14: Hydrographs for Scheme boreholes in superficial deposits – cohesive alluvium (from Arup, 2018)

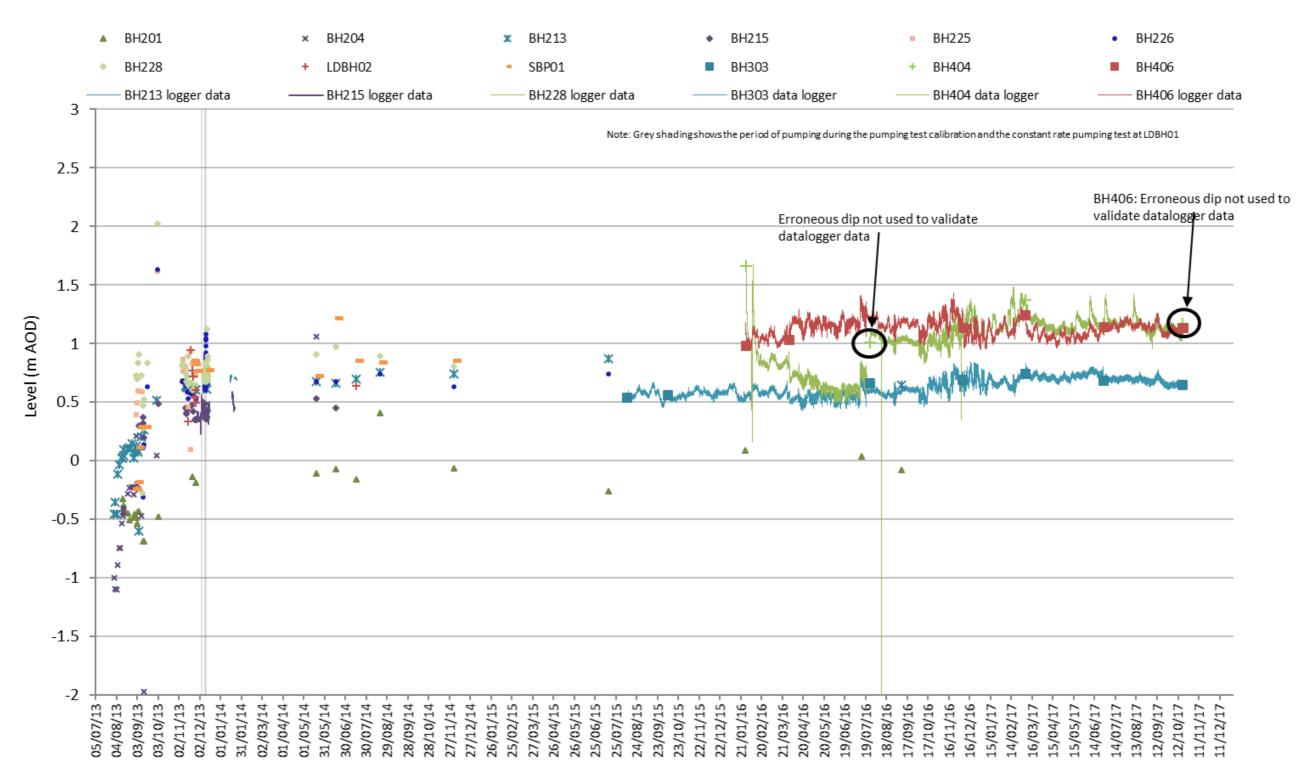
Cohesive Alluvium



Note: Arup monitoring has placed a 2## prefix to all 2013 GI monitoring installations, i.e. BH12 becomes BH212.

Figure 11.4.15: Hydrographs for Scheme boreholes in superficial deposits – granular alluvium (from Arup, 2018)

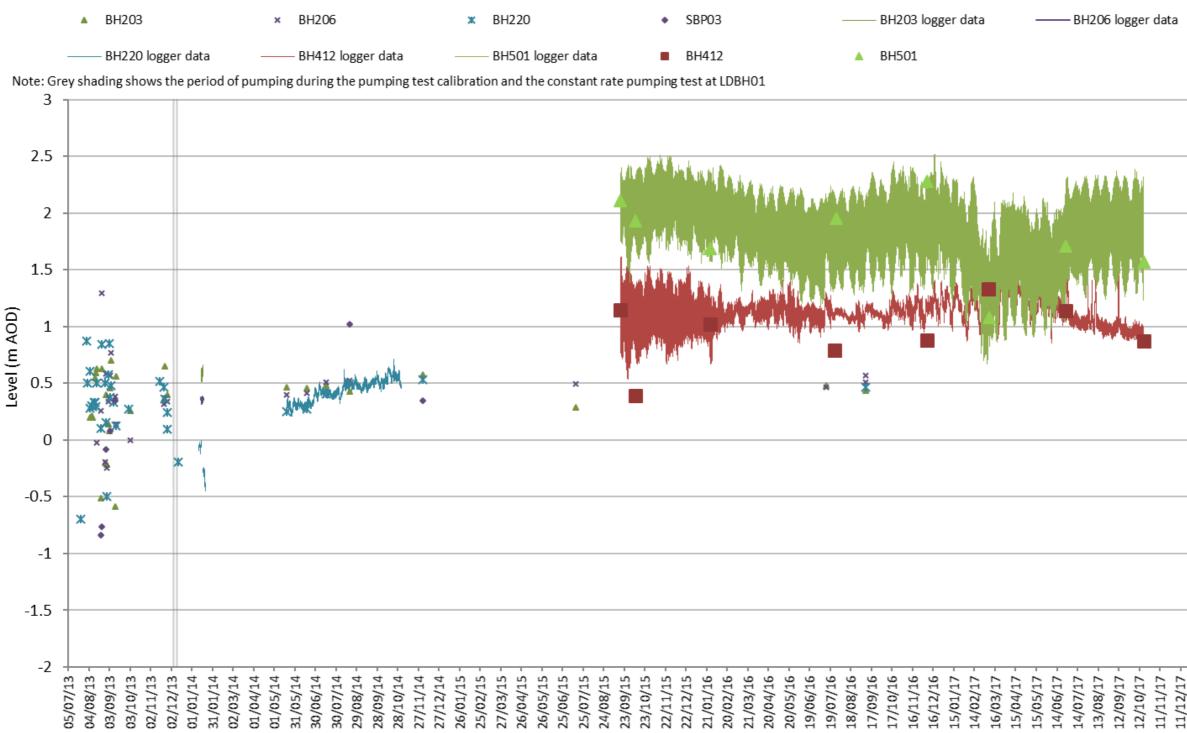
Granular Alluvium



Note: Arup monitoring has placed a 2## prefix to all 2013 GI monitoring installations, i.e. BH21 becomes BH221.

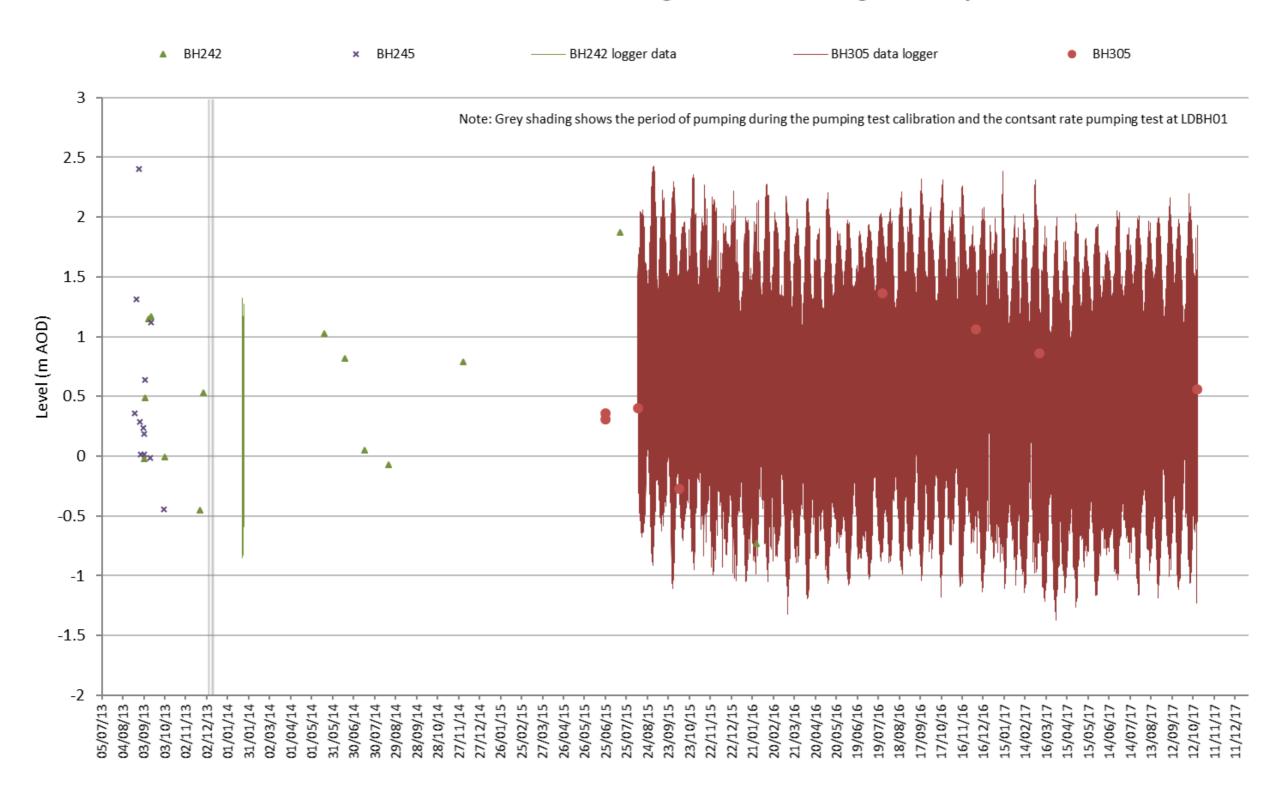
Figure 11.4.16: Hydrographs for Scheme boreholes in superficial deposits – glacial till (from Arup, 2018)

Glacial Till



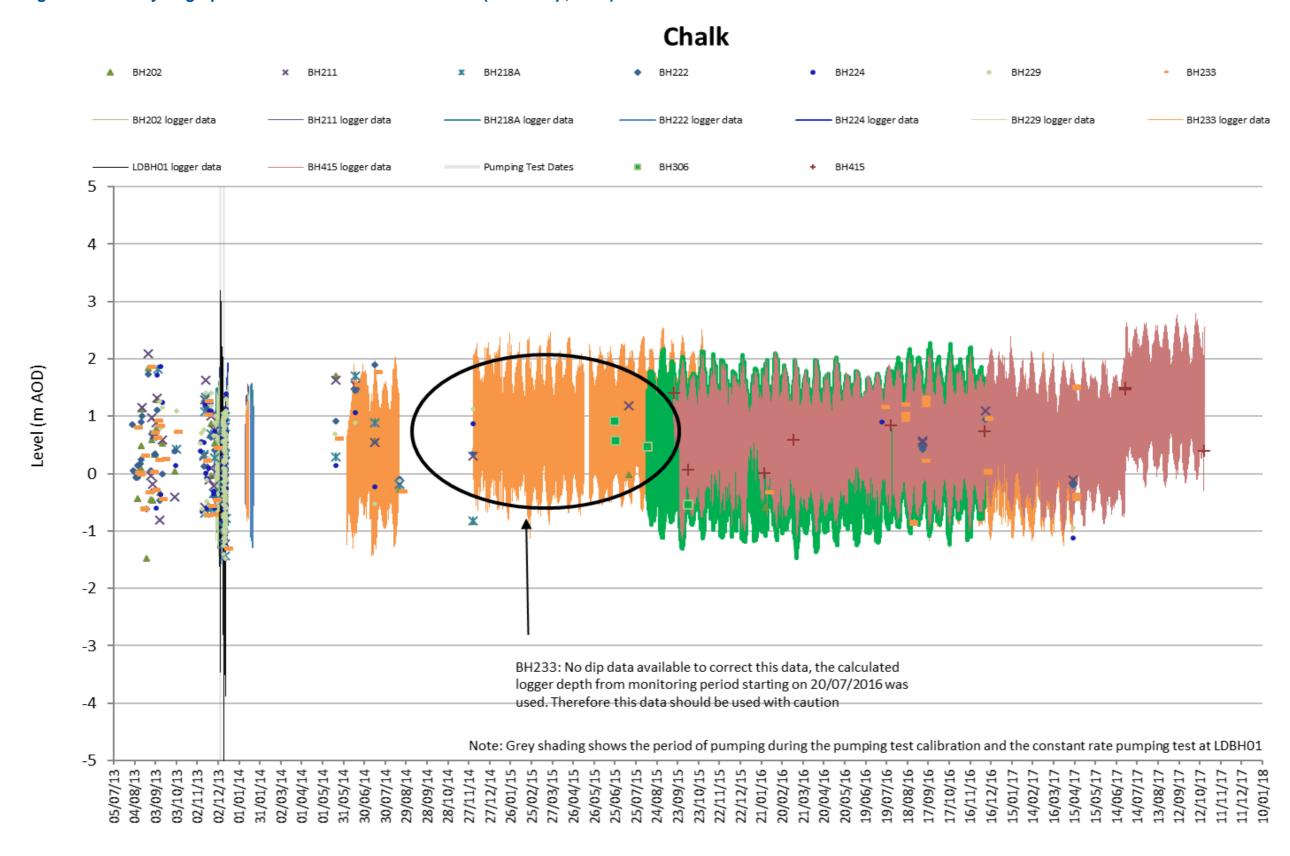
Note: Arup monitoring has placed a 2## prefix to all 2013 GI monitoring installations, i.e. BH13 becomes BH213.

Figure 11.4.17: Hydrographs for Scheme boreholes in superficial deposits – glaciolacustrine deposits (from Arup, 2018)



Note: Arup monitoring has placed a 2## prefix to all 2013 GI monitoring installations, i.e. BH03 becomes BH203.

Figure 11.4.18: Hydrographs for Scheme boreholes in superficial deposits – fluvio-glacial deposits (from Arup, 2018)


Fluvio-glacial sand and gravel deposits

Note: Arup monitoring has placed a 2## prefix to all 2013 GI monitoring installations, i.e. BH42 becomes BH242.

Figure 11.4.19: Hydrographs for Scheme boreholes in Chalk (from Arup, 2018)

Note: Arup monitoring has placed a 2## prefix to all 2013 GI monitoring installations, i.e. BH33 becomes BH23

Figure 11.4.20: LDBH01 pumping test hydrographs

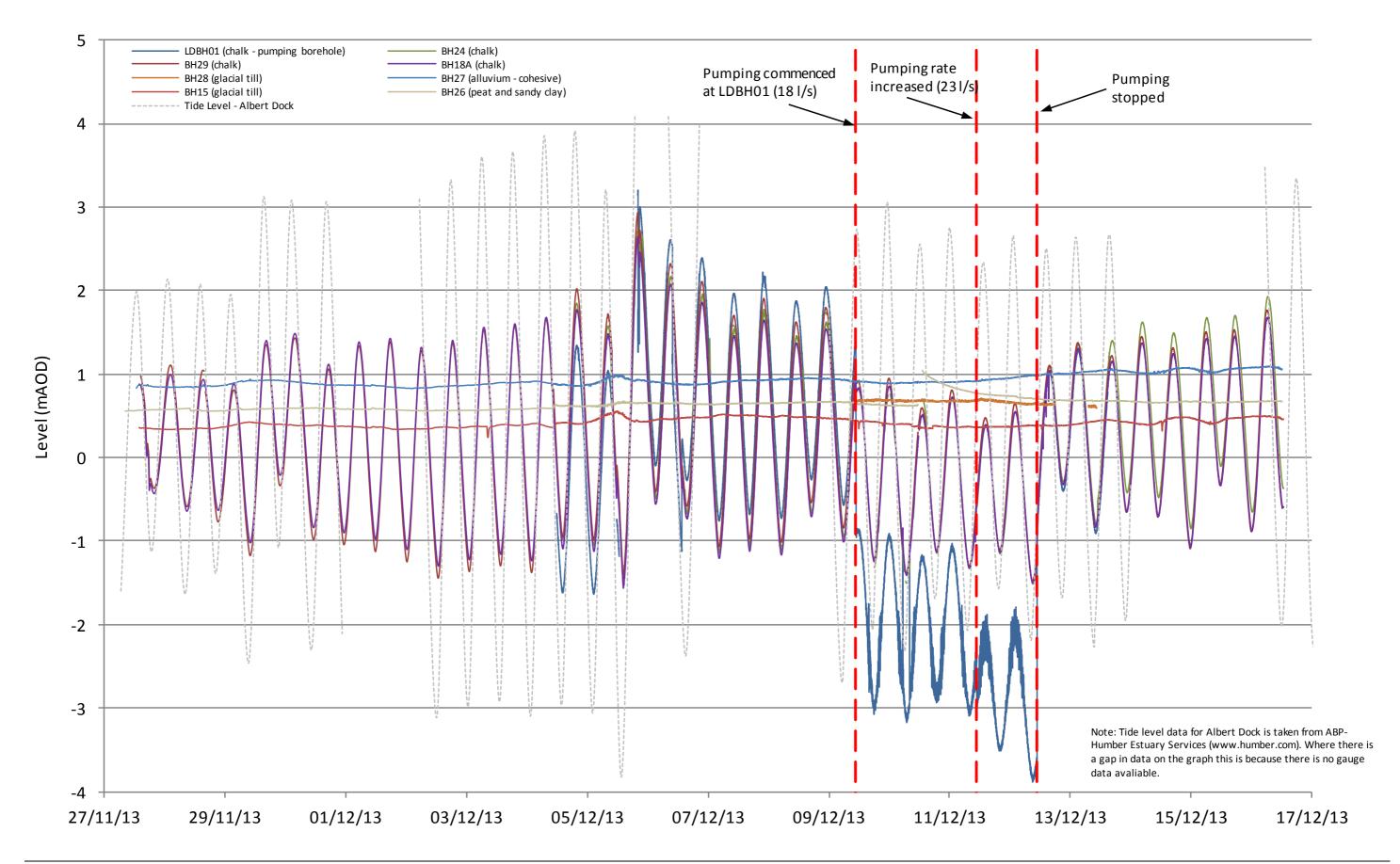
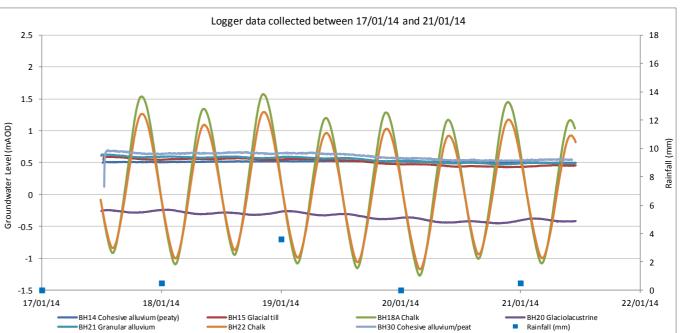
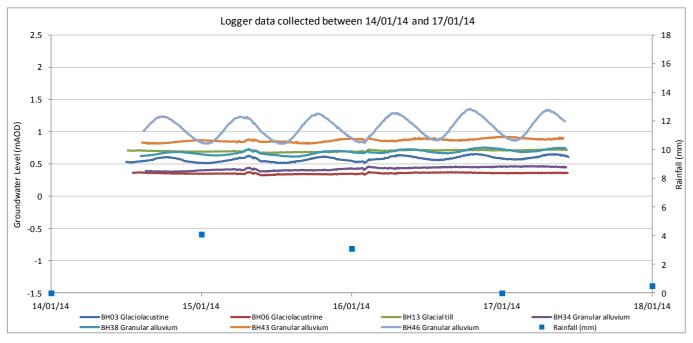




Figure 11.4.21: Hydrographs for boreholes monitored using dataloggers – January 2014

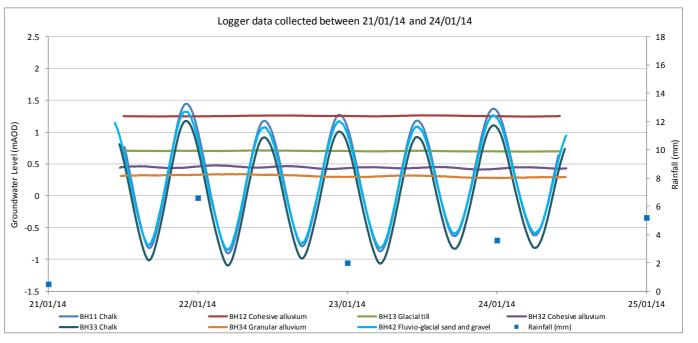
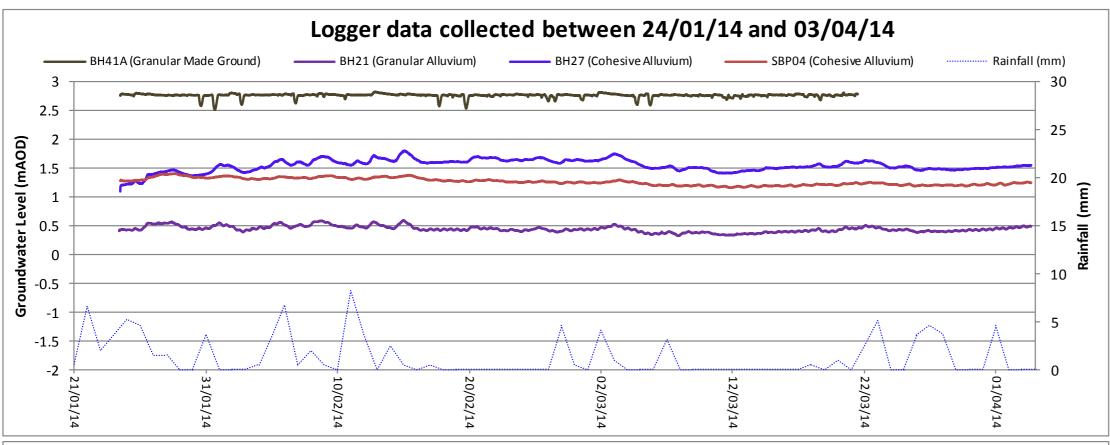



Figure 11.4.22: Hydrographs for boreholes monitored using dataloggers – January to August 2014

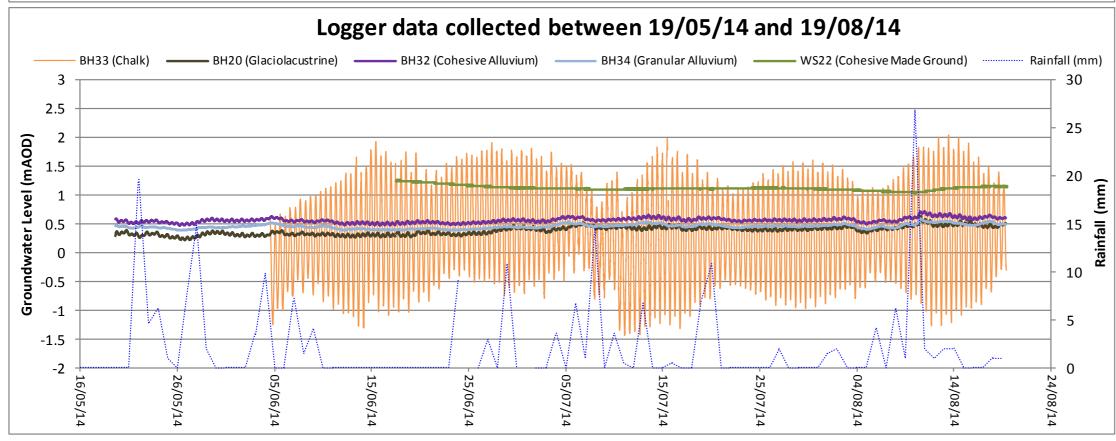


Figure 11.4.23: Hydrographs for boreholes adjacent to Trinity Burial Ground – April 2016

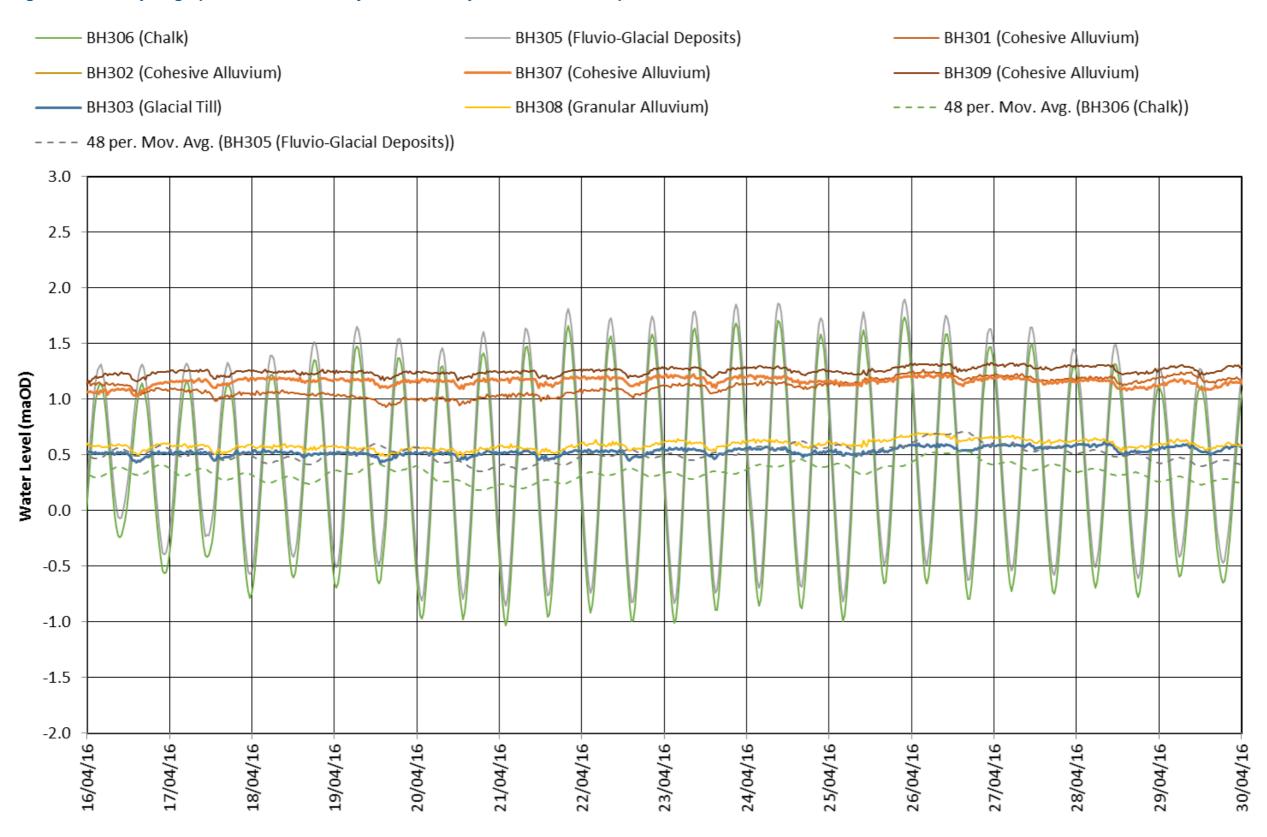


Figure 11.4.24: Hydrographs for boreholes adjacent to Princes Quay Bridge – September to October 2015

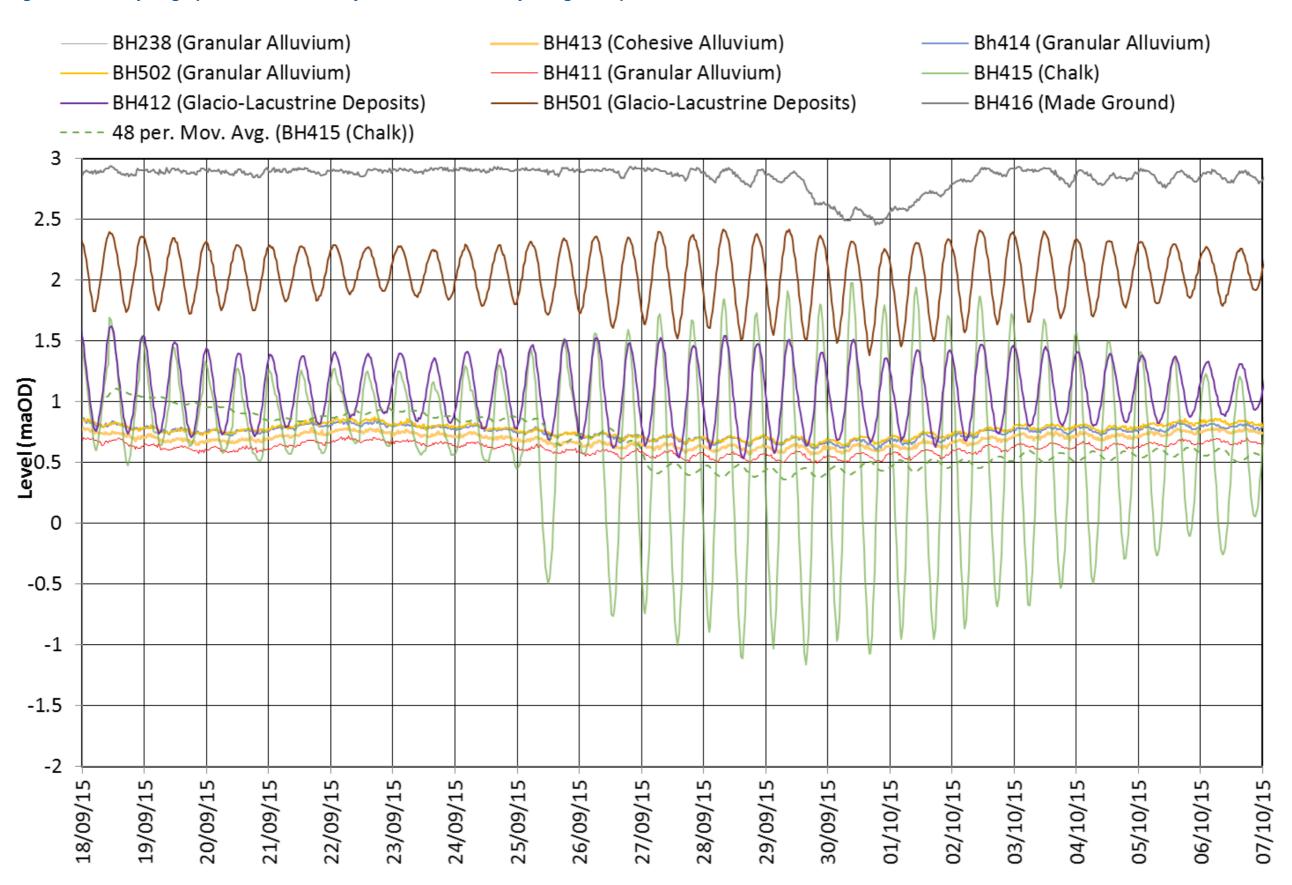


Figure 11.4.25: Chalk groundwater levels at high tide and low tide, 28 February 2017

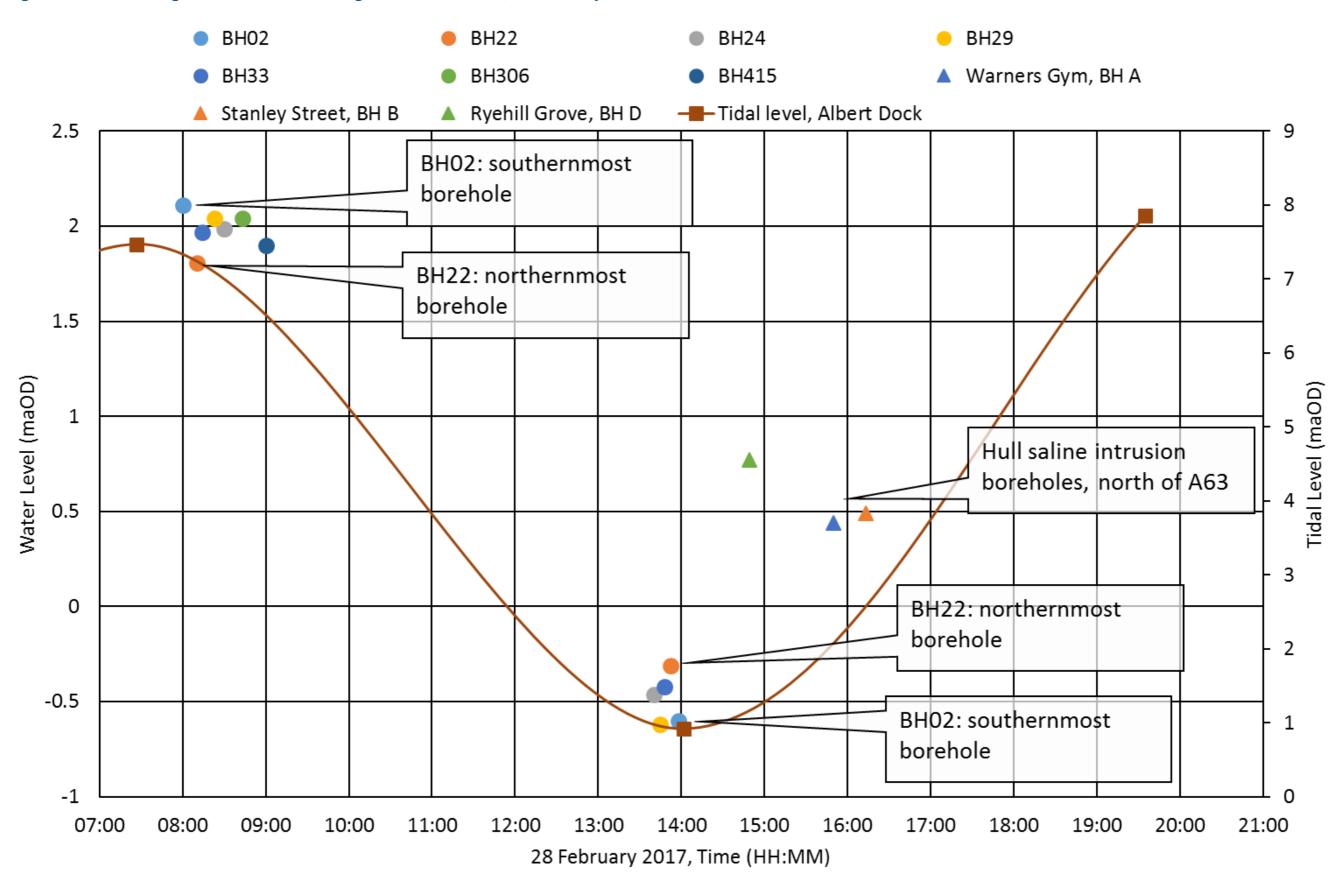
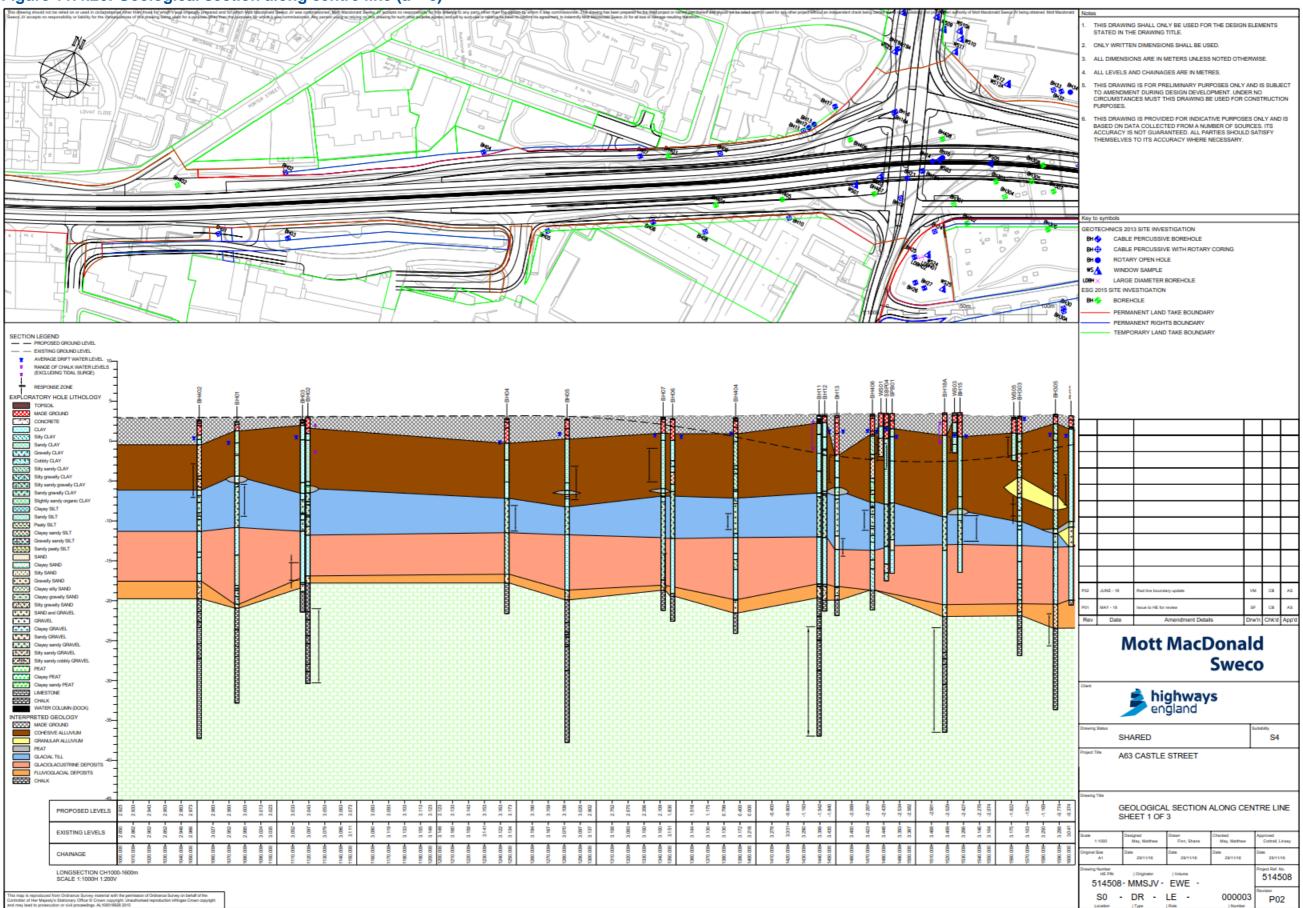
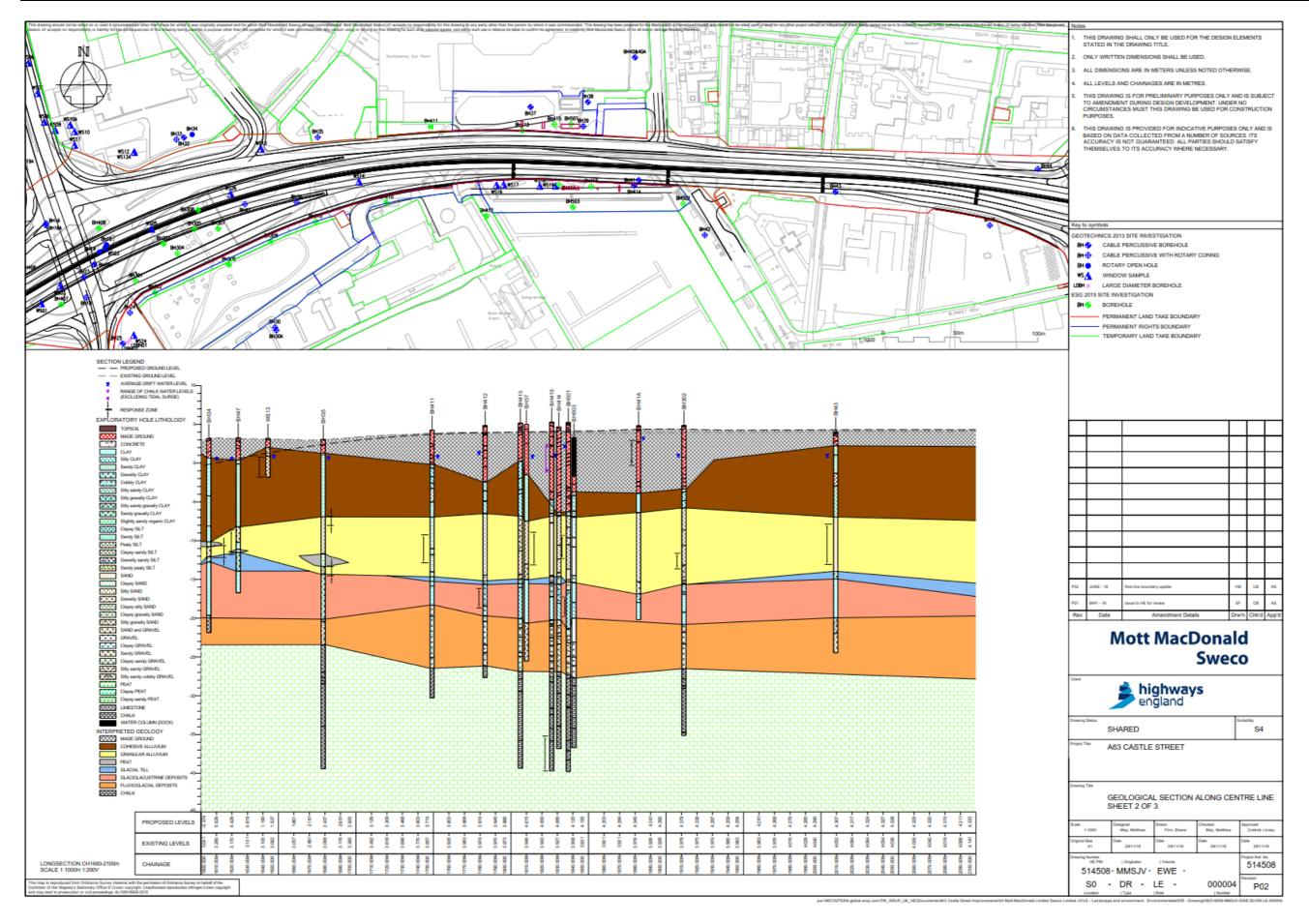




Figure 11.4.26: Geological section along centre line (a – c)

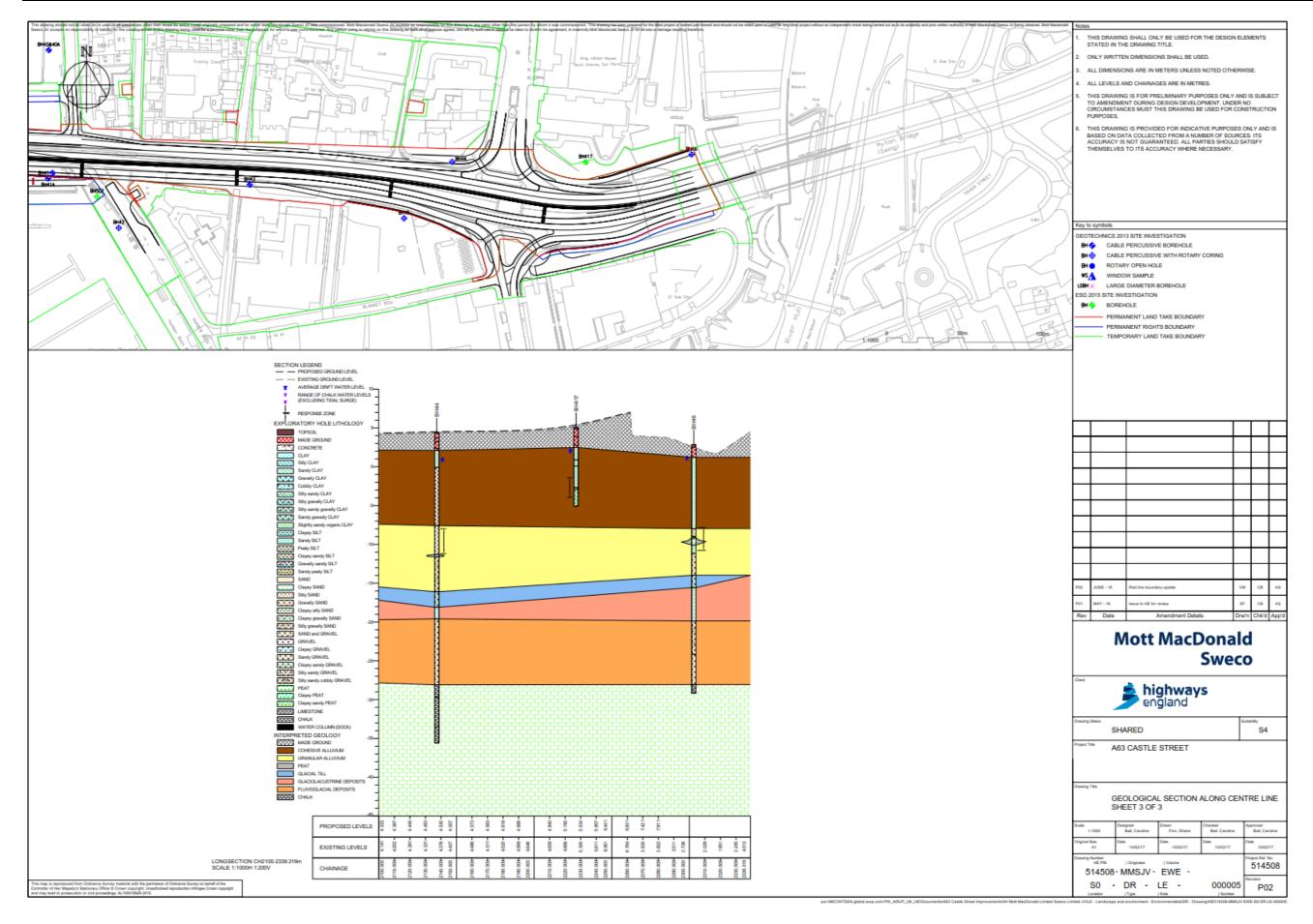
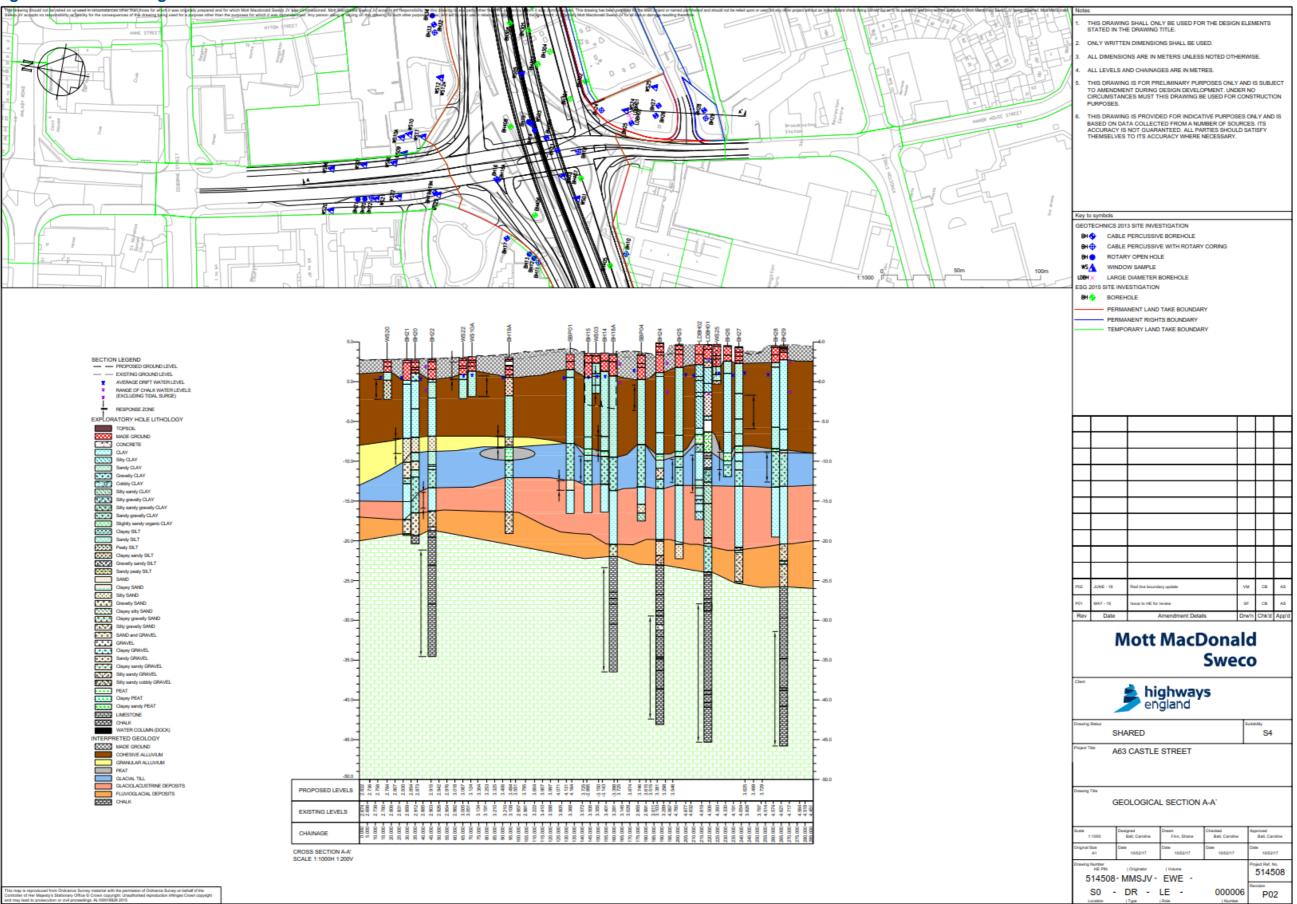



Figure 11.4.27: Geological section A – A'

2.6.8 Water level data for monitoring boreholes within the Scheme confirm that groundwater in the more permeable, natural superficial deposits is generally confined by the cohesive deposits (see Figure 11.4.13 to Figure 11.4.18 inclusive). Table 11.4.8 presents the range of groundwater heads in each horizon, along with the observed tidal response.

Table 11.4.8: Groundwater head ranges and tidal responses

Horizon	Groundwater Head Range (m AOD)	Tidal Response	Comments
Made Ground	0-5 – 3.0	None	Perched groundwater. Limited seasonal/temporal variations
Cohesive Alluvium	-0.5 – 2.0	<0.1m at BH32 and BH413 only	Considered to confine underlying permeable superficial deposits and the Chalk
Granular Alluvium	0 – 1.3	0.1m (BH08; Western extents) – 0.4 (BH46; Eastern extents)	Muted tidal impact towards western extent of granular alluvium within Scheme Site Boundary, which reflects limited thickness in this area.
Glacial Till	-1 – 1.5	None	
Glaciolacustrine Deposits	-1 – 2.5	<0.1 (BH20) – 1m (BH412 & BH501)	
Fluvio-glacial Deposits	-1 – 2.5	Up to 3.5m	In hydraulic continuity with the Chalk
Chalk	-1.5 – 2.5	1.5m (neap tides) - 3m (spring tides)	

Groundwater heads in the superficial deposits

- 2.6.9 Groundwater in the made ground is typically perched. The nature of the made ground suggests that perched aquifers are laterally and possibly vertically discontinuous, but this cannot be confirmed from the data available.
- 2.6.10 The hydrographs for the cohesive alluvium and glacial till boreholes do not show any obvious response to individual rainfall events or seasonal variation, due to limited flow within these horizons. As little response was seen in the unconfined made ground and shallow horizons within the cohesive alluvium, it is also possible that the large areas of hard standing and artificial drainage within the Scheme also confine the site, meaning that recharge to the superficial deposits in general is largely indirect.
- 2.6.11 There are, however, three cohesive alluvium monitoring boreholes at the Trinity Burial Ground (BH302, BH307 and BH309) that do show some response to seasonal rainfall. Water levels show a seasonal variation of up to 1.5m. They reached a minimum in the October of both 2015 and 2016, followed by a clear recovery and water levels reaching a maximum between February and March of

- the following year (see Figure 11.4.14). It is possible that these represent limited perched groundwater within the cohesive alluvium.
- 2.6.12 The hydrographs for the granular alluvium, glaciolacustrine deposits and fluvio-glacial deposits show a very slight seasonal variation in groundwater heads, although the primary influence on groundwater heads appears to be tidal impacts, especially in the glaciolacustrine and fluvio-glacial deposits. The seasonal peaks occur in Autumn and lows occur in early Summer, suggesting that recharge is indirect and possibly via the Chalk.
- 2.6.13 With the exception of the Chalk, the greatest tidal impact is seen in the fluvioglacial deposits, which are in hydraulic continuity with the Chalk.
- 2.6.14 Tidal impacts are much smaller in the granular alluvium and glaciolacustrine deposits, and a very small tidal impact can also be seen in two boreholes in the cohesive alluvium (BH32 to the north of the burial ground and BH413 close to Princes Quay Bridge). In these horizons, the tidal response is always dampened and delayed in comparison to that seen in the Chalk. The level of the response is presumably dependent on the level of response in the underlying aquifer unit, the proximity to the Humber Estuary and/or the alluvial channel feature, the degree of leakage and hydraulic properties. It is also possible that the alluvial channel feature (granular alluvium) is in hydraulic continuity with the Humber Estuary. Zektser et al.⁶¹ notes that the lithologies typical of the superficial deposits within the Scheme have higher storage and lower transmissivity values than the Chalk, leading to a lower tidal efficiency, and a more subdued tidal response.

Groundwater heads in the Chalk

- 2.6.15 Chalk groundwater heads have typically varied between -1.5 and 2.5m AOD over the monitoring period. The most significant impact on groundwater heads is the mixed semi diurnal tidal response of the Humber Estuary. There is no obvious response to rainfall events or seasonal variation, as the Chalk is strongly confined beneath Hull.
- 2.6.16 The tidal impact on Chalk groundwater heads results in fluctuations of up to 3m during spring tides and 1.5m during neap tides (see Figure 11.4.19). On 5 December 2013, water levels in LDBH01 and nearby Chalk monitoring boreholes rose by 4m in response to a combination of the spring tide and a tidal surge, which inundated Commercial Road and the area around Mytongate (see Figure 11.4.20).
- 2.6.17 The tidal lag time in the Chalk was estimated from groundwater head and estuary water level data to be around 53 minutes at BH18A (in the centre of the Mytongate roundabout). A similar lag time of 48 minutes was obtained for BH29, located approximately 100m south of BH18A. However, a greater lag time of 64 minutes was obtained at BH24, located between BH29 and BH18A, which suggests

⁶¹ Zektser, I. S., Dzhamalov, R. G. and Everett, L. G. (2007) Submarine Groundwater. CRC Press. Taylor and Francis Group.

- anisotropy within the Chalk and/or a variable thickness of superficial deposits in the Humber Estuary such as that seen between Goxhill and Paull (see Section 2.5).
- 2.6.18 There is an upwards hydraulic gradient within the Chalk at low tide when groundwater levels in the deeper Chalk (BH415: monitoring horizon 8 12m below rockhead) are typically 0.25m higher than levels in the shallow Chalk (BH306: monitoring horizon 0 1.5m below rockhead). Groundwater levels are very similar within the shallow and deeper Chalk at high tide (see Figure 11.4.19).
- 2.6.19 There are, however, periods when there is a smaller tidal response in the deep Chalk compared to the shallow Chalk at low tide. It is not clear why this is the case, although it may perhaps be due to the thickness of superficial deposits in the Humber Estuary varying with time.

Hydraulic relationships between aguifer units

2.6.20 Although there is a small tidal response in some boreholes monitoring the more permeable superficial deposits overlying the cohesive glacial till and glaciolacustrine deposits, the water level data collected to date suggests that there is minimal leakage through these deposits. There might be more leakage where they thin in the eastern part of the Scheme, but this isn't particularly apparent from the data.

Vertical hydraulic gradients depend on the state of the tide. The hydrographs in Figure 11.4.21 and Figure 11.4.22 show that there is generally a downwards hydraulic gradient between the superficial deposits above the glaciolacustrine deposits, and the fluvio-glacial deposits and Chalk at low tide, but that this reverses at high tide.

- 2.6.21 Figure 11.4.24 shows that in the area around the Princes Quay Bridge, groundwater heads in the glaciolacustrine deposits are higher than heads within the overlying cohesive and granular alluvium.
- 2.6.22 Mean daily groundwater heads are generally slightly higher in the superficial deposits than in the Chalk.

Hydraulic gradients - superficial deposits

- 2.6.23 In view of the strongly linear nature of the Scheme, the concentration of monitoring boreholes towards the centre of this area, the complexity of the superficial deposits and the tidal impacts, groundwater head contour maps for the Scheme have not been prepared. However, some conclusions can be drawn from the water level data for the boreholes monitoring the superficial deposits. This indicates that there is no discernible hydraulic gradient across the Scheme other than within the granular alluvium where there appears to be some groundwater flow towards the west. Note that the granular alluvium is only present across the eastern half of the Scheme, where it exists in the form of an alluvial channel feature (Figure 11.4.26).
- 2.6.24 With the present dataset, it is difficult to determine whether there is a north-south component of flow in either the granular alluvium or other superficial deposits. The GI monitoring boreholes are restricted to within the Scheme Site Boundary and monitoring boreholes in the superficial deposits elsewhere in the study area are sparse. It is assumed, however, that the groundwater flow within the granular alluvium is likely to follow the path of the alluvial channel feature, which has an approximately northwest southeast orientation as well as the slight westwards flow path mentioned above.

Hydraulic gradients – Chalk

- 2.6.25 The groundwater level contour maps for the wider study area based on data from the saline intrusion monitoring boreholes and the Environment Agency monitoring network (Figure 11.4.10 and Figure 11.4.11) suggest that at high tide, there is a slight northwards hydraulic gradient across the Scheme, and that this is reversed at low tide. Groundwater level dip data taken at high tide and low tide on 28 February 2017 across the Scheme is plotted in Figure 11.4.25 and is in agreement with the data for the study area. These hydraulic gradients are small at both low and high tide, however (~7 x 10⁻⁴, as measured between BH01 and BH22, BH02 and BH B and BH22 and BH B).
- 2.6.26 Logger data from January 2014 (Figure 11.4.21A) suggests that there may be other influences on Chalk groundwater heads across the Scheme itself, however. At low tide, water levels are lowest in BH29, followed by (in order of increasing water level) BH33, BH22 and BH02, with the highest levels in BH11. BH11 appears to be the anomaly of the group as it consistently has the highest water levels no matter what the phase of the tide, even though it is located towards the centre of the Scheme. This may be because of heterogeneity within the Chalk in

terms of flow horizons and fracture geometry, as discussed previously, or due to the thickness of glacio-fluvial deposits overlying the Chalk.

Surface water - groundwater interactions

2.6.27 Although the Chalk and Humber Estuary are known to be in hydraulic continuity, there is little information that confirms the degree of hydraulic connection between the two. However, it is generally considered that clogging of the estuary bed by fine material as a consequence of saline intrusion due to historic heavy exploitation of the aquifer means that there is now only very limited leakage between the two²⁶ and the observed tidal fluctuations reflects a tidal loading effect on the confined aquifer²⁷. Depending on the hydraulic gradient, the Chalk may either provide some baseflow to the estuary or be susceptible to further saline intrusion, although it does appear that the mean hydraulic gradient is broadly neutral. Groundwater from the permeable superficial deposits (and especially the granular alluvium) may also provide baseflow to the Humber estuary, although this is likely to be very limited due to their limited storage, and the presence of aquitards.

Aquifer properties

- 2.6.28 Aquifer properties have been determined from the results of permeability tests carried out as part of the 2013 GI, as well the LDBH01 pumping test. No permeability tests were carried out as part of the 2015/16 GI.
- 2.6.29 Permeability tests included falling head tests (FHT), constant head tests (CHT) and packer tests (Chalk only). Some tests were carried out part way through drilling in 'open' boreholes and some were undertaken in the completed monitoring installations.
- 2.6.30 The permeability tests were carried out and analysed by Geotechnics Ltd., and reported on in its GI report²⁹. The results are summarised in Table 11.4.9 and

2.6.31 Table 11.4.10, together with comments on results which might be considered questionable when compared with well-established published values⁶².

Table 11.4.9: Hydraulic conductivity (K) values derived from permeability tests – superficial deposits (Geotechnics Ltd., 2013)

BH number	Type of test	Test section depths (m AOD)	Geological unit under test	Derived K value (m/s)	Comments
BH07	FHT - Standpipe installation	-1.1 to -5.1	Cohesive alluvium (sandy clay)	7.43 x 10 ⁻⁷	Derived from 1 test only
BH12	FHT - Standpipe installation	-2.09 to -5.09	Cohesive alluvium (sandy clay)	7.51 x 10 ⁻⁷	Derived from 1 test only
BH13	FHT - Standpipe installation	-12.33 to - 14.33	Glacial till (sand with a small section protruding into the glaciolacustrine)	3.14 x 10 ⁻⁷	Derived from 1 test only
BH14	FHT - Standpipe installation	-6.9 to -8.7	Cohesive alluvium (sandy clay with peat)	2.68 x 10 ⁻⁶	Derived from 1 test only
BH15	FHT - Standpipe installation	-9.45 to -12.45	Glacial till (sandy gravelly clay)	1.41 x 10 ⁻⁶	Derived from 1 test only. K result appears high when compared with published values
BH20	FHT - Standpipe installation	-14.2 to -16.2	Glaciolacustrine	2.09 x 10 ⁻⁷	Derived from 1 test only.
BH21	CHT – Standpipe installation	-7.13 to -9.03	Granular alluvium (gravel)	4.02 x 10 ⁻⁵	
BH25	FHT - Standpipe installation	-9.85 to -12.55	Glacial till (sandy gravelly clay)	2.29 x 10 ⁻⁷	Derived from 1 test only. K result appears slightly high when compared with published values
BH26	FHT - Standpipe installation	-8.96 to -10.96	Glacial till (with some peat and cohesive alluvium)	1.77 x 10 ⁻⁷	Derived from 1 test only
BH28	FHT - Standpipe installation	-9.02 to -12.52	Glacial till (sandy gravelly clay)	2.93 x 10 ⁻⁷	Derived from 1 test only. K result appears slightly high when compared with published values
BH32	CHT – Standpipe installation	-4.33 to -7.83	Cohesive alluvium	1.15 x 10 ⁻⁵	K result appears slightly high when compared with published values

⁶² Freeze, R. A. And Cherry, J. A. (1979) Groundwater. Prentice Hall International, Inc.

BH34	CHT – Standpipe installation	-10.37 to - 12.08	Granular alluvium (gravel)	1.58 x 10 ⁻⁵	
BH46	FHT - Standpipe installation	-7.97 to -10.67	Granular alluvium	1.01 x 10 ⁻⁵	Derived from 1 test only
SBP01	CHT – Standpipe installation	-12.56 to - 13.56	Glacial till (granular)	4.52 x 10 ⁻⁶	K result appears very high compared with published values for a glacial till but are thought to be representative for a granular layer

Table 11.4.10: Hydraulic conductivity (K) values derived from permeability tests – Chalk (Geotechnics Ltd., 2013)

ВН	Type of test	Test section	Geological	Derived K	Comments
number		depths (m	unit under	value (m/s)	
	FHT - Open borehole	-24.84 to - 29.84	Chalk	9.98 x 10 ⁻⁶	Derived from three tests
	FHT - Open borehole	-24.84 to - 34.34	Chalk	2.27 x 10 ⁻⁵	Derived from three tests
ВН08	Packer test	-33.34 to - 34.34	Chalk	9.45 x 10 ⁻⁸	Packer test interval restricted to a thin 1m horizon so the result may be unrepresentative of bulk Chalk properties. The K result is much lower when compared to published values
BH11	FHT - Open borehole	-21.97 to - 23.47	Chalk	4.17 x 10 ⁻⁷	Derived from two tests. Test restricted to a <2m horizon in the Chalk so the result may be unrepresentative. The K result is much lower when compared to published values
	FHT - Open borehole	-21.97 to - 27.97	Chalk	4.20 x 10 ⁻⁵	Derived from three tests
	Packer test	-25.97 to - 27.97	Chalk	1.06 x 10 ⁻⁶	Packer test interval was 2m. Result appears to be similar to other test values
BH22	Packer test	-24.55 to 25.55	Chalk	9.12 x 10 ⁻⁷	Packer test restricted to a thin 1m horizon in the Chalk so results may be unrepresentative of bulk Chalk properties. The K result is much lower when compared to published values
BH24	FHT - Open borehole	-26.8 to -29.8	Chalk	2.43 x 10 ⁻⁵	Derived from three tests. Only a 3m horizon in the Chalk was tested and therefore the result may be unrepresentative but result appears to be similar to other test values
	FHT - Open borehole	-26.8 to -33.8	Chalk	5.95 x 10 ⁻⁵	Derived from three tests
	Packer test	-34.3 to -36.3	Chalk	4.29 x 10 ⁻⁶	Packer test interval was 2m. Result appears to be similar to other test values.
BH29	FHT - Open borehole	-29.7 to -31.1	Chalk	1.49 x 10 ⁻⁴	Derived from three tests. Test interval was <2 m and therefore the result may be unrepresentative.

					However, the result appears to be similar to other test values
	FHT - Open borehole	-29.7 to -35.3	Chalk	1.06 x 10 ⁻⁴	Derived from three tests
BH33	FHT - Open borehole	-22.02 to - 23.82	Chalk	6.56 x 10 ⁻⁸	Derived from two tests. Test interval was <2m and therefore the result may be unrepresentative. The K result is much lower when compared to published values
	FHT - Open borehole	-22.02 to - 28.32	Chalk	1.99 x 10 ⁻⁵	Derived from three tests
	Packer test	-27.82 to - 29.82	Chalk	2.00 x 10 ⁻⁶	Packer test interval was 2m. Result appears to be similar to other test values.
		-29.19 to 30.19	Chalk	7.35 x 10 ⁻⁶	Packer test interval was restricted to 1m so
BH36	Packer test	-35.69 to - 36.69	Chalk	3.23 x 10 ⁻⁶	results may be unrepresentative of bulk Chalk properties. Result appears to be similar to other test values.
ВН39	Packer Test	-34.01 to - 35.01	Chalk	5.22 x 10 ⁻⁶	Packer test interval was 2m. Result appears to be similar to other test values.

Other than the results highlighted in red and in italics in Table 11.4.9 and

- 2.6.32 Table 11.4.10, the hydraulic conductivity values generally lie within the range of published values for each lithology.
- 2.6.33 Removing the results which appear to be unrepresentative (highlighted in red and in italics), the maximum, minimum and mean K results for each geological unit tested are summarised in the Table 11.4.11 below.

Table 11.4.11: Summary of hydraulic conductivity (K) values by geological unit

Geological Unit	Tests Used	Number of Tests	K Value (m/s): Maximum, minimum and mean results
Cohesive alluvium	FHT	3 (3 BHs)	7.43 x 10 ⁻⁷ to 2.68 x 10 ⁻⁶ (Average 1.39 x 10 ⁻⁶)
anaviani	1111	0 (0 Bi i3)	(Notage 1.55 x 10)
Granular alluvium	FHT CHT	1 (1 BH) 15 (2 BHs)	1.01 x 10 ⁻⁵ (FHT) 1.05 x 10 ⁻⁵ to 4.57 x 10 ⁻⁵ (CHT)
			(Total Average 2.40 x 10 ⁻⁵)
Glacial till	FHT CHT (in sandy layer)	4 (4 BHs) 5 (1 BH)	1.77 x 10 ⁻⁷ to 3.14 x 10 ⁻⁷ (FHT) 3.03 x 10 ⁻⁶ to 7.00 x 10 ⁻⁶ (CHT) (Total Average 2.53 x 10 ⁻⁷)*
Glaciolacustrine deposits	FHT	1 (1 BH)	2.09 X 10 ⁻⁷
Chalk	FHT Packer Tests	36 (5 BHs) 8 (7 BHs)	9.98 x 10 ⁻⁶ to 1.49 x 10 ⁻⁴ (FHT) 7.35 x 10 ⁻⁶ to 1.06 x 10 ⁻⁶ (Packer Tests) (Total Average 3.26 x10 ⁻⁵)

^{*}Although test results appear to give relatively high results compared with published values for glacial till, the majority are consistently of the same order of magnitude for this geological unit (except for the test on BH15, and SBP01, which targeted a granular horizon). All results for the glacial till given in **Table 2.6** have been used to provide the maximum, minimum and mean values given in **Table 2.8**. except BH15.

2.6.34 Chalk aquifer properties derived from the pumping test results are summarised in Table 11.4.12 below. These transmissivity and storativity values, as obtained from the pumping test analysis detailed in Volume 3, Appendix 11.5 Pumping test report, were corroborated by numerical modelling and alternative analytical methods conducted by Riley⁴⁰.

Table 11.4.12: Aquifer properties derived from LDBH01 pumping test

Test	Transmissivity (T) (m ² /d):	Storativity (S)	Hydraulic Conductivity (m/s)*
Constant rate test of LDBH01	1379 - 1631	3.20 x 10 ⁻⁴ to 4.40 x 10 ⁻⁴	7.98 x 10 ⁴ to 9.44 x 10 ⁻⁴

^{*}assuming an effective aquifer thickness of 20m

2.6.35 There are no records of other permeability tests being conducted within the Scheme and none appear to have been carried out as part of the 1994 GI. Data for the wider area is also sparse. A rising head test undertaken in a shallow

borehole approximately 250m east of the Scheme gave a hydraulic conductivity of 5.35×10^{-8} m/s for a silty clay. As the lithology of the superficial deposits within the Scheme is likely to be similar at this borehole, it should have intersected the cohesive alluvium. The hydraulic conductivity is lower than any of the values derived from the 2013 GI permeability tests, possibly because of a higher clay content in the alluvium and/or because the response zone became silted up during the test.

- 2.6.36 Information provided by the Environment Agency indicates that a Chalk pumping test carried out in 2005 at Hull Truck Theatre, approximately 850m north of the Scheme, gave a transmissivity of 45.7m²/d.
- 2.6.37 Similar information from a pumping test carried out on the D J Broady borehole, approximately 2km to the north east of the Scheme, gave a transmissivity range of between 230 and 280m²/d.
- 2.6.38 These values are at least an order of magnitude lower than the value calculated from the Chalk pumping test carried out at LDBH01 in December 2013 and provides further evidence that the Chalk is more extensively fractured in the vicinity of LDBH01 than it is further to the north and northeast.
- 2.6.39 No storage values appear to have been derived from the Hull Truck and D J Broady pumping tests. However, the values derived from the LDBH01 pumping test is indicative of a confined aquifer and compares well with the value of 1.00 x 10⁻⁴ used in the Environment Agency's regional groundwater model (ESI, 2013).
- 2.6.40 From the above discussion, it can be concluded that the geological sequence within the Scheme can be broadly categorised as follows in terms of aquifer properties:
 - Made ground Aquifer or aquitard depending on material composition.
 Commonly dry but with some perched groundwater
 - Cohesive alluvium Aquitard
 - Granular alluvium Aquifer
 - Glacial till Aquitard
 - Glaciolacustrine deposits Aquitard
 - Fluvio-glacial deposits Aquifer
 - Chalk Aquifer

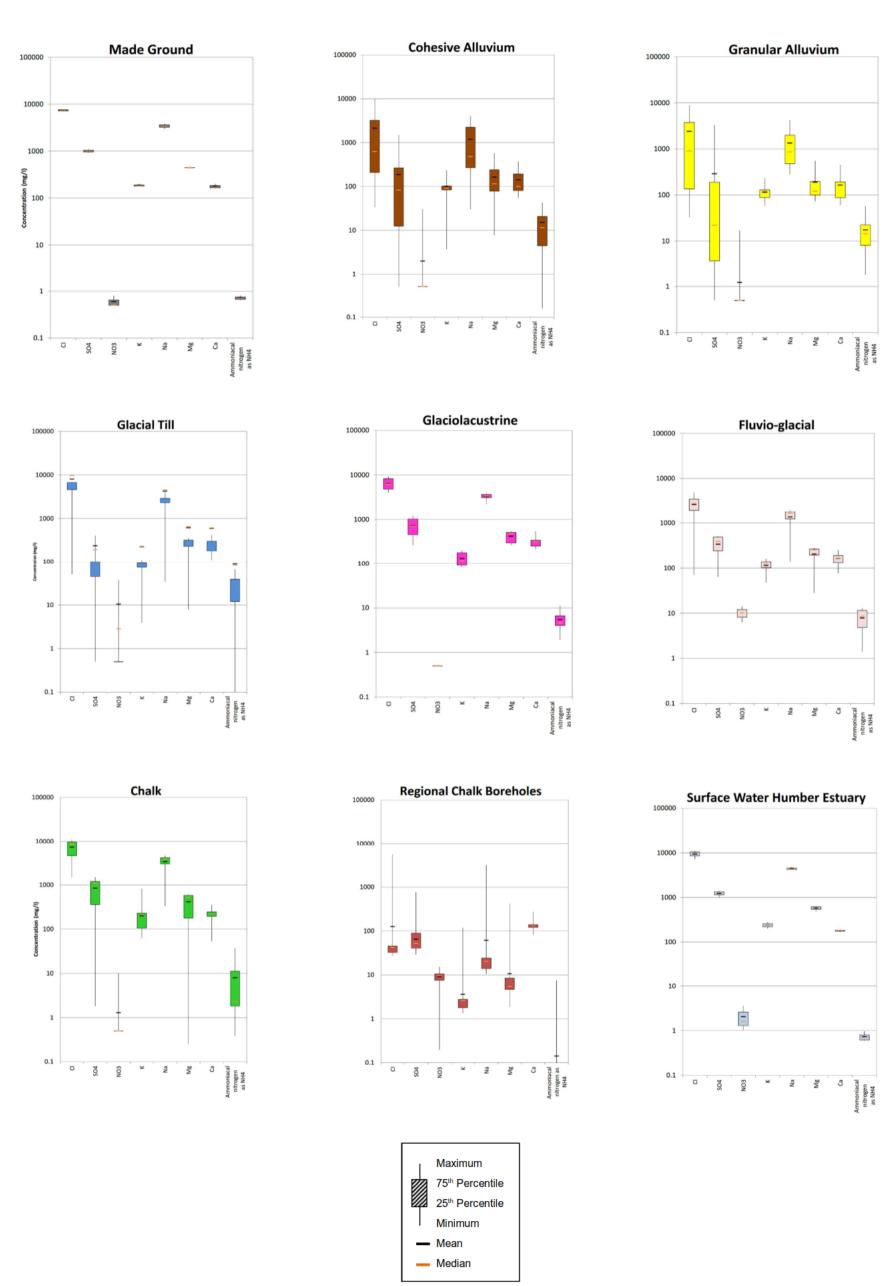
Groundwater quality

2.6.41 The 2013 GI water quality sampling programme comprised two full groundwater sampling rounds (of all accessible monitoring boreholes) in October 2013 and one partial round prior to this in August and September. Additional groundwater and

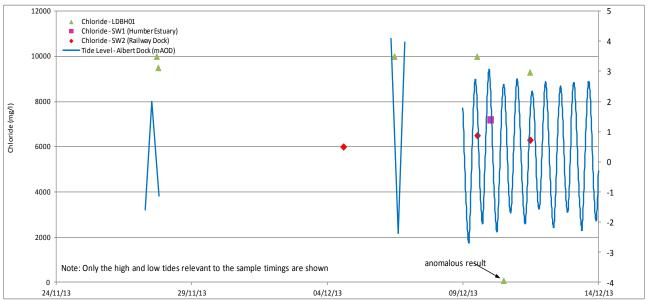
- surface water samples were undertaken in the Chalk as part of the pumping test programme in December 2013.
- 2.6.42 Wellhead (in situ) measurements, including pH, temperature, specific conductivity, dissolved oxygen (DO) and oxidation reduction potential (ORP) were taken using multi-meter in conjunction with the sampling. Surface water samples and in situ readings were also taken and are summarised in Volume 3, Appendix 12.1 Ground contamination assessment and Volume 3, Appendix 11.5 Pumping test report along with full details of the groundwater sampling schedules and results. Surface water sampling locations are shown in Drawing 1168-10-211-DR-011 of Volume 3, Appendix 12.1 Ground Contamination Assessment.
- 2.6.43 Sample results were screened against the relevant groundwater and surface water Environmental Quality Standards (EQS) to provide an assessment of the potential risks to groundwater and surface water receptors. For the groundwater samples, sample results were also screened against the UK DWS. The Tier 1 screening tables for the groundwater sampling results and DWS and EQS exceedances in the Chalk and superficial deposits monitoring boreholes (drawings 1168-10-211-DR-007, 1168-10-211-DR-008, 1168-10-211-DR-009 and 1168-10-211-DR-010) are presented in Volume 3, Appendix 12.1 Ground Contamination Assessment.
- 2.6.44 The Ground Contamination Assessment concluded the following in relation to groundwater quality within the Scheme:
 - Elevated concentrations of PAHs and TPH were recorded in shallow, perched groundwater from BH41A and SBP02. These two monitoring boreholes are both installed within made ground and are in areas where elevated hydrocarbons have also been identified in soils/leachability analysis (BH41A, WS12A, SCPT20).
 - Copper was recorded as being elevated above the DWS in groundwater within the Chalk and superficial deposits. Comparable, elevated concentrations above the EQS have also been reported in local surface water receptors including the docks.
 - Smedley et al.⁴² reported elevated concentrations of arsenic, boron, iron, manganese, sulphate and ammonium within the confined Yorkshire Chalk aquifer. These correlated with measured concentrations recorded during the 2013 investigation.
 - Concentrations of calcium, chromium, nickel and selenium recorded in groundwater and in surface water during the 2013 investigation were also reflective of quoted regional concentrations.
 - Ammoniacal nitrogen (as N and NH₄) concentrations were measured to be consistently higher within the superficial deposits than the Chalk. This is likely due to the anaerobic degradation of organic material present within the superficial deposits (peat and organic-rich clay).

- These elevated concentrations, coupled with relatively low concentrations of nitrate, are indicative of a reducing environment in the confined Chalk and superficial deposits.
- This is reflected by the low, negative ORP wellhead readings for all water samples taken from Chalk boreholes and most water samples taken from boreholes in the superficial deposits during the 2013 investigation (Annex H). The only consistently positive ORP readings were from groundwater in the made ground (BH41A), which is unconfined at this location, although ORP readings from samples taken from BH30 (cohesive alluvium), BH04 and BH15 (glacial till) and BH14 (peat) were sometimes positive and sometimes negative (and not close to zero, hence not reflecting neutral conditions).
- Elevated concentrations of chloride, sodium, potassium and sulphate are likely to be due to saline intrusion from the Humber Estuary, although it is thought that some upconing of connate groundwater has also occurred in this area⁶³.
- The electrical conductivity of shallow groundwater within the superficial deposits exceeds 400 µS/cm.
- 2.6.45 Box and whisker plots of major ions for samples taken from the superficial deposits and the Chalk in 2013 are presented in Figure 11.4.28. The results from surface water sampling point SW1 in the Humber Estuary and Environment Agency regional Chalk groundwater sampling boreholes (for locations see Figure 11.4.5) are also shown for comparison.
- 2.6.46 With the exception of ammonium (NH₄), major ion concentrations in both the Chalk and the lower superficial deposits approach those in the Humber Estuary, as would be expected if saline intrusion was occurring. Although nitrate concentrations are reasonably similar, ammonium concentrations are higher in the Chalk and lower superficial deposits than in the estuary, probably due to the confined conditions and input from organic material within the superficial deposits (the average hydraulic gradient between the superficial deposits and Chalk is slightly downwards, although the gradient reverses depending on the state of the tide).
- 2.6.47 Also of note is the wider range of concentrations in the groundwater compared to the estuary. For example, chloride concentrations (which act as an inert tracer) appeared to range from 3,000 mg/l to 10,000 mg/l in the samples taken from LDBH01, while those in the Humber Estuary range from 7000 mg/l to 11,000 mg/l in the limited number of samples taken over the same monitoring period. This suggests that the degree of mixing between saline and fresh groundwater may

Page 88


⁶³ Foster, S. S. D. and Milton, V. A. (1976) Hydrogeological basis for large-scale development of groundwater storage capacity in the East Yorkshire Chalk. Report of the Institute of Geological Sciences, 76/7

depend to some extent on the state of the tide and the therefore the local hydraulic gradient within the Chalk. This could have been investigated by comparing chloride concentrations with groundwater and tide levels. However, precise sampling times were not always recorded except during the pumping test sampling programme because the tidal impact on groundwater had not been fully understood when the earlier samples were taken.


Figure 11.4.28: Box and whisker plots showing major ions

Note: Chemical species below detection limit were recorded at <0.5, but are shown as 0.5 above.

Figure 11.4.29: Chloride levels in the chalk plotted against tide times

- 2.6.48 Figure 11.4.29 shows the few chloride results from time-stamped LDBH01 samples plotted against the tidal data, together with chloride results from samples collected from the Humber Estuary and Railway Dock over the same period. This does not show any particular correlation between the phase of the tide and Chalk chloride concentration, although this might be because the chloride data is very sparse. Conductivity logging and data from other boreholes in the area would help to resolve this.
- 2.6.49 Figure 11.4.29 also suggests that chloride levels in Railway Dock are generally lower than those in the Humber Estuary. This may be because of surface water drainage to the dock and/or upwards leakage into the dock from the underlying superficial deposits (whilst the dock sides are lined, the base is not).
- 2.6.50 The box and whisker plots also allow comparison of water quality between the different geological layers within the superficial deposits. Ammonium concentrations are relatively high throughout but appear to be highest in the peat and glacial till. As discussed previously, it is considered that the elevated ammonium is due to the bacterial degradation of organic material present, particularly in the peat and organic-rich clay in particular (the peat lies directly above the glacial till in most places where it is present).
- 2.6.51 The box and whisker plots show a similar range of major ion concentrations in both the cohesive and granular alluvium, but generally a wider range in concentrations for most parameters in the upper superficial deposits compared to the lower superficial deposits. The wide range in parameter concentrations (including wellhead parameters such as ORP) perhaps reflects the numerous factors affecting water quality in the superficial deposits, including complex lithology and associated hydraulic relationships, and the impact of regional water quality and local chemical and biological processes.

Site compounds and public spaces

2.6.52 A summary of hydrogeological information available from BGS borehole logs at each of the site compounds is provided in Annex E. All site compounds are generally underlain by a substantial thickness of poorly permeable cohesive superficial deposits. Of particular importance is the absence of confining glacial till and glaciolacustrine deposits at the Livingstone Road compound and A63 eastbound recovery base, however, where the Chalk is potentially in hydraulic connection with any groundwater contained within the cohesive alluvium. At this location the groundwater vulnerability classification is Medium-High, suggesting there may be some leakage through the cohesive alluvium.

2.7 Summary of hydrogeological conceptual understanding

- 2.7.1 From the baseline geological and hydrogeological review, the following can be concluded:
 - The geological sequence roughly comprises a series of aquifer and aquitards within the superficial deposits (20 - 30m thick), including made ground, cohesive alluvium, granular alluvium, glacial till, glaciolacustrine deposits and fluvio-glacial deposits. The fluvio-glacial deposits directly overlie Chalk bedrock.
 - In reality, the geological sequence is more complex than this. For example, the granular alluvium is only present across the eastern half of the Scheme, representing an alluvial channel feature cutting through glacial deposits (the glacial till, glaciolacustrine and fluvio-glacial deposits).
 - The Chalk aquifer is confined and has a strong tidal influence reflected in groundwater levels which have varied by up to 4m over the monitoring period. There is evidence of heterogeneity within the Chalk in this area.
 - Other than the made ground, the permeable superficial deposits are generally confined, though there may be some localised unconfined units.
 - Neither the Chalk nor the majority of the superficial deposits have exhibited an obvious response to short term recharge events or seasonal recharge during the monitoring period, and are thought to be recharged indirectly.
 - In general, the local hydraulic gradient in the Chalk across the Scheme is slightly to the north during high tide, and southwards during low tide.
 - Monitoring across the Hull area and the groundwater model suggest that groundwater flow is generally to the south, towards the Humber Estuary, as verified by monitoring across Hull on 28 February 2017.
 - Similarly, monitoring to date does not indicate a measurable hydraulic gradient in any of the superficial deposits, except in the granular alluvium across the eastern part of the Scheme. Here, the hydraulic gradient appears

to have an east to west component, although it is assumed that there may also be a north-south component due to the orientation of the alluvial channel.

- Vertical hydraulic gradients depend on the state of the tide, with a
 downwards hydraulic gradient between the superficial deposits above the
 glaciolacustrine deposits and the fluvio-glacial deposits and Chalk at low tide
 and a reversal of this relationship at high tide. The data suggests that
 leakage between aquifer units is minimal except where the more
 impermeable superficial deposits thin towards the eastern end of the
 Scheme.
- Although the hydraulic connection between the Humber Estuary and the
 underlying Chalk is not well understood, and it is considered unlikely that
 watercourses receive any significant baseflow from the Chalk, it is possible
 that the Humber Estuary gains water from the Chalk aquifer under high
 groundwater level conditions. This relationship may be reversed under
 drought conditions, however.
- The walls of all three docks are lined and so are likely to be largely isolated from groundwater within the superficial deposits, except through their bases.
- The Chalk groundwater quality is representative of a confined aquifer with reducing conditions that has been subject to modern saline intrusion (due to historical over-abstraction) as well as a component of paleo saline groundwater.
- Water quality is the superficial deposits is also representative of generally (though not always) reducing conditions. There is evidence of mixing with saline water.
- 2.7.2 The findings above support evidence from past studies e.g. the Yorkshire Water Humbercare Sewerage Tunnel failure, where it is thought that running sands caused tunnel collapse due to high upward hydraulic gradients from the Chalk. The results from the GI and subsequent monitoring support the theory that there is some hydraulic connection between the Chalk aquifer, the glacial deposits and in some areas (particularly to the east) the alluvium.

3. Receptors

- 3.1.1 This section summarises the groundwater receptors potentially impacted by the Scheme. An assessment of impacts on these receptors due to the construction and Operational Phases of the Scheme is provided in Volume 1, Chapter 11 and summarised in Section 5 of this report.
- 3.1.2 For the purpose of this impact assessment, the receptors are split into two categories: direct and indirect receptors. Direct groundwater receptors are considered to be the aquifer units themselves, whilst indirect receptors are classed as those potentially affected when groundwater is considered to be the pathway, including surface water features, abstractions, and structures and cultural heritage.

3.2 Groundwater receptors

- 3.2.1 Groundwater receptors include the permeable superficial deposits as well as the Chalk aquifer. The regional and local characteristics of these aquifer units are described in Sections 2.5 and 2.6 respectively. The Hull and East Riding Chalk is classed as a principal aquifer by the Environment Agency and is designated as a DrWPA. Its WFD current (2016) and predicted quantitative and chemical status is poor due to saline intrusion and nitrates.
- 3.2.2 The superficial deposits directly underlying the Scheme are not designated as an aquifer and are classed by the Environment Agency as unproductive strata. However, permeable horizons within the superficial deposits such as the granular alluvium and fluvio-glacial deposits are reasonably extensive and locally productive (as evidenced by substantial and uncontrolled inflow accompanied by running sand from the alluvium during previous construction projects, and anecdotal reports of a substantial freshwater spring during construction of the Humber Dock³⁵.
- 3.2.3 Both the Chalk and permeable superficial deposits will also act as pathways in terms of groundwater head and water quality.

3.3 Surface water receptors

- 3.3.1 Surface water bodies potentially in hydraulic continuity with groundwater are considered as indirect receptors in this assessment in that water level, flows and water quality could be adversely impacted by changes to the groundwater regime arising from the Scheme. These include the Humber Estuary, the River Hull, the nearby docks (Railway Dock, Albert Dock and Humber Dock) and Fleet Drain. Aside from the underpass and associated structures, the following site compounds are located adjacent to surface water receptors:
 - Livingstone Road Fleet Drain and Humber Estuary
 - Wellington Street Island Wharf Humber Estuary and Albert Dock

- Neptune Street set down compound Albert Dock
- Land south east of Mytongate Junction Railway Dock
- 3.3.2 A full assessment of the surface water receptors is provided in Volume 1 Chapter 11 Road drainage and water environment, but a summary of these surface water bodies and their designations is provided in Section 2.5 of this report.

3.4 Abstractions

- 3.4.1 Details of groundwater abstractions within the study area are provided in Section 2.5 and are summarised below. The locations of abstractions are also shown in Figure 11.4.5.
 - Two licensed abstractions from the Chalk aquifer for industrial use (both less than 1000m³/d)
 - 18 licensed abstractions from the Chalk aquifer for agricultural use (spray irrigation and vegetable washing; all less than 1000m³/d)
 - Two licensed abstractions from the superficial deposits for agricultural use (spray irrigation; both less than 1000m³/d)
 - One licensed abstraction from the Chalk aquifer for amenity use (less than 1000m³/d)
 - One abstraction licence for a ground source heat pump within the Chalk (two boreholes, combined licensed rate 1,096m³/d)
 - One abstraction licence (relating to four pumping shafts within the Chalk) for potable water supply (combined licensed rate 90,000m³/d)
- 3.4.2 The Environment Agency's default SPZ 3 (catchment area) of 1km is considered appropriate for industrial use and spray irrigation abstractions of less than 1,000 m³/d. Only the Hull Hull Truck Theatre Co Ltd's abstraction is less than 1km from the Scheme and could therefore be potentially affected in terms of the groundwater quality and the loss of resource.
- 3.4.3 There are four public water supply abstractions from the Chalk aquifer located approximately 8km to the northwest of the Scheme. The Scheme falls within the catchment area (i.e. SPZ3) for these abstractions and could therefore potentially impact the abstractions in terms of groundwater quality and the loss of resource.

3.5 Environmentally sensitive sites

3.5.1 The Humber Estuary is designated as a Site of Special Scientific Interest (SSSI) and Special Area of Conservation (SAC) for its nationally important habitats, which include coastal saltmarsh, intertidal mudflats and sandflats, saline lagoons and

sand dunes. The estuary is also a wetland of international importance and is therefore designated as a RAMSAR site.

3.5.2 There are no other environmentally sensitive sites within 3km of the Scheme.

3.6 Structures

- 3.6.1 Subsidence due to significant changes in groundwater level over and above natural variations is a particular risk to structures, including property and infrastructure, given the geotechnical properties of the ground and the cohesive alluvium in particular. In addition to drawdown arising from dewatering operations, groundwater flooding could occur if below ground structures associated with the Scheme, and the underpass in particular, act as groundwater dams. This is of particular concern due to the proximity of structures to the Scheme.
- 3.6.2 Groundwater quality changes arising from changes to the groundwater regime could also potentially impact on buildings and infrastructure if, for example, the groundwater becomes more aggressive or contaminant migration occurs.
- 3.6.3 The nearest buildings to the Scheme are William Booth House, approximately 60m north of Mytongate Junction and the Whittington and Cat Public House, approximately 110m to the south of Mytongate Junction.

3.7 Cultural heritage

3.7.1 Archaeological sites of importance could also be adversely impacted by changes in the groundwater regime. The archaeology in the area of the Scheme can be separated into three categories: - archaeological remains, historic buildings and historic landscapes. The potential impacts on archaeology due to changes in the groundwater regime is discussed separately to this report in the Environmental Statement.

4. Proposed works

4.1 Overview

- 4.1.1 The preferred option for the Scheme comprises a grade separated junction with the alignment of the A63 lowered approximately 7mbgl. A plan of the Scheme is presented in Volume 2, Figure 2.3 Scheme Site Boundary, whilst a cross section through the underpass along the main line is shown in Figure 11.4.1.
- 4.1.2 The full description of the preliminary design is provided in Volume 1 Chapter 2
 The Scheme. This takes into account the difficult ground conditions at the site. The
 underpass is to be formed in open cut, up to approximately 7m deep (at maximum
 dredge level) and approximately 20m wide. The underpass will be located
 between chainage 1250m and 1750m. The centreline of the proposed A63
 carriageway deviates from the existing centreline between chainage 1450m and
 1750m by up to 20m and encroaches into Trinity Burial Ground land.
- 4.1.3 In addition to the road underpass and grade separated junction with Mytongate Bridge crossing from Commercial Road to Ferensway, two pedestrian, cycle and disables user bridges crossing the road at Porter Street (chainage 1050m) and the Princes Quay Shopping Centre (chainage 1825m) and slip roads are also included in the design. An off line pumping station is also to be constructed as part of the drainage arrangements.
- 4.1.4 In accordance with BS EN 1997-1:2004, the geotechnical category for the underpass structure is Category 3 'structures involving abnormal risks, or unusual or exceptionally difficult ground or loading conditions'. The sub-artesian groundwater presents a major difficulty for the design of the structures described above.
- 4.1.5 Key groundwater risks that have influenced the design include the following:
 - Groundwater heads have been recorded close to ground level (as high as 0.86mbgl) within the Scheme Site Boundary. As the maximum dredge depth of the underpass at the Mytongate Junction will be up to approximately 7m below existing ground level (within the alluvium), a substantial dewatering operation could be required. Due to the constraints imposed by the surrounding structures, services and archaeology, general groundwater lowering of the area is not considered a feasible option, and dewatering from within a confined box will be necessary.
 - The discharge arising from dewatering may require either disposal or treatment for contamination. Depending on discharge volumes and water quality, the Environment Agency and Natural England may not permit discharge to the Humber Estuary, and Yorkshire Water may not permit discharge to sewer.

- As groundwater heads within the Chalk aquifer are sub-artesian, upwards leakage through the cohesive glacial deposits could cause the excavation base to become unstable. However, this risk is reduced because the design includes for jet grouting and/or other ground stabilisation techniques within the alluvium and the top of the glacial till to improve ground stability.
- Part of the Trinity Burial Ground is included within the Scheme Site Boundary. As part of the enabling works, excavation of trenches of around 2mbgl will be required to allow removal of human remains. This will require special consideration in terms of potential dewatering requirements and associated groundwater level and quality issues.
- 4.1.6 Special consideration has been given to the groundwater risks associated with the Scheme and the preliminary design takes these into account within the context of the findings of the 2013 and 2015/16 GI.
- 4.1.7 The following discussion focusses on the below ground aspects of the preliminary design (Arup, 2016c g, Arup, 2017 and Balfour Beatty, 2016) that have the potential to impact on groundwater receptors.

4.2 Underpass

Retaining walls and base slab

- 4.2.1 The cutting will be formed within low strength alluvial deposits that are assumed to be saturated. Diaphragm retaining walls have therefore been recommended. These walls will be designed to prevent excessive settlement behind them and excessive groundwater entry into the excavation under both the construction and operational scenarios.
- 4.2.2 The diaphragm walls will comprise a series of ~2.8m wide, 1m thick, and 1m long panels, connected together using water bars to ensure 'water tightness'. Table 11.4.13 summarises the depth of the diaphragm wall along the length of the cutting, together with the aquifer units intersected.

Table 11.4.13: Diaphragm wall depths

Location	Approximate chainage (m) (length of section in brackets)	Depth to base of diaphragm wall (m AOD)	Aquifer units intersected
West of Mytongate Junction	1310 – 1470 (160)	-20	Fluvio-glacial deposits Chalk (0 – 2m)
Mytongate Junction	1470 – 1540 (70)	-27.5	Granular Alluvium, where present Fluvio-glacial deposits Chalk (~5. 5m)
East of Mytongate	1540 – 1690 (150)	-22	Granular Alluvium Fluvio-glacial deposits Chalk (0 – 1m)

- 4.2.3 The diaphragm walls will be constructed by cutting a narrow trench that is temporarily supported by a bentonite mud until the full panel dimensions can be excavated, after which the bentonite mud will be replaced by reinforced concrete. Bentonite mud is likely to be supplied via tremie pipes from a fixed position bentonite plant for the duration of the Scheme. The preferred location for the bentonite plant is the Arco site compound, which is approximately 400m from the Mytongate Junction. Intermediate booster pumps would therefore also be required. If this site compound cannot be used, the bentonite plant will be located at the Staples site.
- 4.2.4 The road junction will be formed using a top down method. Once the diaphragm walls are in place, the jet grout layer will be injected from current ground level to the required depth and thickness, reinforced concrete bored tension piles bored through the pre-installed jet grout layer and further guide walls and additional piles for the Mytongate Bridge piers constructed. The ground will then be excavated to expose the underpass ground slab formation level (i.e. the top of the jet grout layer), allowing for installation of temporary props where required. This top down method potentially significantly reduces the need for dewatering.
- 4.2.5 Following excavation, the ground slab will be formed and completed with a waterproof coating and finishes such as the cladding system, and a longitudinal, combined kerb and drainage system installed.
- 4.2.6 Water bars will be provided at all joints between diaphragm wall panels and all construction joint locations for the ground slab.
- 4.2.7 In accordance with BS EN1992-3:2006 Table 7.105, the classification of tightness for the underpass structure is Class 1, i.e. leakage to be limited to a small amount, with some surface staining or damp patches acceptable. Whilst not included in the outline design, drainage channels or relief wells may be included in the design should groundwater mounding on either side of the cutting be a problem. These would discharge to the underpass drainage system, and could require an abstraction (transfer) licence.
- 4.2.8 Suitable geotechnical monitoring systems will be required to monitor wall movement, settlement and pore water pressures.

Tension piles

4.2.9 Tension piles may be required to enable the permanent slab to resist buoyancy and are preferred over ground anchors to avoid maintenance issues. The tension piles are likely to be 750mm diameter, installed from surface and broken down to connect into the permanent propping slab. They are likely to extend into the top of the Chalk, to a maximum depth of -27m AOD, to provide reasonable resistances, and are to be placed at a 4m spacing, decreasing to 2m under the footprint of the leaf pier.

Ground stabilisation

- 4.2.10 To mitigate the ground risk prior to bulk excavation of the underpass, ground stabilisation works are proposed in the form of jet grouting and potentially soil mixing of the alluvial superficial deposits between approximately 8 and 11m depth (at the lowest point in the excavation). The thickness of this improved zone would be subject to design, but could be between 2 and 5m thick, depending on the depth of excavation at a given location.
- 4.2.11 Jet grouting would involve a cement/lime slurry to be injected into the ground via an augur and high pressure pumps. The grout mix is likely to be supplied from a fixed position via supply pipes. These are likely to be buried in high risk areas, such as at road crossings.
- 4.2.12 Very large volumes of waste material are likely to be produced, which will require treatment via settlement, rotary drying and/or lime treatment, and also storage prior to removal from site. To minimise the movement of tankers on site, backflow waste may be pumped back to the jet grouting plant via pipes.
- 4.2.13 The preferred location for the jet grout plant is the Arco site compound. If this site compound cannot be used, the jet grout plant would be located at the Staples site.
- 4.2.14 The alluvium which is to be excavated from the underpass may also be rotivated with lime or lime and cement to bind it prior to removal. This would effectively reduce the amount of groundwater within the box that will require dewatering prior to excavation.

4.3 Trinity Burial Ground

- 4.3.1 Approximately a third of the burial ground lies within the Scheme Site Boundary. As part of the enabling works, excavation to a depth of around 2mbgl will be required in this area to allow the removal of human remains.
- 4.3.2 It is proposed that temporary sheet piles are installed to a depth of 8mbgl along the perimeter of the entire area to form a groundwater cut-off wall. The excavation will take place from four individual areas in phases, with arisings being sorted in the north-eastern corner. Any arisings that do not contain remains will be reinstated.
- 4.3.3 Although groundwater inflow will be minimised through the temporary installation of sheet pile wall, there is still a risk of some seepage and therefore potential impacts on groundwater levels and quality, as well as issues associated with the discharge of potentially contaminated water.
- 4.3.4 Once the excavation is complete, the sheet piles will be removed to ensure that they do not interfere with the piling for the main cutting.

4.4 Holiday Inn retaining wall

- 4.4.1 A permanent sheet pile wall will be formed between the westbound diverge slip road, and the grounds of the Holiday Inn and the Trinity Burial Ground, to act as a permanent retaining wall for areas where the slip road is below grade. The retaining wall will be approximately 110m long, extending from chainage 1610m in the centre of the Trinity Burial Ground to chainage 1750m at the existing Holiday Inn entrance. The sheet pile wall solution has been proposed in order to minimise the impact on the Holiday Inn with a reduced construction depth. The wall will support the hotel service road and the re-positioned electricity sub-station above the new western diverge slip road.
- 4.4.2 There may be a small amount of dewatering of perched groundwater during construction, should this be encountered.

4.5 Bridges

4.5.1 Two bridges will be constructed to cross the A63 as part of the Scheme; the Princes Quay Bridge and the Porter Street Bridge. The locations of the bridges are shown in Volume 2, Figure 2.3 Scheme Site Boundary.

Princes Quay bridge

4.5.2 The bridge and ramps are to be founded on a total of sixteen bored piles of diameters ranging between 900mm and 1500mm with spacings ranging between 2.7m and 13.98m. Pile lengths range between 32 and 38.5m. The bridge design includes a platform over the Humber Marina. This is to be founded on 30m long steel piles of diameters between 1016 and 1168mm, driven through the marina water column.

Porter Street bridge

4.5.3 All the bridge and ramp/stair columns are to be founded on reinforced concrete bored, cast-in-place piles. There are to be two 1000mm piles per column at a 3m spacing across the bridge width and approximately every 13.78m along the bridge ramps. Pile depths have not been confirmed.

4.6 Pumping station and rising main outfalls

- 4.6.1 Surface water drainage will be pumped from the underpass through a rising main to a consented discharge point. The pumping station will be located offline to the south of the mainline at a depth such that the tops of the storage tanks will be at carriageway level at the deepest point of the underpass. The pumping station will be constructed using secant pile walls. The secant pile wall will comprise 1200mm diameter piles, overlapping by 251 mm, and to depth of -27.5m AOD, and with 750 mm diameter tension piles to a depth of -28.5m AOD.
- 4.6.2 The pumping station will be located in the parcel of land approximately 10m south of Mytongate Junction, adjacent to borehole LDBH02.

- 4.6.3 Two potential rising main outfall options are being considered:
 - a rising main following Commercial Road, Manor House Street and Wellington Street West to a discharge point into the Humber Estuary at Hull Marina Island Wharf
 - a rising main connecting to a Yorkshire Water combined sewer close to the pumping station
- 4.6.4 It is assumed that the rising main would be installed surrounded by a granular fill bed and with stanks to avoid the bedding becoming a conduit for groundwater flow and mobilisation of existing contamination.

4.7 Yorkshire Water sewer diversion

- 4.7.1 The A63 Castle Street at Mytongate Junction currently passes above a gravity-fed Yorkshire Water sewer, running from the north of the city to the south, down Myton Street. At the intersection of Myton Street and Waterhouse Lane, the sewer then divides. The main sewer runs to the west, around the north side of the existing junction to connect into a system at Porter Street. The second branch of the sewer crosses the A63 and runs beneath Commercial Road, connecting to a sewer tunnel running along Kingston Street (Arup, 2018). This branch of the sewer will need to be diverted due to the proposed underpass at the Mytongate grade-seperated junction.
- 4.7.2 Yorkshire Water developed a preliminary design for a gravity diversion on the route, which would run along the Holiday Inn access road, passing between the Trinity Burial Ground and the Holiday Inn car park before connecting into the existing network on Commercial Road. Alternative options have also been developed with the aim of mitigating additional impacts to the Holiday Inn, but a final diversion route has not yet been agreed. The alternative options include routes that run below the proposed westbound diverge slip road, directly below Trinity Burial Ground, below the Railway Dock lock (between Railway Dock and Humber Marina) to connect into the Kingston Street tunnel directly, or along the northern boundary of the Railway Dock.
- 4.7.3 Depending on the agreed route, the sewer diversion is likely to require sewer pipes of between 900 and 2100mm diameter, and with invert levels (base of sewer) at between 0.5 and -0.1m AOD. Some options include to double pipes or box culverts (maximum dimensions 3000mm wide by 1800mm high). Manholes are generally 5000mm diameter, but may be as large as 8000mm.

4.8 Site compounds and public open space

4.8.1 It is assumed that an impermeable surface will be created at all site compounds (if not already present), with no infiltration of rainfall runoff to the ground. Although drainage details are not yet available, it is assumed that compounds used for car parking and storage of heavy machinery will have a positive drainage system

installed and bunding for chemicals and fuels. Surface water runoff from cabins will enter either surface water sewers or highways drainage, and waste water from wash facilities will be to foul sewer.

- 4.8.2 It is assumed that no changes will be made to the current road drainage at the eastbound and westbound recovery bases.
- 4.8.3 The Arco site is the preferred location (Option A) for the bentonite, jet grouting and concrete batching plants, which all require large amounts of construction and waste materials to be stored and treated, and washout and drainage facilities, including catchpits. The alternative location for siting these plants is the Staples site (Option B), if the Arco site is not used. If the Arco compound is used, there would be no compound at the Staples site.
- 4.8.4 It is assumed that the existing drainage on the Arco (or the Staples site, if used) can be modified to incorporate plant requirements, although sewer diversions may be required at both sites.
- 4.8.5 The Arco site (or the Staples site, if used) require the demolition of buildings prior to development as a construction compound.
- 4.8.6 Other high risk site compounds, where materials will be stored, include the land southeast of Mytongate Junction, Livingstone Road, and the Neptune Street set down compound.
- 4.8.7 The public open space to be created in the current location of the Myton Centre is likely to comprise a grassed area with a network of footpaths and trees, although this area may first be used for car parking following demolition of the Myton Centre. It is assumed that during use as a car park, the site will have a positive drainage system installed.

4.9 Construction phasing

4.9.1 The proposed phases of construction relevant to the groundwater assessment are set out in Table 11.4.14 below.

Table 11.4.14: Construction phases

Phase and duration	Construction activities
Phase 0 17 months	Trinity Burial Ground (TBG) enabling works and archaeology, including sheet piling and exhumation programme.
Phase 1 5 months	 Completion of burial ground works and commence earthworks for underpass. Commence Princes Quay Bridge and Porter Street Bridge foundations. Ground improvement to Mytongate roundabout and westbound off slip.
Phase 2 3 Months	 Completion of Porter Street Bridge. Western underpass ground improvement and wall commencement. Westbound off slip piling, jet grouting to east underpass.

Phase and duration	Construction activities
	Princes Quay Bridge foundations.
Phase 3 6 months	 Continue west underpass wall construction. Piling to pumping station. Installation of rising main to outfall.
Phase 4 3 months	 Continuation of underpass works west of Mytongate. Eastern underpass south wall construction.
Phase 5 12 months	Continue underpass construction.Continue underpass wall to eastern end.
Phase 6 5 months	Complete underpass construction.Continue underpass wall to eastern end.

4.9.2 Table 11.4.14 indicates that the underpass will be completed in phases comprising the Mytongate junction, east of the junction and west of the junction, with construction of the central junction underpass spanning almost the entire Scheme programme (up to 34 months). All other construction works will coincide with construction of the underpass, with the exception of the burial ground where exhumation works will precede all other works.

5. Potential impacts to groundwater receptors

5.1 Overview

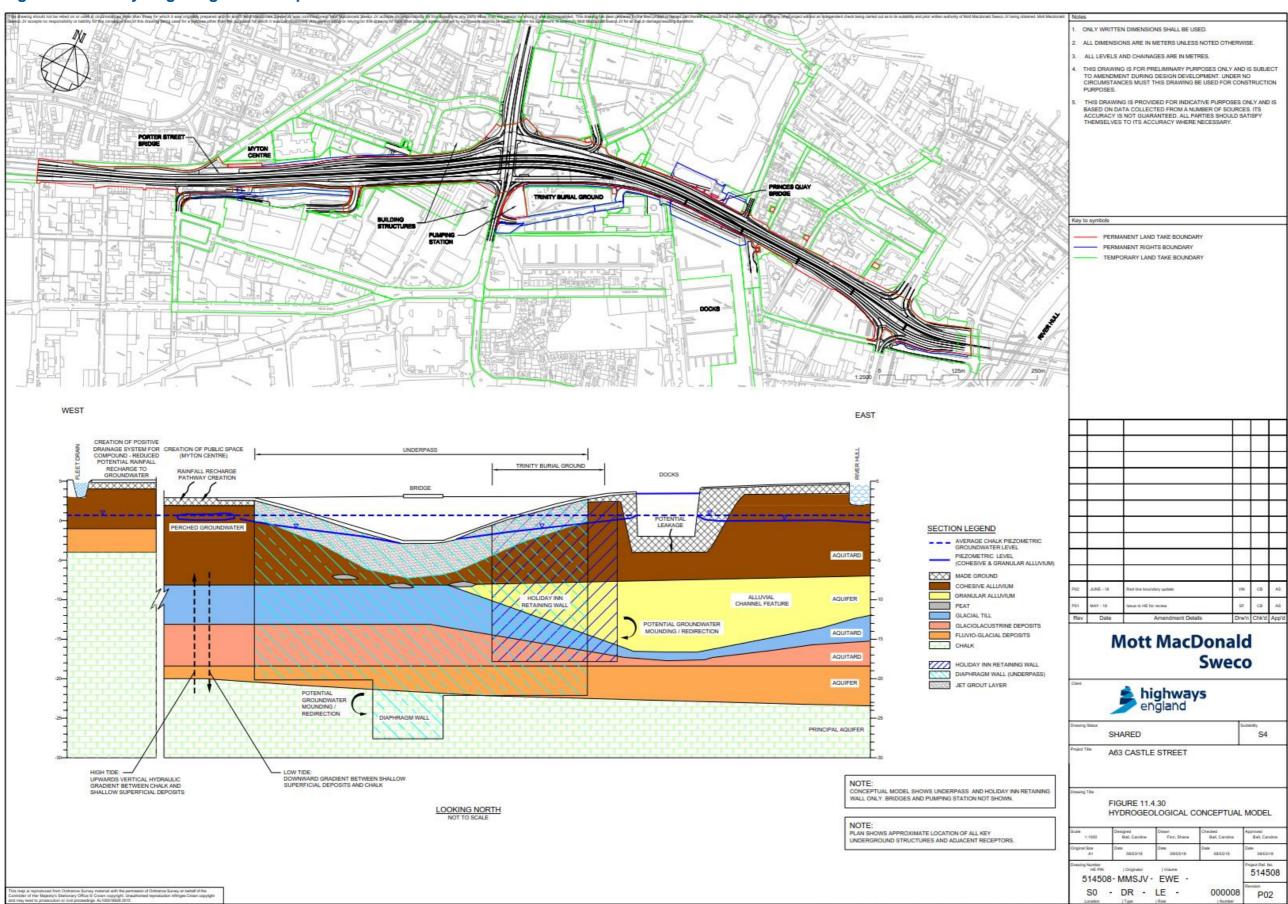
- 5.1.1 This section discusses the potential impacts to groundwater receptors during the Construction Phase and Operational Phase of the Scheme following mitigation measures included in the preliminary design.
- 5.1.2 The impact assessment considers the design discussed in Section 4 in the context of the baseline hydrogeological conceptual model outlined in Sections 2 and 3 of this report. These are also presented in Figure 11.4.30.
- 5.1.3 In addition, a numerical groundwater flow model has been constructed to investigate potential impacts on groundwater receptors during the Construction Phase and Operational Phase of the Scheme. This focusses on the underpass as this structure is considered most likely to impact the groundwater regime, although the findings are also considered applicable to the Holiday retaining wall, the Trinity Burial Ground sheet piling and the pumping station. The model design, calibration and findings are described in Volume 3, Appendix 11.6 Groundwater modelling report and Volume 3, Appendix 11.7 Groundwater modelling update. A brief summary is provided in the following section.
- 5.1.4 An impact assessment, taking appropriate mitigation measures into account, is provided in Volume 1, Chapter 11 Road drainage and the water environment. The assessment conforms to DMRB guidance unless agreed otherwise with Highways England, relevant stakeholder or statutory environmental body.

5.2 Groundwater model

5.2.1 The groundwater model was developed using MODFLOW (GW Vistas). It is a nine-layer, finite difference model that represents the Chalk and the overlying superficial deposits, and is based on the hydrogeological conceptual model described in earlier sections of this report. The model was calibrated using groundwater level data from the 2013 GI and subsequent monitoring. Despite this, the model is considered as a simplified version of the complex hydrogeological system that exists beneath Hull, and this should be borne in mind when reviewing the results.

5.2.2 The model was updated in 2017 to take into account changes to construction design, as proposed by Balfour Beatty as part of their preliminary design^{10,11,12,64,65}

⁶⁴ Arup (2017) A63 Castle Street Improvements, Drainage Impact Assessment. Document Reference HE514508-ARP-HDG-S0-RP-CD-000505. 15 November 2017


⁶⁵ Balfour Beatty (2016) A63 Castle Street Improvements, Princes Quay Bridge Piling Specification. Document Reference 514508-ARP-V3-B3-SP-CG-00002. P01. 28 Jan 2016

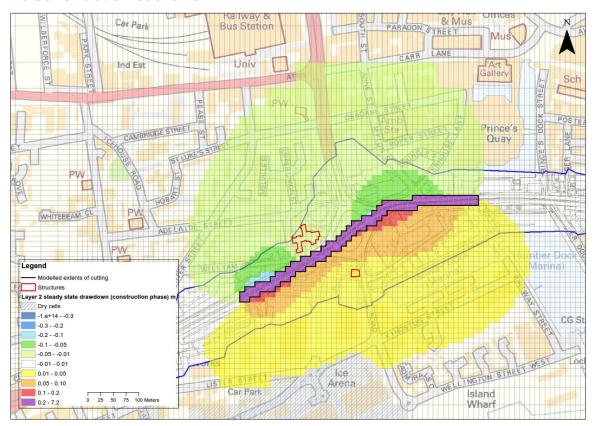
- 5.2.3 The model aimed to investigate the following scenarios:
 - Construction Phase the effect of the open-based underpass excavation on groundwater levels and flows (including the effect of diaphragm walls and tension piles on superficial deposits and Chalk groundwater levels and flows, and the effect of seepage into the excavation on groundwater levels and flows in the superficial deposits).
 - Operational Phase the effect of the completed structure (including diaphragm walls and tension piles, basal slab and road deck) on groundwater levels and flows in the Chalk and superficial deposits, including the effect of groundwater seepage into the completed structure (above road deck).
- 5.2.4 The model was run under steady state and transient conditions. The steady state model uses average groundwater heads to model impacts without tidal influence, while the transient model investigates potential impacts due to the groundwater tidal response.
- 5.2.5 The conceptual model and numerical modelling approach were discussed and agreed in principle with the Environment Agency on 13 December 2013 and 14 January 2014.
- 5.2.6 The numerical model focuses on the impact of the underpass. The size and orientation of this structure mean that it is likely to have a far greater impact on groundwater levels and flow than any other excavation or below-ground structure currently included in the Scheme, for example the Holiday Inn retaining wall, Trinity Burial Ground excavation and sheet pile retaining walls, bridge pier piles, slip roads, pumping station and the rising main.
- 5.2.7 As the east-west extents of the Holiday Inn and burial ground retaining walls are broadly similar to that of the modelled underpass, the model is also considered applicable to these structures.
- 5.2.8 The depth and location of the pumping station is sufficiently similar to the placement of the diaphragm walls of the underpass that the model is also considered appropriate for this structure.
- 5.2.9 An additional two-dimensional model was created to investigate the impact of underpass tension piles and bridge pier piles on groundwater levels and flow within the Chalk.

Figure 11.4.30: Hydrogeological conceptual model

5.3 Potential impacts during construction

Groundwater – groundwater levels and flows

- 5.3.1 The assessment of potential impacts on groundwater levels using the numerical groundwater models has focussed on the underpass, as described in Section 5.2, although this is also considered appropriate for the Holiday Inn retaining wall, the burial ground sheet piling and the pumping station. Results are presented for Layer 2 (cohesive alluvium) and Layer 7 (uppermost Chalk) of the steady state model.
- 5.3.2 Layer 2 of the model is considered appropriate for consideration of impacts on adjacent building structures and archaeology which are most likely founded within this or the overlying made ground (Layer 1). The extremely heterogeneous nature of the made ground meant that it was not possible to adequately simulate groundwater levels in this layer however. Furthermore, the greatest impacts were observed in Layer 2 and therefore this provides the most conservative approach.
- 5.3.3 Layer 7 is considered appropriate for consideration of impacts on the Principal aquifer.
- 5.3.4 All other potential impacts have been assessed qualitatively.


Underpass and other structures

- 5.3.5 The following observations are based on the results of the numerical groundwater model.
- 5.3.6 The main quantitative predictions from the steady state model (which represents average groundwater levels) are:
 - No significant impact on cohesive deposits and Chalk groundwater levels and flow due to the diaphragm walls and tension piles.
 - Maximum drawdown of 7.0m in the central part of the excavation inside the diaphragm walls (reflecting the drawdown required to fully dewater the excavation).
 - Changes in groundwater levels (resulting in drawdown or mounding, depending on the tides) in the superficial deposits (cohesive alluvium) immediately outside the diaphragm walls of up to 0.13m.
 - Drawdown / mounding in the Chalk immediately outside of the diaphragm walls of less than 0.05m.
 - Groundwater inflow to the open excavation through the walls and base of less than 10m³/d.

- Changes in groundwater level (additional to natural variation) in the cohesive alluvium at the nearest structures of less than +/-0.05m (refer to Figure 11.4.31 below).
- The two-dimensional model of the tension piles showed very little impact on groundwater levels and flow in both the superficial deposits and Chalk, with groundwater readily flowing around the piles.
- The zone of influence, which is taken as the area where changes in groundwater levels within the cohesive alluvium exceed 0.01m, is highlighted in Figure 11.4.31. This zone of influence is also considered appropriate for the Chalk. The modelled area where changes in Chalk groundwater levels exceed 0.01m is actually smaller, as presented in Volume 3, Appendix 11.7 Groundwater modelling update.

Figure 11.4.31: Modelled steady state drawdown in the cohesive alluvium for the construction scenario

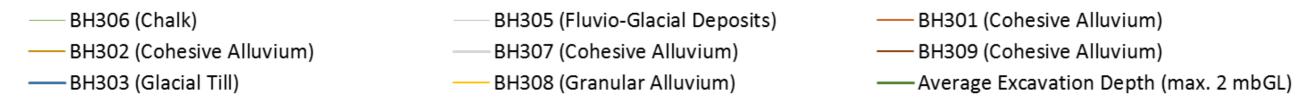
- 5.3.7 The transient model reveals a similar picture, with the underpass structure causing small, local changes in groundwater level in Layer 2, representing the uppermost superficial deposits (cohesive alluvium). The diaphragm walls and tension piles are therefore not predicted to have a significant impact on groundwater heads or flows in either the cohesive deposits or the Chalk.
- 5.3.8 In both the steady state and transient models, the zone of measurable drawdown extends southwards, with "damming" of groundwater to the north due to the underpass structure. Although the regional hydraulic gradient apparent in the

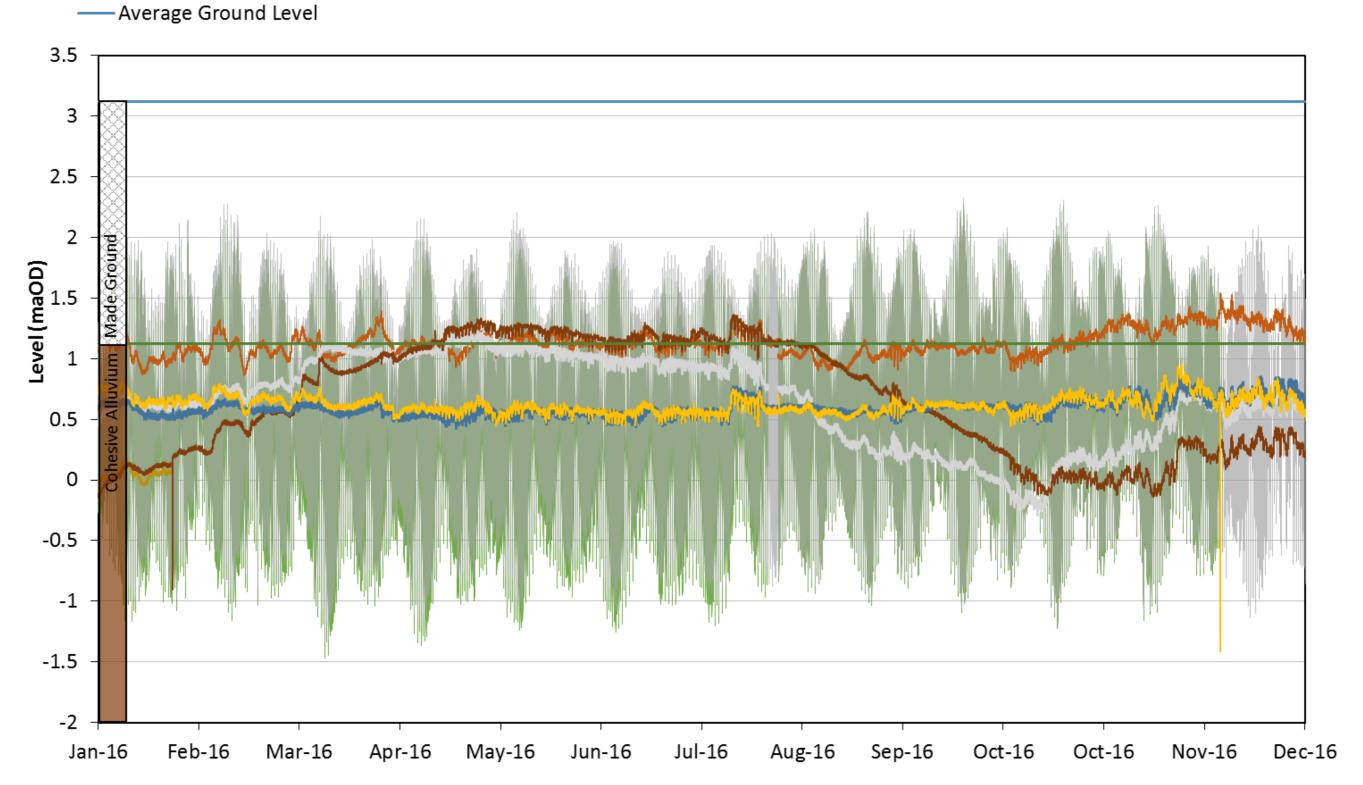
model is an artefact of the boundary conditions rather than real groundwater heads, the baseline model hydraulic gradient was verified using groundwater level monitoring data from the saline intrusion observation boreholes and GI boreholes on 28 February 2017. The zone of measurable drawdown does not extend beyond this verified area.

- 5.3.9 It is worth noting that as water levels decline in unsaturated aquifer units within the superficial deposits, the saturated aquifer thickness will decrease and therefore the transmissivity of these units will also reduce close to the excavation. The model assumes that excavation to maximum dredge level occurs instantaneously. In reality, the cutting will be excavated in three phases (see Table 11.4.14) and the superficial deposits will be dewatered gradually as the excavation is deepened. Inflow rates will reduce as the more permeable horizons become dewatered. Furthermore, the model does not include the impact of any ground stabilisation techniques such as jet grouting, which may locally reduce the permeability and further reduce inflows into the cutting.
- 5.3.10 The diaphragm wall has been modelled as a continuous impermeable wall extending to 5.5m below the top of the Chalk along the full length of the underpass cutting. In reality, the wall becomes increasingly shallow towards both ends of the underpass and therefore will not present as great a barrier to flow in the Chalk.
- 5.3.11 The hydraulic gradient in the granular alluvium present across the eastern part of the underpass footprint appears to be slightly towards the west, although it is also assumed that the hydraulic gradient also follows the northwest to southeast orientation of the alluvium channel feature. Therefore, the diaphragm wall at the eastern end of the underpass may act as a groundwater dam, causing heads to rise in this confined aquifer layer. However, the diaphragm wall only extends around 100m into the alluvial channel where the granular alluvium is found. It is therefore likely that groundwater will find an alternative pathway. Unfortunately, groundwater heads in the granular alluvium borehole closest to the River Hull could not be accurately represented in the groundwater model due to the influence of tidal effects, which varied within this horizon.
- 5.3.12 Bentonite grout would be used to stabilise excavations during the construction of the diaphragm walls for the underpass. Any bentonite losses during circulation have the potential to block fissures within Chalk, which could exacerbate flow barrier effects and potential groundwater mounding, although monitoring and mitigation of such losses would be closely managed on site.

Trinity Burial Ground excavation

5.3.13 Excavation of the burial ground may result in some local dewatering of the shallow superficial deposits (permeable units within the made ground and cohesive alluvium), but this will be minimised by the presence of sheet piles, which are primarily required for ground stability purposes. Hydrographs in Figure 11.4.32 suggests that horizons due to be excavated during the exhumation of human remains (represented by BH307 and BH309) are dry during winter months, with




groundwater levels rising to above the base of the excavation during spring and summer months (March to August). However, these are considered to represent relatively limited perched groundwater within the cohesive alluvium, as discussed in Section 2.6, and any groundwater inflows into the excavation are likely to be adequately controlled with local dewatering.

5.3.14 The monitoring horizon in BH301 is within deeper horizons of the cohesive alluvium (between -5 and -3m AOD), so although groundwater piezometric heads are consistently above the base of the excavation, the thickness of the overlying cohesive deposits is such that seepage into the excavation due to upwards leakage from this horizon is not likely to be measurable.

Figure 11.4.32: Groundwater levels at Trinity Burial Ground in comparison to excavation depth

Bridges

5.3.15 The two-dimensional model of the bridge tension piles showed very little impact on groundwater levels and flow in both the superficial deposits and Chalk, with groundwater readily flowing around the piles.

Pumping station rising main

- 5.3.16 The rising main is close to ground level, located in made ground and/or cohesive alluvium. Whilst the rising main may be bedded in a granular infill, stanks are proposed to prevent the pipe trench from acting as a conduit for preferential groundwater flow.
- 5.3.17 Dewatering requirements are likely to be minimal, as any groundwater present will belimited and perched within the cohesive alluvium present in this location..

Yorkshire Water sewer diversion

- 5.3.18 Sewer diversions are close to ground level, and located in made ground and/or cohesive alluvium. Whilst the sewers may be bedded in a granular infill, stanks are proposed to prevent the pipe trench from acting as a conduit for preferential groundwater flow.
- 5.3.19 One of the sewer diversion route options crosses the Trinity Burial Ground.

 Although it is considered unlikely that this route will be selected, as pipeline depths are lower than the agreed exhumation depths, shallow groundwater may be encountered.
- 5.3.20 Dewatering requirements are considered to be minimal, due to limited groundwater within shallow horizons. Consequently any impacts due to dewatering are likely to be localised, even at Trinity Burial Ground.

Site compounds

- 5.3.21 Whilst the construction of an impermeable surface on all site compounds will reduce direct infiltration to the underlying groundwater bodies, this is only likely to affect perched groundwater within the made ground and cohesive alluvium. However most site compound locations are currently covered by hardstanding, and as such are already largely impermeable. Furthermore, the more extensive groundwater bodies such as the granular alluvium, fluvio-glacial deposits, and ultimately the Chalk, are all confined by overlying low permeability superficial deposits and as such do not receive direct recharge.
- 5.3.22 The only site compound where there is the potential for recharge to aquifer units to be reduced is at Livingstone Road, where the fluvio-glacial deposits directly underlie up to 8m of cohesive alluvium, and the Chalk was found at much shallower depths of between 9 and 13mbgl. It is assumed that groundwater is contained within more granular horizons in the cohesive alluvium at this location

and leakage may occur through the superficial deposits (see Annex E Summary of geology and hydrogeology of site compounds).

Groundwater - groundwater quality

Underpass and other structures

- 5.3.23 Within the small, predicted zone of influence due to dewatering of the underpass "box", there may be local migration of contaminants (PAH, inorganics and some metals) or generation of suspended solids due to changes in hydraulic gradients. Similarly, other structures may locally affect the existing groundwater quality regime.
- 5.3.24 Groundwater in both the superficial deposits and the Chalk could potentially be impacted by the introduction of materials during, for example, the construction of the diaphragm walls (including the circulation of bentonite slurry during wall construction), jet grouting and installation of piles. Lime and lime cement may be used to bind the alluvium prior to excavation within the diaphragm wall box. As the materials will be in direct contact with groundwater within both the superficial deposits and the Chalk, they have the potential to affect the groundwater quality due to their material properties and disturbance of the ground, which may mobilise contaminants already present. There also is the potential for transfer of contamination during construction through use of piling and other machinery, and tools.
- 5.3.25 Pipelines carrying bentonite grout and jet grouting arisings may be buried in high risk locations, such as road crossings. Booster pumps (which have the potential to increase the risk of pipe bursts and accidental spillages) will also be required due to the distance between site and the bentonite and jet grouting plants at the Arco site compound. Without mitigation there is therefore a risk of groundwater contamination due to use of the pipelines.
- 5.3.26 All routine drainage will be collected and disposed of off-site and no soakaways or other means of discharging water to the ground are included in the preliminary design. Therefore, there is no requirement for a DMRB Volume 11 Section C assessment (i.e. assessment of pollution impacts from routine runoff to groundwater).
- 5.3.27 Other potential impacts on groundwater quality, for example spillages, can be mitigated through appropriate practices during construction.

Pumping station and rising main

5.3.28 The pumping station is to be situated adjacent to the existing large diameter Chalk borehole LDBH02. Without appropriate abandonment, the borehole has the potential to act as a preferential pathway for pollution migration between ground surface, the made ground and shallow superficial deposits, and the Chalk aquifer.

5.3.29 The rising main has the potential to act as a preferential pathway for migration of contaminants or suspended solids (from accidental spillages of construction materials), between ground surface and the made ground and shallow superficial deposits. However, groundwater within the cohesive alluvium is likely to be limited to localised sandy horizons and stanks within the granular fill will minimise the movement of any contaminants or suspended solids.

Yorkshire Water sewer diversion

5.3.30 The sewer diversion route has the potential to act as a preferential pathway for migration of contaminants (from accidental spillages of construction materials or raw sewage during construction), between ground surface and the made ground and shallow superficial deposits. However, groundwater within the cohesive alluvium is likely to be limited to localised sandy horizons and stanks within the granular fill will minimise the movement of any contaminants or suspended solids. If present below the sewer diversion route, the granular alluvium is considered to be protected by significant thicknesses of cohesive alluvium.

Site compounds

- 5.3.31 It is assumed that all site compounds will be covered by hardstanding and drainage will be collected and disposed of off-site. Therefore, the potential impact of construction activities on groundwater quality is likely to be very low.
- 5.3.32 There is the potential risk of mobilisation of suspended solids or existing contamination, or creation of preferential pathways during any pre-construction site preparations. These site preparations include the demolition of buildings at the Arco site (or the Staples site, if used). However it is unlikely that this would result in groundwater contamination as these sites are already covered by hard standing and contain site drainage.
- 5.3.33 There is a slightly increased risk of groundwater contamination during preconstruction site preparations at the Livingstone Road site, where the fluvio-glacial deposits aquifer directly underlies the cohesive alluvium.

Surface water

Underpass and other structures

- 5.3.34 All surface water bodies other than Railway Dock and a small section of Humber Dock lie outside the predicted zone of influence due to seepage into the underpass. Therefore, impacts due to dewatering on these receptors are considered to be negligible.
- 5.3.35 The dock walls are lined and so are likely to be largely isolated from groundwater except potentially through their bases (unless there is also significant seepage through the walls). Predicted drawdowns in the uppermost natural superficial deposits layer (cohesive alluvium) within the footprint of the docks were 0.05m at most. Whilst there is the potential for seepage into the underpass to impact very

slightly on groundwater heads adjacent to the Humber Dock, this would be far outweighed by the impact of Humber Dock losing water through the opening and closing of the locks and being regularly topped up with water from the Humber Estuary.

5.3.36 For the same reason, the predicted water quality impacts on surface water due to construction activities affecting the groundwater regime are also considered to be negligible.

Yorkshire Water Sewer Diversion

5.3.37 One of the sewer diversion route options runs alongside the northern edge of the Railway Dock. Any dewatering required for this route has the potential to result in dewatering of the docks, although the dock walls are lined and the dock is likely to be largely isolated from groundwater within the superficial deposits. Similarly, any spillages of construction materials are unlikely to migrate into the dock. Mitigation measures such as the use of sheet piling will still be required as a precautionary measure, however.

Site compounds

5.3.38 Fleet Drain, Albert Dock and the Humber Estuary are considered to be indirect groundwater receptors with respect to potential impacts from adjacent site compounds. However, the site compounds are to be covered with hardstanding and have positive drainage systems installed to redirect all recharge-runoff to sewers, the potential impact on surface water quality from routine runoff and accidental spillages would be extremely low. The potential impact in terms of loss of recharge is also considered to be low due to the low permeability nature of the existing ground cover and near-surface deposits.

Abstractions

- 5.3.39 No groundwater abstractions are located within the zone of influence, as shown in Figure 11.4.31. However, the Scheme does fall within the catchment areas (SPZ3) for the Hull Truck Theatre abstraction borehole to the north and four public water supply abstraction shaft and adit systems to the northeast. All abstractions are from the Chalk.
- 5.3.40 The groundwater model predicts that the potential impact on the Chalk due to the underpass excavation dewatering operation is negligible (less than 0.05 metres). Moreover, the Chalk is heavily confined by the overlying cohesive superficial deposits and therefore protected from any surface contamination. It is anticipated that suitable techniques will be adopted to ensure that the Chalk is not affected by mobilisation of contaminants or suspended solids during installation of the diaphragm walls and tension piles.

Environmentally sensitive sites

- 5.3.41 The Humber Estuary is the only environmentally sensitive site within the study area. As stated above, it lies outside the zone of influence of the underpass and therefore is unlikely to be affected by this or other construction activities affecting the groundwater regime.
- 5.3.42 Historically, springs discharged into the Humber, but these have largely dried up since abstraction dramatically increased in the early to mid-1900s. Although the groundwater model predicts a regional Chalk hydraulic gradient towards the estuary, and recent monitoring data suggests that the local Chalk hydraulic gradient is either slightly southward or northward depending on the state of the tide, freshwater inputs to the Humber are unlikely to be affected.

Structures and cultural heritage - groundwater levels

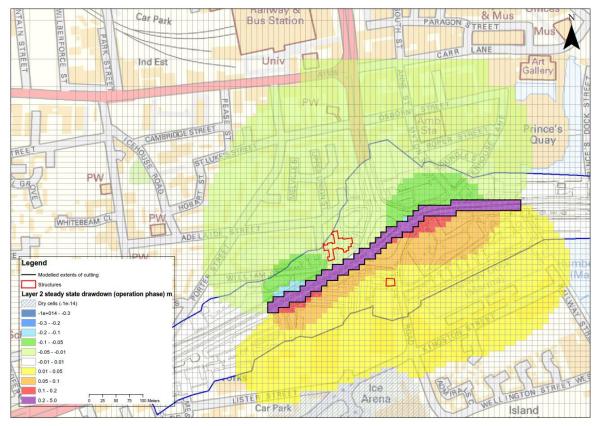
- 5.3.43 Ground conditions are such that any impact on groundwater levels in the cohesive alluvium that exceeds approximately 1m over and above natural variations, could result in a potential risk of settlement to structures, including infrastructure and archaeological remains.
- 5.3.44 Drawdown in the cohesive alluvium due to dewatering the underpass excavation is only predicted to exceed 1m within the Scheme site boundary, and within the diaphragm walls. Changes in groundwater levels within the cohesive alluvium underlying the nearest buildings (the Whittington and Cat public house south west of Mytongate and Booth House northwest of Mytongate) is predicted to be less than 0.05m.
- 5.3.45 It is therefore considered that potential changes in groundwater heads as a result of construction of the underpass are unlikely to cause significant settlement issues, particularly as groundwater monitoring undertaken during 2013 and 2014 indicates that the natural groundwater level variation in the cohesive alluvium in this area is in the order of 0.05m.
- 5.3.46 Groundwater flooding is also unlikely to be a significant issue as increases in groundwater level due to the underpass construction are minimal in comparison to the natural range in groundwater levels.

Structures and cultural heritage - groundwater quality

- 5.3.47 Adverse impacts can potentially arise because of contact between new materials and groundwater, effects on structure integrity and mobilisation of contaminants due to ground disturbance.
- 5.3.48 As discussed previously, within the zone of influence due to dewatering the underpass excavation, there may be local migration of contaminants (PAH, inorganics and some metals) due to changes in hydraulic gradient. Similarly, other structures may locally affect the existing groundwater quality regime.
- 5.3.49 Groundwater quality could potentially be impacted by the introduction of materials during, for example, the jet grouting and installation of piles, and by other site

activities such as excavations, compound site preparation works, and transferring materials between site compounds and the site via partially buried pipelines. However, these should not impact on structures outside the Scheme Site Boundary providing appropriate techniques and construction environmental management practices are adopted.

5.3.50 The zone of influence does not extend to the Humber Estuary and therefore the risk of additional saline intrusion occurring as a result of the Construction Phase of the Scheme is considered to be negligible.


5.4 Potential impacts during operation

Groundwater – groundwater levels and flows

- 5.4.1 The main quantitative predictions from the steady state groundwater model (which represents average groundwater levels) are:
 - No significant impact on cohesive deposits and Chalk groundwater levels or flow
 - Maximum drawdown of 4.8m inside the diaphragm walls in the central part of the Scheme (approximate road deck level)
 - Changes in groundwater levels (resulting in drawdown or mounding, depending on the tides) in the superficial deposits (cohesive alluvium) immediately outside the diaphragm walls of up to 0.13m
 - Groundwater inflow to the underpass (intercepted by the road drainage system) of 1.36m³/d
 - Changes in groundwater level (additional to natural variation) in the cohesive alluvium at the nearest structures of +/-0.04m (refer to Figure 11.4.33 below)
 - The two-dimensional model of the tension piles showed very little impact on groundwater levels and flow in both the superficial deposits and Chalk, with groundwater readily flowing around the piles
 - The zone of influence, which is taken as the area where changes in groundwater levels within the cohesive alluvium exceed 0.01m, is highlighted in Figure 11.4.33. This zone of influence is also considered appropriate for the Chalk. The modelled area where changes in Chalk groundwater levels exceed 0.01m is smaller, as presented in Volume 3, Appendix 11.7 Groundwater modelling update.

Figure 11.4.33: Modelled steady state drawdown in the cohesive alluvium for the operational scenario

- 5.4.2 The relationships between steady state and transient model results reflect those of the Construction Phase scenario.
- 5.4.3 As with the construction scenario, the pumping station and the Holiday Inn retaining wall are likely to cause similar impacts to those modelled for the underpass cutting for reasons and the bridge foundations are likely to cause a minimal impact on groundwater levels and flows.

Public open space creation

5.4.4 The creation of the public open space at the Myton Centre will increase the permeable area at this location, and subsequently increase the potential for direct infiltration to underlying groundwater bodies. This is only considered to be a small potential impact, however, due to the low permeability nature of near surface superficial deposits (made ground and cohesive alluvium) at this location.

Groundwater - groundwater quality

5.4.5 Within the small, predicted zone of influence due to dewatering within the underpass "box", there may be local migration of existing contaminants (PAH, inorganics and some metals) or suspended solids due to changes in hydraulic gradients.

Surface water

- 5.4.6 All surface water bodies other than Railway Dock lie outside the zone of influence due to road drainage within the underpass. Therefore, impacts on these receptors are considered to be negligible.
- 5.4.7 The dock walls are lined and so are likely to be largely isolated from groundwater except potentially through its base (unless there is also significant seepage through the walls). Predicted drawdowns in the uppermost natural superficial deposits layer (cohesive alluvium) within the footprint of the docks were 0.05m at most, so the potential impact on surface water levels is likely to be negligible.
- 5.4.8 For the same reason, the predicted water quality impacts on surface water due to activities affecting the groundwater regime are also considered to be negligible.

Abstractions

- 5.4.9 No groundwater abstractions are located within the zone of influence, as shown in Figure 11.4.33. As in the construction scenario, the groundwater model predicts that the potential impact on the Chalk, and therefore abstractions from the Chalk, due to drainage to the underpass "box" is negligible.
- 5.4.10 The Chalk is heavily confined by the overlying cohesive superficial deposits and therefore protected from any surface contamination. It is anticipated that suitable piling techniques will be adopted to ensure that the Chalk is not affected by mobilisation of contaminants or suspended solids during installation of the diaphragm walls and tension piles.

Environmentally sensitive sites

- 5.4.11 As discussed above, the Humber Estuary lies outside the zone of influence due to drainage to the underpass therefore is unlikely to be affected by this or other construction activities affecting the groundwater regime.
- 5.4.12 Historically, springs discharged into the Humber, but these have largely dried up since abstraction dramatically increased in the early to mid 1900s. Although the groundwater model predicts a regional Chalk hydraulic gradient towards the estuary, and recent monitoring data suggests that the local Chalk hydraulic gradient is either slightly southward or northward depending on the state of the tide, freshwater inputs to the Humber are unlikely to be affected.

Structures and cultural heritage – groundwater levels

- 5.4.13 Ground conditions are such that any impact on groundwater levels in the cohesive alluvium that exceed approximately 1m over and above natural variations, then there is a potential risk of settlement to structures, including infrastructure and archaeological remains.
- 5.4.14 Drawdown in the cohesive alluvium due to drainage to the underpass "box" is predicted to exceed 1m only in the immediate vicinity of the retaining walls.
 Changes in groundwater levels within the cohesive alluvium underlying the nearest

- buildings (the Whittington and Cat public house south west of Mytongate and Booth House northwest of Mytongate) is predicted to be no more than 0.04m.
- 5.4.15 Therefore, it is considered that potential changes in groundwater levels due to drainage to the underpass are unlikely to cause significant settlement issues, particularly as groundwater monitoring during 2013 and 2014 indicates that the natural groundwater level variation in the cohesive alluvium in this area has been in the order of 0.5m.
- 5.4.16 Groundwater flooding is also unlikely to be a significant issue as increases in groundwater level due to the underpass operation are minimal in comparison to the natural range in groundwater levels. During operation there may be slightly less infiltration to made ground due to an increase in hard standing around Mytongate Junction. Groundwater in made ground is perched and not laterally extensive. Therefore, indirect impact of infiltration reduction is considered to be negligible.

Structures and cultural heritage - groundwater quality

- 5.4.17 As discussed previously, within the zone of influence due to drainage to the underpass, there may be local migration of contaminants (PAH, inorganics and some metals) due to changes in hydraulic gradients. Similarly, other structures may locally affect the existing groundwater quality regime.
- 5.4.18 In view of the contaminants identified during the 2013 GI and the concentrations of these contaminants, impacts within the zone of influence are likely to be minimal in terms of the effects on quality due to direct contact between new materials and groundwater, and effects on structure integrity.
- 5.4.19 The zone of influence does not extend to the Humber Estuary and therefore the risk of additional saline intrusion occurring as a result of the Operational Phase of the Scheme is considered to be negligible.

6. Conclusions and recommendations

6.1 Conclusions

6.1.1 This report aims to:

- develop a baseline hydrogeological conceptual model of the A63 Castle Street Scheme based on the findings of previous studies and the 2013 an 2015/16 Gls, testing and subsequent monitoring
- outline the potential risks from groundwater during the construction and operation of the Scheme, to inform the detailed design mitigation measures
- assess the potential impacts of key structures associated with the construction and operation of the Scheme on groundwater receptors
- 6.1.2 The baseline conceptual hydrogeological model is largely based on information from the following sources:
 - 2013 GI and 2015/16 GI, which comprised exploratory boreholes, trial pits, window samples, self-boring pressuremeter tests (SBPT) and archaeological SCPTs. These were supplemented by geophysical surveys, permeability tests, a Chalk pumping test, and groundwater level and quality monitoring (manual dips and deployment of dataloggers). The GI was restricted to the Scheme Site Boundary.
 - Earlier reports relating to the Scheme
 - Publicly available information from the BGS and Environment Agency, and other publications
 - A nine-layer numerical groundwater model developed as part of this investigation using MODFLOW
 - Chalk groundwater level monitoring undertaken from observation boreholes around Hull and GI boreholes
- 6.1.3 Key aspects of the baseline conceptual model are as follows:
 - The geological sequence roughly comprises a series of aquifer and aquitards within the superficial deposits (20 - 30m thick), including made ground, cohesive alluvium, granular alluvium, glacial till, glaciolacustrine deposits and fluvio-glacial deposits. The fluvio-glacial deposits directly overlie Chalk bedrock.
 - In reality, the geological sequence is more complex than this. For example, the granular alluvium is only present across the eastern half of the Scheme, where a channel feature that cut through glacial deposits (the glacial till, glaciolacustrine and fluvio-glacial deposits) was subsequently infilled.

- The Chalk aquifer is confined and has a strong tidal influence reflected in groundwater levels which have varied by up to 4m over the monitoring period. here is evidence of significant heterogeneity within the Chalk in this area.
- Other than the made ground, the permeable superficial deposits are generally confined though there may be some localised unconfined units.
- Neither the Chalk nor the majority of the superficial deposits have exhibited an obvious response to short term recharge events or seasonal recharge during the monitoring period and are thought to be recharged indirectly.
- In general, the local hydraulic gradient in the Chalk is slightly to the north during high tide, and southwards during low tide.
- Monitoring across the Hull area and the groundwater model suggest that groundwater flow is generally to the south, towards the Humber Estuary, as verified by monitoring across Hull on 28 February 2017.
- Similarly, monitoring to date does not indicate a measurable hydraulic gradient in any of the superficial deposits, except in the granular alluvium across the eastern part of the Scheme. Here, the hydraulic gradient appears to have an east to west component, although it is assumed that there may also be a north-south component due to the orientation of the alluvial channel.
- Vertical hydraulic gradients depend on the state of the tide, with a slight downwards hydraulic gradient between the superficial deposits above the glaciolacustrine deposits and the fluvio-glacial deposits and Chalk at low tide and a reversal of this relationship at high tide. The data suggests that leakage between aquifer units is minimal except where the more impermeable superficial deposits thin towards the eastern end of the Scheme.
- Although the hydraulic connection between the Humber Estuary and the
 underlying Chalk is not well understood, and it is considered unlikely that
 watercourses receive any significant baseflow from the Chalk, it is possible
 that the Humber Estuary gains water from the Chalk aquifer under high
 groundwater level conditions. This relationship may be reversed under
 drought conditions, however.
- The wall of all three docks are lined and so are likely to be largely isolated from groundwater within the superficial deposits, except through their bases.
- The Chalk groundwater quality is representative of a confined aquifer with reducing conditions that has been subject to modern saline intrusion (due to historical over-abstraction) as well as a component of paleo saline groundwater.

- Water quality is the superficial deposits is also representative of generally (though not always) reducing conditions. There is evidence of mixing with saline water.
- 6.1.4 Potential impacts on groundwater receptors during construction and operation of the Scheme are summarised below:
 - Receptors have been divided into direct receptors (groundwater units) and indirect receptors potentially affected when groundwater is considered as a pathway.
 - Groundwater receptors include the Chalk aquifer and superficial deposits (although the latter is not classed as an aquifer by the Environment Agency).
 - Surface water receptors include the Humber Estuary, which is also an environmentally sensitive site, the River Hull, the Railway, Humber and Albert docks and Fleet Drain.
 - Other potential receptors include groundwater and surface abstractions, structures and cultural heritage (buildings and archaeological remains).
- 6.1.5 Potential Construction Phase impacts based on the findings of this investigation are considered to be as follows:
 - No significant impact on Chalk groundwater levels or flow.
 - Changes in groundwater levels (resulting in drawdown or mounding, depending on the tides) in the superficial deposits (cohesive alluvium) immediately outside of the diaphragm walls of less than 0.13m due to the underpass excavation. However, this is small in comparison to the natural range of water level variation and is therefore unlikely to result in groundwater flooding.
 - Groundwater inflow to the open excavation through the excavation retaining walls and base of less than 10m³/d.
 - Negligible impact on surface water receptors due to changes in groundwater levels, flow or water quality.
 - Potentially small impacts on groundwater receptors within the zone of influence of the underpass excavation due to changes in groundwater levels and quality, but these are unlikely to be of significance.
- 6.1.6 Potential Operational Phase impacts based on the findings of this investigation are considered to be as follows:
 - No significant impact on Chalk groundwater levels or flow.
 - Changes in groundwater levels (resulting in drawdown or mounding, depending on the tides) in the superficial deposits (cohesive alluvium)

immediately outside of the diaphragm walls of less than 0.13m due to the underpass. However, this is small in comparison to the natural range of water level variation and is therefore unlikely to result in groundwater flooding.

- Groundwater inflow to the underpass (intercepted by the road drainage system) of 1.36m³/d.
- Negligible impact on surface water receptors due to changes in groundwater levels, flow or water quality.
- Potentially small impacts on groundwater receptors within the zone of influence of the underpass excavation due to changes in groundwater levels and quality, but these are unlikely to be of significance.

6.2 Recommendations

- 6.2.1 A groundwater monitoring and sampling plan must be agreed with the Environment Agency and implemented throughout the construction period. Regular dialogue between the contactor and regulatory bodies will be required during this process. It is also recommended that baseline groundwater monitoring prior to construction continues, to capture seasonal changes.
- 6.2.2 The construction and operation phase monitoring and sampling plan should form part of the Groundwater Management, Dewatering and Discharge Control Plan, outlined in the Outline Environmental Management Plan (PINS reference TR010016/APP/7.3).

7. Annexes

Annex A: MMG JV (2014) A63 Castle Street Improvements, Hull – Ground Investigation Report (GIR)

Ground Investigation Report

A63 Castle Street Improvement, Hull

1168-09-152-RE-001

An executive agency of the Department for transport

Ground Investigation Report

A63 Castle Street Improvement, Hull

1168-09-152-RE-001

Revision Record					
Revision No	Date	Originator	Checker	Approver	Description
PD1	10.03.14	AHR / RP	MD		Ground Investigation Report
PD2	19.09.14	AHR / RP	MD		Addition of omitted sections from PD1
PD3	29.09.14	AHR / RP	MD		Final

This document has been prepared on behalf of the Highways Agency by Mott MacDonald Grontmij JV for the Highways Agency's Project Support Framework (PSF) (Consultancy) 2011-2015. It is issued for the party which commissioned it and for specific purposes connected with the above-captioned project only. It should not be relied upon by any other party or used for any other purpose.

Mott MacDonald Grontmij JV accepts no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from Mott MacDonald Grontmij JV and from the party which commissioned it.

Prepared for:

Highways Agency Piccadilly Gate, Store Street, Manchester, M1 2WD

Prepared by:

Mott MacDonald Grontmij Grove House, Mansion Gate Drive, Leeds, LS7 4DN

T: 0113 2620000

Con	ntents	Page
1	Executive Summary	3
2	Introduction	4
2.1	Scope and Objective of the Report	4
2.2	Description of the Project	4
2.3	Geotechnical Categorisation	5
3	Existing Information	7
3.1	Topographical Maps	7
3.2	Geological Maps and Memoirs	9
Geol	logical Summary	9
Mad	e Ground	9
Supe	erficial Deposits	9
Solic	d Geology	9
3.3	Aerial Photographs	9
3.4	Records of Mines and Mineral Deposits	10
3.5	Land Use and Soil Survey Information	10
3.6	Archaeological and Historical Investigations	10
3.7	Existing Ground Investigation	10
3.8	Consultation with Statutory Bodies and Agencies	10
3.9	Flood Records	11
3.10	Contaminated Land	11
3.11	Other Relevant Information	12
4	Field and Laboratory Studies	13
4.1	Walkover Survey	13
4.2	Geomorphologic and Geological Mapping	13
4.3	Ground Investigation	13
4.4	Drainage Studies	15
4.5	Geophysical Surveys	15
4.6	Pile Tests	16
4.7	Other Fieldwork	16

4.8	Laboratory Investigation	18
5	Ground Summary	20
5.1	Topography and Land Use	20
5.2	Geology	20
Supe	erficial Deposits	20
Solic	d Geology	21
5.3	Hydrology	23
5.4	Hydrogeology	23
5.5	Geomorphology	25
5.6	Man-made features	25
5.7	Historical Development	25
5.8	Obstructions	25
6	Ground Conditions	26
6.1	Topsoil	26
6.2	Made Ground	
6.3	Superficial and Solid	28
6.4	Groundwater Chemistry	
7	Geotechnical Risk Register	42
7.1 F	Risk Rating	42
	Geotechnical Risks	
8	References	53

FIGURES

DRAWINGS

APPENDICES

APPENDIX A – Historical Maps

APPENDIX B – Groundwater Strikes

1 Executive Summary

The proposed A63 Castle Street Improvement Scheme (*the scheme*) aims to improve access to the Port of Hull, relieve congestion and improve safety. At the time of writing this is to be achieved by constructing a reduced level grade separated junction (GSJ) at or about the location of the existing Mytongate junction. The scheme also seeks to reduce the severance caused by the A63 between the city centre to the north and developments, tourist and recreational facilities to the south.

The scheme is located over varied ground conditions including made ground, saturated, compressible weak alluvium and granular and cohesive glacial deposits. Bedrock in the region is chalk and is a principal aquifer with sub artesian groundwater pressures.

To manage the ground risk a detailed site investigation was undertaken in 2013 that complimented historical investigations and targeted the GSJ cutting with conventional and more specialist ground investigation techniques alike. The 2013 site investigation also included archaeological, hydrogeological and land contamination investigations all of which have helped to improve the understanding of the ground conditions throughout the scheme. The site investigation confirmed the variable and challenging nature of the ground conditions.

A major constraint to the scheme is Trinity Burial Ground to the south east of the existing Mytongate Junction. Site investigation in this location was placed into abeyance due to access and permission constraints. This area has been recorded on the exploratory hole location plans and will need to be investigated by a confirmatory investigation exercise during detailed design.

2 Introduction

The existing A63 highway at Castle Street is located 0.25km to the south of Hull city centre. The existing highway is a dual carriageway running east to west with a traffic signal controlled junction, known as Mytongate Junction, accommodating traffic movements from the north and south. The existing A63 highway provides a strategically important route linking the M62 motorway, the Humber Bridge and A15 to the west, with the city centre and the Port of Hull to the east.

The proposed Castle Street Improvement Scheme (*the scheme*) aims to improve access to the Port of Hull, relieve congestion and improve safety. In addition, the scheme seeks to reduce the severance caused by the A63 between the city centre to the north and developments, tourist and recreational facilities to the south.

The proposed scheme involves improvements to approximately 1.5km stretch of the A63. The improvements are to be implemented by lowering the level of the A63 dual carriageway into a cutting by approximately 7 m at Mytongate Junction. Ferensway to the north and Commercial Road to the south are proposed to pass over the A63 on a central bridge increasing levels nominally to create a grade separated junction. In addition to the grade separated junction and central bridge, two footbridges are proposed to improve pedestrian access over the A63.

The scheme is currently in the Preliminary Design Stage (or Stage 3) of the Highways Agency Project Control Framework (PCF). The Mott Macdonald Grontmij Joint Venture (MMGJV) is working directly for the Highways Agency to take the A63 Improvement Scheme to Development Consent Order (DCO) submission.

In 2013, a detailed and targeted ground investigation was undertaken by Geotechnics Limited (Ground Investigation, A63 Castle Street Improvement, Hull, Reference PC135220, October 13) to both supplement and expand upon the existing historical ground investigation information. The 2013 ground investigation utilised a variety of investigation techniques focusing on the area of the proposed cutting where the majority of the exploratory holes were undertaken. Where the alignment was to remain at or about grade there was a reduced frequency of exploratory holes were undertaken.

Drawing 1168-09-01-DR-001-PD9 depicts the exploratory hole locations where ground investigation was undertaken during the 2013 ground investigation.

2.1 Scope and Objective of the Report

The aim of this Ground Investigation Report (GIR) is to present an account of the ground investigation works that have been undertaken for the A63 Castle Street Improvement Scheme and to prepare a review of the ground and groundwater conditions, geo-environmental limitations, constraints and ground hazards and risks determined from the investigations undertaken by MMGJV.

A detailed interpretation of the ground conditions, together with material properties is presented in the following sections.

An updated geotechnical risk register corresponding to this stage of the scheme is presented within Section 7

This report has been prepared in general accordance with the reporting requirements of BS EN 1997-2:2007 'Eurocode 7. Geotechnical Design. Ground Investigation and Testing', in conjunction with HD 22/08 'Managing Geotechnical Risk' (DMRB, 2008). It should be noted that the historical investigation data (where considered) is reported to BS5930:1999.

2.2 Description of the Project

The section of the existing A63 to be improved by the scheme runs from the former junction with Porter Street in the west to just beyond the Market Place Junction in east with the signalised Mytongate Junction located in the approximate centre. The existing dual carriageway and the side roads that join at the

Project Support Framework (Consultancy) 2011 – 2016 Ground Investigation Report A63 Castle Street Improvement, Hull

Mytongate Junction are generally at grade and constructed at existing ground level, which ranges from approximately 3.0m to 4.5m above ordnance datum (OD).

The proposed mainline does not deviate from the existing vertical alignment until Chainage 280 where the highway reduces in level into a cutting reaching the minimum road level of 7m below ground level (bgl) or - 5m OD at around Chainage 505 before rising to existing ground level by Chainage 730.

The proposed horizontal alignment of the mainline deviates from the existing alignment between Chainage 350 and Chainage 1050. Between Chainage 350 and 1050the proposed alignment is located to the south of the existing alignment, and encroaches on to the land that currently forms the Trinity Burial Ground. It is proposed to clear this section of the burial ground prior to the commencement of construction works.

There are four proposed slip roads, the eastbound diverge, the eastbound merge, the westbound diverge and the westbound merge. All slip roads excluding the westbound diverge are generally at grade with minor increases in height up to a maximum level difference of a metre. The westbound diverge reduces in level by a maximum depth of 3m or 0m OD, the diverge then increases in level by up to 1m in the area of the proposed over bridge.

A central over bridge is proposed to link Ferensway and Commercial Road and provide access to and from the four slip roads. The level of the over bridge is proposed to be approximately 1m above existing ground level and crosses the proposed A63 at Chainage 500.

Two footbridges are proposed to provide pedestrian access across the highway; the first is proposed at Chainage 50 and will take the form of a standard footbridge with pedestrian access ramps, the second is proposed between Chainage 800 to 850. The form of the second footbridge has not yet been finalised but it is likely to take the form of an 'enhanced' crossing with helical access ramps.

The proposed westbound carriageway and associated footpath encroaches on land that was formerly a dock between Chainage 770 and Chainage 910, in these area alterations to the wall forming the historical dock boundary will be required.

2.3 Geotechnical Categorisation

BS EN 1997-1:2004 describes the three Geotechnical Categories that can be introduced to establish geotechnical design requirements. The Geotechnical Category is an assessment of the ground conditions and nature of proposed construction. A description of these categories is presented below;

- Geotechnical Category 1 Applies to small and relatively simple structures where there is negligible
 risk. The procedures should be used only where there is negligible risk in terms of the overall
 stability or ground movements, and where the ground conditions are considered to be relatively
 straightforward.
- Geotechnical Category 2 Applies to conventional types of structures and foundation where there is
 no exceptional risk or difficult soil or loading conditions such as; piled foundations, retaining walls,
 earthworks, embankments and bridge piers and abutments.
- Geotechnical Category 3 Applies to structures or parts of structures, which fall outside the limits of Geotechnical Categories 1 and 2. This would include very large or unusual structures and structures involving abnormal risks, unusual or exceptionally difficult ground conditions or abnormal loading conditions.

Geotechnical Category 3 is generally considered to be the most appropriate approach for geotechnical design for the A63 Castle Street Improvement Scheme.

The principal reason for the Category 3 categorisation is due to the complexity of the proposed scheme.

Project Support Framework (Consultancy) 2011 – 2016 Ground Investigation Report A63 Castle Street Improvement, Hull

2.4 Other Relevant Information

Not Used.

3 Existing Information

The proposed scheme has been under consideration for many years, as such, numerous reports and surveys of the area have been undertaken to assist in the determination of the most suitable option. This section, 'Existing Information' summarises all relevant geotechnical information known about the scheme prior to the commencement of the 2013 ground investigation.

In 1994 Allied Engineering & Geotechnics carried out a site investigation along the A63 Castle Street. The associated Ground Investigation Report for this project was published in 1995 by Acer (Acer, 1995).

A summary of the existing information relevant to the proposed improvements is presented in the Preliminary Sources Study Report (PSSR) produced by Pell Frischmann (PF, 2009a). The report details (but is not limited to) topography and site history, geology, mineral extraction, aerial photography, ground conditions, contaminated land, seismicity, hydrogeology, hydrology, flooding, land use and archaeology. Details of the programme of statutory consultations that were undertaken are presented in the PSSR.

An Envirocheck Report was obtained in January 2013. This report confirmed that the information summarised in the PSSR detailed above was still current.

In 2013, MMGJV produced an Annex A to Preliminary Sources Study – 27282 to provide advice on the likely requirements of any subsequent ground investigation.

The main reports that were reviewed during the preparation of this report together with other relevant supporting information are listed in Section 8 of this report. No warranty is given or implied with regard to the accuracy of reports referenced within Section 8.

3.1 Topographical Maps

Historical and recent topographical maps for the area of the proposed scheme, are available from two Envirocheck reports (2002 and 2013), and a Ground Sure report (2008). The PSSR (PF, 2009a) provides a detailed commentary on the findings from these maps, together with information depicted on Ordnance Survey Maps. Salient changes or features that are likely to affect the scheme are summarised within Table 3.1. The associated historical maps are presented in Appendix A.

Full details of the information relating to the topographical maps are contained within the PSSR (PF, 2009a).

Table 3.1 – Historical Mapping Review

Date	Scale	Feature / Chainages
1856	1:10,000 & 1:2,500	Castle Street is marked on the map but covers a smaller area than present. The existing eastern end of Castle Street is named Mytongate with Castle Street originating at Humber Docks. Castle Street subsequently proceeds westwards approximately along the current line of the A63 to Waterhouse Lane, where it terminates and becomes Myton Place. This lies in the vicinity of the intersection of the A63, Ferensway and Commercial Road. Prince's Dock and Humber Dock are present; there is a lock (with gates) linking the two docks. Castle Street crosses the lock via a lift bridge named Mytongate Bridge. Residential housing is present on both sides of Mytongate and to the north of Castle Street and Myton Place. To the southeast of Myton Place, there are four timber yards surrounding the Trinity Burial Ground. Dense residential housing with associated roads (e.g. Nile Street and Great Passage) is present to the east of Myton Place but the alignment of the streets is significantly different from current alignments. A chapel and gardens are present in the vicinity of what is now the Mytongate Junction.

Date	Scale	Feature / Chainages
1891-1893	1:10,000 & 1:2,500	There has been little change over the majority of the scheme area. The Trinity Burial Ground is now marked as disused. Tramways are indicated crossing the alignment at Market Place, Prince's Dock Street/Humber Dock Street, Railway Street and Porter Street. A brewery/malthouse and several abattoirs are indicated at the western end of the alignment. The Albert Dock has been constructed to the south of the site, as well as two stations. More railway sidings have also appeared and a Cattle Market is present immediately west of Railway Dock and south of the current A63 alignment.
1910-1911	1:10,000 & 1:2,500	No significant changes have occurred throughout the majority of the scheme area. Mytongate Bridge is now marked 'swing bridge' and the residential area in the vicinity of Nile Street and Great Passage Street (now the Mytongate Junction) has been redeveloped.
1926-1938	1:10,000 & 1:2,500	No significant changes.
1948-1949	1:10,000 1:2,500 & 1:1,250	The area previously marked Humber Works is now shared with Humber Lead Works. The redeveloped area between Nile Street and Great Passage Street is shown to contain a dairy and metal works as well as a number of dwellings. Many of the buildings at the western end of the alignment and to the north and south of this area are no longer indicated - some buildings are indicated to be ruined and are possibly an indication of the affects of World War II bombing. The tramways on Porter Street and Market Place are no longer indicated.
1952-1959	1:10,000 1:2,500 & 1:1,250	No significant changes.
1968-1972	1:10,000 1:2,500 & 1:1,250	The Brewery/Malthouse and the remainder of the residential buildings on the western end of the alignment are no longer indicated. A food processing factory is now depicted in place of the Malthouse.
1975-1979	1:10,000 1:2,500 & 1:1,250	Porter Street is in shown to be closed off and the A63 'Hessle Road' has been constructed after the demolition of the remaining buildings along the western end of the alignment including the food processing factory. Myton Place has been demolished and Castle Street, which has been widened to dual carriageway, now extends further west with a new roundabout present at the junction (Mytongate Junction) of Hessle Road, Castle Street, Commercial Road and a third unnamed street to the north that links to Osborne Street. Prince's Dock is now marked as disused and Humber Dock as a marina. William Booth House is indicated adjacent to the new roundabout. Castle Street, between the two docks, has been widened towards the south and covers the area previously occupied by two warehouses.
1983-1987	1:10,000 & 1:1,250	The revetment wall at the northern end of the Humber dock is now indicated. The Docks are now marked as disused. As well as the interchange at Commercial Road, the A63/Queen Street Junction is shown. To the east of the site Myton Swing Bridge is now present.
1988-1989	1:1250	The warehouse at the north-western corner of the Humber Dock has now been demolished and replaced with a hotel. An electrical sub-station is indicated between the hotel and Trinity Burial Ground adjacent to the A63 road. The A63 carriageway now passes through Mytongate Junction as a through-about.
1991-1996	1:10,000 1:2,500 & 1:1,250	No significant changes have occurred along the alignment of the A63. The 1991 section of the map shows the presence of the shopping centre car park at the southern end of Prince's Dock. Prince's Quay Shopping Centre is indicated on the 1992 section of the map.

Information within Table 3.1 obtained from PSSR (PF 2009a)

3.2 Geological Maps and Memoirs

Map and Memoir Coverage

The references for the geological maps relevant to the scheme are shown in Table 3.2.

Table 3.2 - British Geological Mapping Sources

Scale	Sheet No.	Coverage	Published
1:50,000	80	Kingston upon Hull (Solid and Drift)	1983, British Geological Survey
1:10,560	TA02NE	West of the scheme (Solid/Bedrock and Drift/Superficial deposits)	1971, British Geological Survey
1:10,560	TA12NW	East of the scheme (Solid/Bedrock and Drift/Superficial deposits)	1986, British Geological Survey

The following Geological Memoirs are relevant to the area:-

 Geology of the Country around Kingston upon Hull and Brigg, Memoir for 1:50,000 geological sheets 80 and 89. HMSO 1992

Geological Summary

Reference to the available geological maps and historical information indicate that deposits below the site comprise the following:

Made Ground

Made ground is present across the site is likely to be present in many different forms associated with the previous industrial uses, historical structures, the docks and the burial ground.

Superficial Deposits

The made ground is underlain by superficial deposits of the Quaternary Period. The site area is underlain by a series of estuarine alluvial deposits (including peat); which are further underlain by glacial deposits.

Solid Geology

The solid geology below the site comprises Upper Cretaceous bedrock of the Burnham Chalk Formation. This unit is typically in the region of 100m to 150m thick and is predominantly thinly bedded and characterised by continuous tabular and lenticular flints.

3.3 Aerial Photographs

Historical aerial photography was consulted by BACTEC as part of their explosive ordnance threat assessment (BACTEC, 2008). The information contained within the BACTEC report was revisited by EOD Contracts Limited in 2013 prior to the commencement of the ground investigation.

It is not intended to provide a commentary of all of the features and changes evident on the available photographs within this GIR, as this has already been undertaken by Pell Frischmann and is contained within the PSSR and the EAR (PF, 2010).

3.4 Records of Mines and Mineral Deposits

The PSSR (PF, 2009a) states that the site is not affected by any underground coal mining, the Envirocheck reports, 2002 & 2013 indicate the risk due to mining subsidence to be very low. Furthermore the geological memoir indicates that quarrying has taken place within the Cretaceous Chalk; however, this is quarrying is likely to have been undertaken in areas of higher ground where the thickness of superficial deposits is reduced. There are no active or former quarries that have been identified within the vicinity of the scheme.

3.5 Land Use and Soil Survey Information

The scheme area lies within an urban environment so soil survey information was not deemed to be required.

3.6 Archaeological and Historical Investigations

An Archaeological Deposits Model will be available for the scheme areas, at the time of compilation the Deposits Model has not been finalised, (reference to follow).

3.7 Existing Ground Investigation

Intrusive Ground Investigations

The following sources of ground investigation data were obtained for the scheme prior to undertaking the 2013 ground investigation:

- Factual Site Investigation Report Allied Exploration and Geotechnical Ltd (AEG), 1994
- Geotechnical Interpretive Report Acer Consultants, 1995
- Online geological maps provided by the British Geological Survey

The following historical exploratory holes relevant to the scheme are summarised in Tables 3.3 and 3.4. Exploratory holes in 'bold' text are located within the boundaries of the proposed road layout. All other exploratory holes are located outside of the boundary of the current proposed scheme.

Table 3.3 - Exploratory holes from 1994 AEG Ground Investigation

Туре	Exploratory hole number
Borehole	BH-01, BH-02, BH-03 , BH-04, BH-05, BH-06 , BH-07 , BH-08, BH-09 , BH-10 , BH-11, BH-12 , BH-13 , BH-14 , BH-15 , BH-16, BH-17, BH-18 , BH-19, BH-20 , BH-21, BH-21A, BH-22 , BH-23, BH-24, BH-25, BH-26, BH-27, BH-28, BH-29, BH-30, BH-31
Trial Pit	TP-01, TP-02 , TP-02A , TP-03 , TP-04, TP-04A, TP-04A, TP-05, TP-06, TP-07, TP-08, TT-01

Table 3.4 - BGS historical borehole records

Туре	Exploratory hole number
Borehole	TA02NE73, TA02NE109, TA02NE527, TA02NE528, TA02NE529 , TA02NE530 , TA02NE531, TA02NE532, TA02NE534 , TA02NE535 , TA12NW638, TA02NE700, TA02NE702, TA02NE813, TA02NE814, TA02NE815 , TA02NE816 , TA02NE841, TA02NE862, TA02NE865
Trial Pit	TA2NE866 , TA02NE869, TA02NE870

3.8 Consultation with Statutory Bodies and Agencies

Throughout the assessment process the Highways Agency (HA) has been committed to an ongoing engagement with the stakeholders and statutory consultees.

Statutory and non-statutory bodies that have been consulted as part of the Environmental Assessment include:

- The Health and Safety Executive
- Hull County Council (HCC)
- Humber Archaeology Partnership (HAP)
- English Heritage
- Natural England
- Environment Agency (EA)
- The Marine Management Organisation
- British Waterways
- Various Health Bodies
- Various Transportation Bodies
- The Crown Estate
- Utility services and regulation bodies
- The relevant emergency service providers

A summary of the consultation undertaken to date is discussed within the EAR (2010).

3.9 Flood Records

Following the advice of the Environment Agency a flood risk assessment was undertaken by Pell Frischmann in 2007. The findings of the Flood Risk Assessment (FRA) are discussed within the Pell Frischmann Flood Risk Assessment Report (ref. W11189/VDH/03). The FRA confirmed that the proposed scheme lies within a Flood Zone 3a of the indicative flood plain.

Further discussions with the Environment Agency, undertaken during Stage 3 of the PCF, indicated that the FRA undertaken in 2007 is out of date and is therefore in need of revision.

It was confirmed in the EAR – Options Selection that the FRA was under revision in conjunction with the current environmental assessment.

3.10 Contaminated Land

A summary of the existing information relevant to the proposed improvements is presented in the Preliminary Sources Study Report (PSSR) produced by Pell Frischmann (PF, 2009a).

A number of potential sources of contaminated land have been identified in and around the Project area. These are detailed in the PSSR (PF, 2009a) and are summarised here.

- Historic potentially contaminating activities within the Project area including: former warehousing; docks; timber yards; saw mill; metal works; the Humber works (brass and copper); Humber lead works; pig market; railway lines; and the disused Trinity Burial Ground.
- Historic potentially contaminating activities within the surrounding area including: docks, dock infrastructure and warehousing, various industrial uses (e.g. chemical works, paint works, oil works), timber yards on Waterhouse Street and various works (e.g. engineering, leather, rubber and warehousing).
- Domestic waste reported within trial pits excavated as part of the previous investigations and located in the vicinity of Commercial Road roundabout.
- Localised strong hydrocarbon odours and black discolouration of soils reported during the previous investigation, immediate north east of the burial ground.

3.11 Other Relevant Information

Hydrology and Hydrogeology

A description of the hydrology and hydrogeology of the area are detailed in the PSSR (PF, 2009a), the EAR (PF, 2010), and the Technical Appraisal Report (HA, 2008). Groundwater monitoring was undertaken during the scheme's previous site investigation (Acer, 1995 and AEG, 1994). The findings have been summarised as follows:

- The nearest surface watercourses are the Humber Estuary, located to the south of the site, and the River Hull which is located to the east of the scheme. Both rivers have flows which are subject to tidal influence.
- There are no surface water abstractions within the scheme area.
- The drift within the scheme has low permeability and negligible significance for water supply or river base flow. The underlying chalk was identified as a Principal Aquifer.
- The scheme area is not situated within a Groundwater Protection Zone. There are four groundwater abstractions for commercial use within 1km of A63 Castle Street, three of which lie within the scheme area (i.e. within 500m).
- The Environment Agency's River Basin Management Plan (RBMP) for the Humber River Basin
 District identifies the presence of groundwater beneath the site. A significant proportion of drinking
 water comes from the groundwaters of the chalk and sandstone in this District. Data maps from the
 RBMP indicate that the quantitative and chemical status of the groundwater underlying the site and
 surrounding area is poor.
- Groundwater monitoring from the previous site investigation indicated that groundwater levels vary significantly (from 0.2 m to 13.8 m bgl) throughout the scheme area.

Unexploded Ordnance

An assessment of the risk posed from the presence of unexploded ordnance (UXO) was undertaken; a summary of the details from the BACTEC report are presented in the PSSR (2009).

In summary the report considers that there is a risk from unexploded ordnance on the site which applies to both an intrusive ground investigation and also construction work. It indicates that the areas to the west and east of the site are of medium risk, and the remainder is low risk. These levels of risk are based on an evaluation of "the probability of occurrence, the risk of detonation, and the consequences".

4 Field and Laboratory Studies

4.1 Walkover Survey

Prior to the commencement of the site investigation work several site walkover surveys were undertaken. During the walkover survey the engineers recorded details of any features of note within the scheme area. The walkover survey enabled the positioning of proposed exploratory holes in locations that were both practical in terms of access and in close proximity to the proposed scheme.

4.2 Geomorphologic and Geological Mapping

The scheme area lies within an urban environment; as such a geomorphological and geological mapping exercise was not undertaken.

4.3 Ground Investigation

4.3.1 Description of Fieldwork

The 2013 ground investigation was designed specifically to confirm and expand the geotechnical, and hydrogeological findings outlined within the Preliminary Sources Desk Study and the 1994 Ground Investigations. In addition, the investigation also obtained samples to assess the presence of contamination and provided chemical testing results to assist in determining material reuse and disposal requirements.

Table 4.1 – Rational for Scope of Investigation

Cita Investigation Flowers	Investigation Technique Hillerd	Detionals
Site Investigation Element Central Area (underground element)	Investigation Technique Utilised Cable percussive boring Rotary Coring Trial Pitting Insitu testing Permeability testing Monitoring Laboratory testing	Assess buildability of the underground option To improve understanding of ground conditions and related risks To improve understanding of groundwater related risks To locate anomalies/obstruction To determine likely disposal requirement of excavated material
Investigation for Footbridges		Determination of foundation type. To size foundations
Pressuremeter Testing	Self Boring Pressuremeter to assess large/small strain at depth (>15/20m bgl)	To provide information on large/small strain stiffness's within the deeper cohesive deposits. Data for finite element modelling and analysis.
Investigation in West of Mytongate	 Exploratory Holes Insitu Testing Monitoring Laboratory Testing 	To provide information on the ground and groundwater conditions present in the wider area of the scheme.

Site Investigation Element	Investigation Technique Utilised	Rationale
Investigation East of Mytongate	Exploratory Holes Insitu Testing Monitoring Laboratory Testing	To provide information on the ground and groundwater conditions present in the wider area of the scheme.
Archaeological element of the Investigation	Exploratory Holes Sampling	To locate archaeological earthworks in the area of the dock thought to be associated with the old city walls To inform archaeological deposits model.
Investigation of the dock	Exploratory Holes Insitu Testing Monitoring Laboratory Testing	To determine the infill properties of the material behind dock walls.
Contamination sampling and testing	Laboratory Contamination Testing	To provide information for disposal of material To assess implications for Human Health during and post construction To determine presence of contaminants within groundwater
Pumping Test	Pump Test Hole Monitoring	 To improve understanding of potential impacts during construction and operation phases. To determine likely discharge rates during construction dewatering. To determine potential groundwater contaminant migration during construction dewatering and potential discharge water quality issues.

Exploratory holes relevant to the scheme are summarised in Tables 4.2. Exploratory holes in **bold** are located within the boundaries of the proposed road layout. All other exploratory holes are outside of these boundaries.

Table 4.3 summarises the overall number of holes undertaken for the scheme to date.

Table 4.2 - Exploratory holes from 2013 Ground Investigation

Туре	Exploratory hole number
Borehole	BH01, BH02, BH03, BH04, BH05, BH06, BH07, BH08, BH09, BH10, BH11, BH12, BH13, BH14, BH15, BH16, BH16A, BH17, BH18A, BH18A, BH19, BH19A, BH20, BH21, BH21A, BH22, BH23, BH24, BH25, BH26, BH27, BH28, BH29, BH30, BH30A, BH32, BH33, BH34, BH35, BH36, BH37, BH38, BH39, BH40, BH40A, BH41, BH41A, BH42, BH43, BH44, BH45, BH46, BH47
Static cone penetration test (SCPT)	SCPT01, SCPT02, SCPT03, SCPT04, SCPT05, SCPT06, SCPT07, SCPT08, SCPT09, SCPT10, SCPT11, SCPT12, SCPT13, SCPT14/1, SCPT14/2, SCPT15, SCPT16, SCPT17, SCPT18/1, SCPT18/2, SCPT19, SCPT20, SCPT21, SCPT22, SCPT23, SCPT24A, SCPT24B, SCPT24C, SCPT25, SCPT26, SCPT27, SCPT28, SCPT29, SCPT30, SCPT31, SCPT32, SCPT33, SCPT34, SCPT35

Туре	Exploratory hole number
Window sample	WS01, WS02, WS03, WS04, WS05, WS06, WS07, WS08, WS09, WS10, WS10A, WS11, WS12, WS12A, WS13, WS14, WS16, WS17, WS18, WS19, WS20, WS21, WS22, WS23, WS24, WS25, WS26
Trial pit	TP04 , TP05 , TP05A , TP11 , TP13, TP14 , TP16, TP18, TP18A
Self-boring Pressuremeter test (SBPT)	SBP01, SBP02, SBP03, SBP04
Archaeological SCPTs	A01, A02, A03, A04, A04A, A05, A06, A06A, A07, A08, A09, A09A, A10, A10A

Table 4.3 - Summary of total number of hole undertaken for the scheme.

Type of exploratory hole	Historical	BGS	2013
Borehole	32	20	53
Trial pit	12	3	9
Static cone penetration test	-	-	39
Window sample	-	-	26
Self-boring Pressuremeter test (SBPT)	-	-	4
Archaeological SCPTs	-	-	14

For details of the investigations, including logs, in situ and laboratory testing results, monitoring data etc please refer to the relevant factual ground investigation reports. A detailed summary of all groundwater monitoring is provided in the Groundwater Report (1168-10-223-RE-001-PD1).

4.3.2 Ground Investigation Report

Refer to Geotechnics Limited's report on Ground Investigation, A63 Castle Street Improvement (October 2013) for all factual information.

4.3.3 Results of In situ tests

Refer to Geotechnics Ground Investigation, A63 Castle Street Improvement (October 2013) for details of the insitu testing undertaken for the scheme. In addition a summary of permeability test results is provided in the Groundwater Report (1168-10-223-RE-001-PD1).

4.4 Drainage Studies

Not Used.

4.5 Geophysical Surveys

Whilst downhole geophysical testing was not undertaken within the bored / cored boreholes, the following geophysical techniques were utilised whilst undertaking the Static Cone Penetration Testing (SCPT) as part of the methods used to form the parametric analysis:

- Seismic Cone Penetration Tests.
- Magnetometer Cone Testing (for UXO clearance).

4.6 Pile Tests

No pile tests were carried during the site investigation phase of the work.

4.7 Other Fieldwork

4.7.1 Aerial Imagery

A LiDAR aerial image was commissioned for the proposed scheme. In addition recent aerial photography of the Hull region is available from on-line resources.

4.7.2 Pumping Test

Due to the expected sub-artesian conditions and high upwards pressures from the chalk groundwater, methods of construction for the proposed Mytongate Junction underpass during feasibility phases considered the possibility of dewatering the top of the chalk. There was insufficient existing information, however, to define parameters required to confirm the impacts of dewatering the junction.

Therefore, Grontmij installed two new boreholes in the chalk and overlying drift close to Mytongate Junction, with a view to test-pumping both boreholes and analysing the results to determine aguifer parameters.

The Pumping Test Report - 1168-10-223-RE-002-PD1 provided detailed information regarding the set up, construction, testing and analysis of this part of the GI.

Two new boreholes were drilled into the chalk (LDBH01) and overlying drift (LDBH02). These are located approximately 30 m southeast of the Mytongate Junction. LDBH01 and LDBH02 are 2.5 m apart. A summary of the borehole details are provided in the table below.

Table 4.4 - LDBH01 and LDBH02 construction details

	LDBH01	LDBH02
Construction Date		
	26 Nov 13	14 Nov 13
Location (NGR)		
	509380.4 428334.3	509378.4 428332.9
Ground level (m		
AOD)	4.674	4.657
Total depth (m bgl)		
	50	22
Top and bottom of monitored aquifer unit (m bgl)	Chalk	Glacial Till
	(28.6 - 50)	(11.3 - 19)
Monitored interval (m bgl)	32.7 – 50	14 – 18.5
Rest water level (m bgl)	1.48 – 6.31	0.34 - 0.95

Insufficient water was found in the drift horizons during drilling of the drift borehole LDBH02 and therefore a pumping test could not be undertaken from this borehole.

A three day constant rate pumping test was undertaken at LDBH01 by a specialist contractor in December 2013. Several of the GI boreholes were monitored during this period. Analysis of the test data and background monitoring was undertaken to provide an understanding of the interaction between chalk and drift aguifers and between the chalk aguifer and the Humber estuary.

The assessment provided supplementary hydrogeological information for the preliminary design. In addition the information was utilised for the production of the groundwater model required for the Environmental Impact Assessment (EIA) for the scheme.

Refer to the following reports for a detailed discussion of the findings:

- The Groundwater Report 1168-10-223-RE-001-PD1
- The Pumping Test Report 1168-10-223-RE-002-PD1
- The Groundwater Modelling Report 1168-10-223-RE-003-PD1

Note: these reports form appendices to the Road Drainage and Water Environment Chapter of the Environmental Statement (MMGJV, 2014 Reference to be confirmed).

4.7.3 Structural Inspection

A structural inspection survey was undertaken by MMGJV.

The inspection comprised the visual and non-intrusive survey on ten structures of varying age surrounding the Mytongate roundabout.

The purpose of the survey was to visually assess the current exterior and report (any) defects present prior to the commencement of the pumping testing.

A full and detailed discussion of the findings is contained within the MMGJV Structural Inspection Report (September, 2013).

4.7.4 Unexploded Ordnance

During the commissioning of the recent site investigation works it was recognised that there was a requirement to revisit the risks identified in the original desk study.

An Explosive Ordnance Desk Study was commissioned by Geotechnics Ltd and conducted by EOD Contracts Ltd (2013). The purpose of this study was to review the existing BACTEC report in line with the planned geotechnical investigation, and to revisit / refine the mitigation requirements.

Full details of the EOD report are contained within Volume 2 of the Geotechnics Ground Investigation at A63 Castle Street Improvement (October 2013).

The following risk mitigation measures have been extracted from the full report in order to highlight the salient points / measures identified in the report:

- A requirement for UXO safety monitoring of all the "at risk" excavations, including geotechnical or archaeological trial pits.
- Cable Percussive boring and rotary coring should be pre-checked using a magnetometer cone.
- A UXO Safety and Awareness Presentation (Toolbox) should be given to all personnel, undertaking excavation works.
- Static cones should be pre-checked using the magnetometer cone.
- Self boring pressuremeters should be pre-checked using the magnetometer cone.

 Prior to any intrusive piling or drilling commencing, UXO safety testing and appropriate clearance certification into the ground to sufficient depth to provide clearance from UXO.

4.7.5 Contamination Assessment

A contamination assessment formed part of the 2013 Geotechnics site investigation. The information derived from the site investigation was used to update an existing conceptual site model. The site investigation identified several sources of contamination which include (though are not limited to) the following:

- · Localised Hydrocarbons.
- Heavy metals and organics.
- Localised areas of asbestos.
- Elevated copper concentrations.
- High conductivity of groundwater.

Refer to the Ground Contamination Assessment 1168-10-211-RE-001 for a full discussion of the findings and interpretation of results.

4.7.8 Future Investigations

To date no ground investigation or archaeological investigation works have been carried out within the Trinity Burial Ground (TBG) due to permission constraints and concern over disturbing human remains.

A future ground investigation is required within Trinity Burial Ground to inform the temporary works design, the permanent works design and the proposed burial ground clearance works.

The ground investigation or archaeological evaluation works within the burial ground would serve to:

- Provide additional data¹ on ground conditions and fill 'gaps' from ground investigations completed to date
- Inform the design of the westbound diverge slip road.
- Inform the design of the temporary and permanent works within the TBG.
- Provide information on the likely number, depth and condition of the remains to inform the archaeological evaluation and clearance of TBG.

4.8 Laboratory Investigation

4.8.1 Description of tests

Table 4.4 and 4.5 summarise the geotechnical laboratory testing carried out across the scheme. This includes the number of test from all previous investigations.

Table 4.4 - Laboratory Testing undertaken on Soils.

Type of test	No. of tests undertaken	Testing Standard BS 1377
Moisture content	218	BS 1377 (1990) Part 2.3
Atterberg limits	120	BS 1377 (1990) Part 2.4 & 2.5
Particle size distribution (PSD)	51	BS 1377 (1990) Part 2:9
Sedimentation	39	BS 1377 (1990) Part 2:9

¹ Geotechnical, hydrogeological, environmental (contamination) and archaeological

Type of test	No. of tests undertaken	Testing Standard
		BS 1377
Undrained shear strength		BS 1377 (1990) Part 7
Bulk Density	29	BS 1377 (1990) Part 2
Chemical testing:	262	BS 1377 (1990) Part 3
pH, water soluble sulphate,		
Organic Matter	20	BS 1377 (1990) Part 3.3
Californian Bearing Ratio (CBR) - recompacted	1	BS 1377 (1990) Part 4.7
One dimensional consolidation	36	BS 1377 (1990) Part 5.3
Quick Undrained Triaxial (single stage)	51	BS 1377 (1990) Part 7.9
Quick Undrained Triaxial (multi-stage)	25	BS 1377 (1990) Part 7.9
Soluble Suplhate, Acid Soluble Sulphate, Total Sulphur, pH	25	BRE Special Digest 1 Suite

Table 4.5 - Laboratory Testing undertaken on Chalk

table noabeliately recting anticident on entities				
Laboratory Test			No. of tests undertaken	Testing Standard ISRM
Consolidated Lind	rained Triaxial Test		14	BS 1377 (1990) Part 8.7
Consolidated Ond	Consolidated Offdramed Thaxial Test		IT.	DO 1011 (1000)1 art 0.1
Point load			66	ISRM (1985)
Unconfined Determination	Compressive	Strength	17	ISRM (1985)

Details of the contamination testing undertaken can be found in the Ground Contamination Assessment 1168-10-211-RE-001 (2014).

4.8.2 Copies of Test Results

Please refer to the ground investigation report listed in section 4.3.2 for laboratory testing results.

5 Ground Summary

5.1 Topography and Land Use

The section of the existing A63 to be improved runs from the former junction with Porter Street in the west (Chainage 0) to just beyond the Market Place Junction in east (Chainage 1250) with the signalised Mytongate Junction (Chainage 450 to 550) located slightly west of the centre of the scheme. The existing dual carriageway and the side roads that join at the Mytongate Junction are generally at grade and constructed at existing ground level that generally varies from 3.0m to 4.5m above ordnance datum (OD).

5.2 Geology

The general geological sequence underlying the scheme is well understood and has been confirmed with thorough an additional extensive ground investigation undertaken in 2013. Whilst the recent investigation was comprehensive, it should be noted that as with any form of investigation techniques there is the potential for localised lateral and vertical variations outside those identified during the investigation.

Geological long sections reference 1168-09-01-DR-004, 1168-09-01-DR-005 and cross section 1168-09-01-DR-015 are included within Section 9 of this report.

Superficial Deposits

The information contained within the 2013 investigation, together with the available geological maps indicates extensive drift deposits are present across the site. The superficial deposits are summarised in table 5.1, and described below:

Made ground

Made ground comprising both granular and cohesive material, is recorded across the full extent of the scheme. The greatest thickness is recorded between Chainage 850 and Chainage 890, near the Humber Docks. Generally the thickness of the made ground is variable across the site, with thicknesses ranging from a minimum of 0.3m to a maximum of 13m. Trial pits undertaken identified old walls, floors and foundations, old service pipes and an old brick culvert between 0.5 and 2.2m depth.

The granular made ground is encountered from the surface to a maximum recorded depth of 13m. The granular made ground has a maximum recorded stratum thickness of 9.2m. Locally multiple granular strata are present interbedded with cohesive made ground.

The granular made ground is typically described as slightly gravelly to very gravelly clayey to silty SAND with occasional cobbles. Gravel is fine to coarse limestone, sandstone, flint, brick and concrete. Cobbles typically comprise chalk, brick or concrete.

The cohesive made ground occurs from the surface to a maximum depth of 12m and has a maximum recorded strata thickness of 8m. Cohesive made ground is typically a soft to firm, slightly sandy to sandy, slightly gravelly to gravelly CLAY.

Cohesive Alluvium

Cohesive alluvium is encountered directly below the made ground, and extends across the whole of the site. The Cohesive Alluvium occurs at a minimum depth of 0.6m to a maximum depth of 15.75m. The thickness of the deposits varies from 0.7m to 11.6m.

The Cohesive Alluvium is described as very soft to soft, locally firm slightly sandy CLAY with some peat pockets and bands of organic material. In some areas the cohesive alluvium is described as sandy SILT. Locally peat and granular alluvium are interbedded within the alluvium.

Granular Alluvium

Granular deposits were encountered mainly towards the eastern extent of the site at chainages over Chainage 600. The granular alluvium was encountered directly under the cohesive alluvium, and was recorded between a minimum depth of 4.1m and a maximum depth of 24.0m. The thickness of the deposit varies between 0.05m and 13.6m. The greatest thickness was in the area of the Humber Docks.

The deposits were described as slightly silty to silty, gravelly SAND and sandy GRAVEL with occasional cobbles. The gravel is of various lithologies including flint and chalk.

Comparison between field descriptions and particle size distribution data confirms that the deposits may be described as slightly silty to silty, gravelly SAND to sandy GRAVEL with occasional cobbles.

Layers of relict Peat and organic lenses were found within the alluvium deposits. These layers are discontinuous and were encountered mainly towards the middle and western extent of the site. The peat, where present, varies between 0.2m and 1.75m at depths ranging from 6.85m to 22.6m.

The peat layers were described as firm brown to black slightly clayey pseudo-fibrous PEAT. Locally the peat was described as soft or very soft.

Cohesive Glacial Till

Glacial Till was encountered directly below the alluvium, and extended under the majority of the site, excluding the area of the Humber Docks where it was noted to be absent. It was encountered between a minimum depth of 8.2m and a maximum depth of 23.5m. The individual layer thickness varied between 0.4m and 6.75m.

The cohesive glacial till is described as firm to stiff slightly sandy to sandy slightly gravelly to gravelly CLAY. The gravel is fine to medium of chalk and some flint.

Glaciolacustrine

Glaciolacustrine deposits comprising firm to stiff thinly laminated slightly sandy CLAY are found extensively across the site typically underlying the glacial till but occasionally immediately underlying the alluvium. The deposits were encountered between a minimum depth of 13.3m, and a maximum depth of 26.6m, with a thickness of between 3.4m and 9.7m. The greatest thickness of the deposits is towards the middle and western side of the site. Generally the deposit thins towards the east.

Fluvio-Glacial

The Fluvio-Glacial deposits described as silty to very silty gravelly SAND to sandy GRAVEL (gravel is of chalk and flint) overlay the chalk bedrock across the majority of the site with the greatest thickness towards to eastern end of the site. The deposits are encountered between a minimum depth of 19 m and a maximum depth of 33.6 m and vary in thickness between 0.96m and 9.6m.

Solid Geology

Chalk

The site is underlain by sedimentary deposits of Cretaceous age – the Burnham Chalk Formation. This unit is typically between 100 m to 150 m thick. It is described as predominantly thinly bedded with tabular and lenticular flints.

The bedrock was encountered across the site. A layer of weathered chalk overlaying more intact chalk is characteristic of the upper horizon. The weathered chalk is present from a minimum recorded depth of 20.6

m (-17.94 m OD) in Borehole BH04 to a maximum depth of 33.6 m (-28.96 m OD) in Borehole BH45. The maximum recorded thickness of weathered chalk is 9 m, and the average thickness is 4.6 m.

The weathered chalk described as structureless ranges in strength from very weak to medium. It is generally recovered as strong sub-angular to angular gravel and cobbles. Flints are recorded throughout.

Structure

There are no known geological feature (faulting, dissolution etc) indicated within the available published maps or memoirs.

Table 5.1 – Summary of the general strata and units underlying the site.

Stratum	Unit	Notes
Made Ground	Cohesive	
	Clay and ash fill	Variable compositions across the scheme
	Granular	
	Gravel of brick, concrete, mixed natural rock	
Superficial - Alluvium	Cohesive Alluvium	Continuous across the site
	Clay and silt	
	Granular Alluvium	Not found to be present west of Mytongate Junction
	Sand and gravel	
	Relic Peat & Organic Lenses	Discontinuous Lenses
		The peat is seen as a firm consolidated layer rather than the familiar compressible material.
Superficial -	Glacial Till	Continuous west of Mytongate potential
Glacial	Sandy gravelly clay	discontinuous further east
	Glaciolacustrine	Continuous layer to the west of Mytongate, and
	Laminated clay and silt	discontinuous further east
	Fluvio-Glacial	Relatively continuous
	Chalk gravel with sand	
Bedrock	Chalk	Continuous, weathered in upper few meters,

Stratum	Unit	Notes
Stratum	Offic	Notes
		undulating rock head level.
		Cretaceous Chalk of the Burnham Chalk Formation.
		This unit is typically in the region of 100 to 150m thick
		and is predominantly thinly bedded and characterised
		by continuous tabular and lenticular flints

5.3 Hydrology

For details of the hydrology regime across the scheme area refer to Chapter 11 of the Environmental Statement Scoping Report (MMGJV, 2013).

5.4 Hydrogeology

Refer to the following reports for a detailed discussion of the findings:

- The Groundwater Report 1168-10-223-RE-001-PD1.
- The Pumping Test Report 1168-10-223-RE-002-PD1.

Monitoring data and hydrographs are presented in the above reports. Groundwater strikes are presented in Appendix B.

During the GI and subsequent post site work monitoring groundwater has been found in all of the main geological layers. Observations, permeability testing and supporting desk study show that the hydrogeology of the main strata can be summarised as follows: -

Made ground – **Aquifer** or **aquitard** depending on material composition (commonly dry but with some perched groundwater).

Cohesive alluvium - Aquitard

Granular alluvium - Aquifer

Glacial till - Aquitard

Glaciolacustrine deposits - Aquitard

Fluvio-glacial deposits - Aquifer

Chalk - Aquifer

In reality the geological sequence and hydrogeology across the Project footprint is more complex.

Other than the made ground, the permeable superficial deposits are generally confined though there may be some localised unconfined units.

Groundwater Levels

The groundwater levels recorded during the GI and subsequent monitoring are presented in the form of hydrographs, and discussed in detail in the Groundwater Report (report no. 1168-10-223-RE-001-PD1,). The text below summarises the main findings.

Made ground water levels were only monitored at two boreholes and typically ranged from 2.5 to 3.0 m AOD. The nature of the made ground suggests that perched aquifers are laterally and possibly vertically discontinuous, but this cannot be confirmed from the limited data currently available.

Groundwater heads within the natural superficial deposits overlying the fluvio-glacial deposits are typically between -0.5 and 1.5 m AOD. Within the fluvio-glacial deposits, which directly overlie and are in hydraulic continuity with the Chalk, the range is typically -1 to 2.5 m AOD due to the tidal impact. For comparison, ground level is around 3 m AOD.

Groundwater heads in the granular alluvium generally, but not always, show a small tidal impact. This increases towards the eastern end of the construction footprint (particularly in BH46, where the diurnal range in water level was up to 0.4 m), which suggests a degree of hydraulic continuity with the tidal River Hull.

Water levels in some boreholes with response zones in cohesive alluvium also exhibit a very small, measurable tidal response (0.1m or less), but water levels in others do not. If present, the tidal response seen in the superficial deposits (other than the fluvio-glacial layer, which is in direct hydraulic continuity with the underlying Chalk) is always dampened and delayed in comparison to that seen in the Chalk.

The hydrographs presented in the Groundwater Report (report no. 1168-10-223-RE-001-PD1) for the superficial deposits boreholes do not show any obvious groundwater level response to individual rainfall events, possibly because the monitoring coincided with a relatively dry period and/or because most of the superficial deposits are confined.

Chalk groundwater heads have typically varied between -1.5 and 2.5 m AOD over the monitoring period. The most significant impact on groundwater heads has been the mixed semi diurnal tidal impact from the Humber Estuary, with the groundwater heads fluctuating by up to 3m during spring tides and 1.5m during neap tides. Groundwater in the Chalk rose by around 4m during the tidal surge event which occurred on 5 December 2013.

The lag time between tides in the Humber Estuary and the tidal variations seen in the Chalk within the Project footprint has been measured between 48 and 63 minutes. Variations in the tidal lag show that there is anisotropy within the Chalk.

The current dataset does not show any obvious responses to rainfall events. Although this may be because there were no major rainfall events in Hull during the monitoring period, it is more likely to be because the Chalk is strongly confined beneath Hull, with recharge largely occurring over the Chalk outcrop in the Yorkshire Wolds, some distance from the Project.

Groundwater Flow

Monitoring to date does not indicate a measurable hydraulic gradient in any of the superficial deposits, except in the granular alluvium across the eastern part of the construction footprint. Here, the hydraulic gradient (and groundwater flow) appears to have an east to west component.

In general, the local hydraulic gradient in the Chalk is slightly to the north during high tide, and more or less flat during low tide. Monitoring to date does not indicate that there is a regional hydraulic gradient within the Chalk, although the groundwater model (see Groundwater Modelling Report, 1168-10-223-RE-003-PD1) suggests that groundwater flow is to the south, towards the Humber Estuary.

Depending on the state of the tide, between aquifer units, there is either no vertical hydraulic gradient between the superficial deposits and the Chalk, or a slight downwards hydraulic gradient. The data suggests that leakage between aquifer units is minimal except where the more impermeable superficial deposits thin towards the eastern end of the construction footprint.

Groundwater quality sampling is summarised in the Ground Contamination Assessment 1168-10-211-RE-001 (2014).

5.5 Geomorphology

Not Used.

5.6 Man-made features

The principal man-made features that are affected by the scheme are as follows:

- The proposed westbound carriageway and associated footpath encroaches on land that was formerly a dock between Chainage 770 and Chainage 910, in these area alterations to the wall forming the historical dock boundary will be required.
- The proposed horizontal alignment of the mainline deviates from the existing alignment between Chainage 350 and Chainage 1050 where the proposed alignment is south of the existing alignment and encroaches on to the land currently forming the Trinity Burial Ground. It is proposed to clear this section of the burial ground prior to the commencement of construction works.

The following services are known to exist along the scheme:

- Open reach Equipment.
- Kingston Communications.
- National Power grid (L.V, 11 kV).
- Northern Gas Networks.
- Water.
- Sewerage.

Details of the anticipated utilities within the site area are shown in Table UT1 in Section 7.

5.7 Historical Development

Refer to Section 3.1.

5.8 Obstructions

Obstruction encountered during the site investigation was as follows:

- Shallow foundations and buried structures around William Booth House
- Buried basement / foundations encountered in trial pits within the Mytongate roundabout.

6 Ground Conditions

The geotechnical properties for the superficial materials are summarised in this section, 'Ground Conditions'. Ground conditions are summarised in Section 5 with test results presented in the Geotechnics Limited's report on Ground Investigation, A63 Castle Street Improvement (October 2013).

6.1 Topsoil

A thin cover of topsoil is present across isolated areas of the site, generally between 0.1 and 0.2m thick. There was no laboratory geotechnical testing undertaken for topsoil as it is anticipated that any topsoil present beneath the area will be removed prior to construction.

6.2 Made Ground

Table 6.1 – Summary of testing on Granular Made Ground

Type of Test	No. of tests undertaken	Results
In situ:		
Standard Penetration Test (SPT)	28	0 to >50 (17 Average)

Made ground, both granular and cohesive, has been encountered across the full extent of the area. It is present in the most significant thicknesses at between Chainage 850 and Chainage 900, near the Humber Docks. The thickness of the made ground is variable across the site, ranging from a minimum of 0.6m to a maximum of 13m. Trial pits have identified old walls, floors and foundations, old service pipes and an old brick culvert within the made ground between 0.5 m bgl and 2.2 m bgl.

The granular made ground occurs from the surface to a maximum recorded depth of 13m. The granular made ground has a maximum recorded stratum thickness of 9.2m although on occasion multiple granular strata are interbedded with cohesive made ground. Between Ch. 850 and Ch. 900 three layers of granular made ground are present, interbedded with two layers of cohesive made ground. The top layer of granular made ground is present from the surface to a maximum depth of 1.2m. The middle layer of granular made ground is present from a minimum depth of 0.6 m to a maximum depth of 9.8 m, with thickness ranging from 0.2m to 9.2m. The bottom layer of granular made ground is present from a minimum depth of 7.8m to a maximum depth of 13m, with thickness ranging from 0.2m to 1m.

Field descriptions confirm that the granular made ground is typically a slightly to very gravelly clayey to silty SAND with occasional cobbles. Gravel is fine to coarse limestone, sandstone, flint, brick and concrete. Cobbles typically comprise chalk, brick or concrete.

SPT 'N' Values indicate that the material is generally medium dense. The results are presented in figure 6.2.1; they indicate a highly variable material and show no obvious variation with depth.

Based moderately conservatively on the SPT N values, a characteristic friction angle, ϕ ' of 31 degrees has been selected. The friction angle has been derived using the empirical relationship with SPT 'N' from Peck et al (1974). All characteristic values are moderately conservative and derived by a statistical method, which takes the characteristic value of a set of data as the mean value minus the standard deviation multiplied by a factor dependant on the number of values in the data set.

The modulus of elasticity has been derived based on empirical relationships with SPT 'N' contained within Ciria Report 143 (1995), where E' is shown to be 1.0 N (MN/m²) for granular material. On this basis an E' of 13.6 MN/m² was considered to be an appropriate characteristic value.

Due to the limited geotechnical information available, a unit weight, γ , of 19 kN/m³ has been selected for the granular made ground, based on published values (Barnes, 2000).

Table 6.2 - Summary of testing on Cohesive Made Ground

Type of Test	No. of tests undertaken	Results
In situ:		
Standard Penetration Test (SPT)	46	0 to 12 (average 4)
Laboratory:		
Particle Size Distribution (PSD)	2	See text
Moisture Content	17	26 to 64 % (average 38%)
Atterberg Limits	15	LL: 26 to 86 % (average 44%) PL: 17 to 28 % (average 22%) Pl: 17 to 37 % (average 23%)
Triaxial test	14	20 to 40 kN/m ² (average 29 kN/m ²)
Bulk Density	10	1.73 to 1.97 Mg/m³ (average 1.89 Mg/m³)
Oedometer Test	4	M_{ν} : 0.12 to 0.97 m ² /MN (average 0.50 m ² /MN) $C_{\nu 90}$: 3.0 to 16.9 m ² /year (average 8.11m ² /year)

The cohesive made ground occurs from the surface to a maximum depth of 12 m and has a maximum recorded strata thickness of 10.5 m.

Between Ch. 850 and Ch. 900 two layers of cohesive made ground are present, interbedded between three layers of granular made ground. The upper layer of cohesive made ground is present from a minimum depth of 0.1 m to a maximum depth of 6.5 m, and is between 0.5 and 6.1m thick. The lower layer of cohesive made ground is present between a minimum depth of 6.7 m to a maximum depth of 12 m, and ranges in thickness from 0.1 m to 5.3 m.

Comparison between field descriptions and particle size distribution data confirms that the cohesive made ground is typically a slightly gravelly to gravelly slightly sandy to sandy CLAY with a low cobble content in some areas. Cobbles typically comprise chalk, brick or concrete.

The laboratory testing indicates the material is typically low strength. The results are presented in figure 6.2.2. They show no obvious variation with depth.

Atterberg limit tests on the cohesive made ground indicate a plasticity range from low to very high, with the majority of the results falling into the intermediate category, as shown in figure 6.2.3. Plasticity index results are summarised in figure 6.2.4, and are generally between 15 and 25 % and do not vary with depth.

Based on a moderately conservative plasticity index, a characteristic friction angle, ϕ ' of 27 degrees has been selected. The friction angle has been derived from an empirical relationship between angle of friction and plasticity index for cohesive soils (Gibson, 1953).

The modulus of elasticity has been derived based on empirical relationships with SPT 'N' contained within Ciria Report 143 (1995), where E' is approximated to be equal to 0.9N (MN/m²) and E_u is approximated to be 1.1N (MN/m²) for cohesive soils. On this basis an E' of 1.96 MN/m² and an E_u of 2.40 MN/m² were considered to be appropriate characteristic values.

The undrained shear strength, c_u , was derived from a combination of the results from the triaxial tests, the SCPT pressuremeter tests, the SBPM tests and the SPTs as shown in figure 6.2.5. The triaxial, SCPT and SBPM testing all gave direct results in terms of c_u , while c_u was derived from the SPT 'N' values using the empirical relationship given by Stroud (1974). The characteristic c_u was derived using a statistical approach for all of these results combined, and on this basis a value of $16kN/m^2$ has been deemed to be appropriate.

Based on the results from the laboratory bulk density shown in figure 6.2.6 testing a characteristic value of 19 kN/m³ has been derived.

Oedometer tests gave results for the coefficient of volume compressibility, m_v , and the coefficient of consolidation, C_v as shown in figures 6.2.7 and 6.2.8 respectively. Characteristic values were derived statistically from these results, giving an m_v of 0.61 m²/MN and a C_{v90} of 10.1 m²/year.

6.3 Superficial and Solid

Cohesive Alluvium

Table 6.3 – Summary of testing on Cohesive Alluvium

Type of Test	No. of tests undertaken	Results
In situ:		
Standard Penetration Test (SPT)	188	0 to 19 (2 average)
Permeability (falling head test)	3	7.43E-07 to 2.68E-06 (Average 1.39E-06) <i>k</i>
Permeability (constant head test)	5	9.36E-06 to 1.81E-05 (Average 1.15E-05) <i>k</i>
Laboratory:		

Type of Test	No. of tests undertaken	Results
Particle Size Distribution (PSD)	7	See text
Faiticle Size Distribution (FSD)	, , , , , , , , , , , , , , , , , , ,	See text
Moisture Content	75	23 to 68% (39% average)
		LL: 27 to 78 % (average 42%)
		, ,
Atterberg Limits	59	PL: 19 to 38 % (average 22%)
		PI: 13 to 48 % (average 21%)
Triaxial Test	91	1 to 47 kN/m² (average 21 kN/m²)
		(1.1.1.3.1.7.1.7.1.7.1.7.1.7.1.7.1.7.1.7.
Bulk Density	46	1.2 to 2.62 Mg/m³ (average 1.82 Mg/m³)
		M = 0.44 to 0.67 = 2/MAN (suppose 0.60 = 2/MAN)
Oedometer	23	M _v : 0.14 to 3.67 m ² /MN (average 0.90 m ² /MN)
		C _{v90} : 0.8 to 31.5 m ² /year (average 7.7m ² /year)

Cohesive alluvium is present beneath the made ground across the whole of the site. The cohesive alluvium occurs at a minimum depth of 0.6 m to a maximum depth of 15.75 m. The thickness of the stratum varies from 0.7 to 11.6m, although on occasion peat and granular alluvium strata are present interbedded with the cohesive alluvium.

Field logs generally describe the deposits as very soft to soft, locally firm slightly sandy CLAY with some peat pockets and bands of organic material. In some areas the cohesive alluvium is described as sandy SILT.

Comparison between field descriptions and particle size distribution data shows that all of the cohesive alluvial deposits may be described as slightly sandy CLAY/SILT. It is slightly gravelly in some areas.

Laboratory testing indicates that the material is generally very low strength to low strength, locally medium strength. The results are shown in figures 6.3.1 to 6.3.3, and show a medium strength/firm crust at the top of the alluvium, as well as a slight stiffening of the very low strength material with depth.

The results of permeability testing are shown in figure 6.3.11. The tests gave a minimum permeability of 7.43E-07 and a maximum permeability of 1.81E-05. The results indicate that the material has a low degree of permeability.

Atterberg limit tests on the cohesive alluvium indicate a plasticity range from low to very high, with the majority of the results falling into the intermediate category, as shown in figure 6.3.4. Plasticity index results are summarised in figure 6.3.5, and are generally between 10 and 30 % and do not vary with depth.

Based moderately conservatively on plasticity index, a characteristic friction angle, ϕ of 28 degrees has been selected. The friction angle has been derived from an empirical relationship between angle of friction and plasticity index for cohesive soils (Gibson, 1953).

The modulus of elasticity has been derived based on a relationship with undrained shear strength, where E' has been approximated to be $100C_u$ (MN/m²) (Yandzio, 1998) and E_u has been approximated to be 1.25 E'. It was found that elasticity of the cohesive alluvium was significantly different above and below a depth of approximately 8 m, and correspondingly different characteristic values were derived for above and below 8 m bgl. At greater than 8 m bgl the elasticity was found to increase linearly with depth. On this basis an E' of

0.80 MN/m² for above 8 m bgl was considered to be an appropriate characteristic value. Below 8 m bgl a characteristic relationship with depth was derived of E' equals 0.80 MN/m² plus an increase of 0.4 MN/m² for every metre increase in depth. Similarly an E_u of 1.00 MN/m² for above 8 m bgl was selected as the characteristic value. Below 8 m bgl a characteristic relationship with depth was derived of E_u equals 1.00 MN/m² plus an increase of 0.5 MN/m² for every metre increase in depth.

The undrained shear strength, c_u , was derived from a combination of results from triaxial tests, SCPT pressuremeter testing, SBPM testing and the SPT tests as shown in figures 6.3.6 and 6.3.7. The triaxial, SCPT and SBPM testing all gave direct results in terms of c_u , while c_u was derived from the SPT 'N' values and using the empirical relationship given by Stroud (1974). A Characteristic c_u was derived for above 8 m bgl, and, as with the elasticity, a characteristic relationship of c_u increasing with depth was derived for below 8 m bgl. On this basis a c_u of 8 kN/m² for above 8 m bgl was considered to be an appropriate characteristic value. Below 8 m bgl a characteristic relationship with depth was derived of c_u equals 8 kN/m² plus an increase of 4 kN/m² for every metre increase in depth.

Based on the results from the laboratory bulk density testing (figure 6.3.8) a characteristic value of 18 kN/m³ has been derived.

Oedometer tests gave results for the coefficient of volume compressibility, m_v , and the coefficient of consolidation, C_v , as shown in figures 6.3.9 and 6.3.10 respectively. Characteristic values were derived statistically from these results, giving an m_v of 1.03 m²/MN and a C_{v90} of 8.9 m²/year.

Granular Alluvium

Table 6.4 - Summary of testing on Granular Alluvium

Type of Test	No. of tests undertaken	Results
In situ:		
Standard Penetration Test (SPT)	113	1 to >50 (average 19)
Permeability (falling head test)	1	1.01E-05 <i>k</i>
Permeability (constant head test)	15	1.05E-05 to 4.57E-05 (Average 2.40E-05) k
Laboratory:		
Particle Size Distribution (PSD)	16	See text

Granular alluvium deposits were encountered mainly in the eastern side of the site, underlying the cohesive alluvium at chainages greater than about 600m. It was found between a minimum depth of 4.1 m and a maximum depth of 24.0 m. The thickness of the deposit, where present, varies between 0.05m and 13.6m, and is at its thickest in the area of the Humber Docks.

The deposits were described as slightly silty to silty, gravelly SAND to sandy GRAVEL with occasional cobbles. The gravel is of various lithologies including flint and chalk.

Comparison between field descriptions and particle size distribution data confirms that the deposits may be described as slightly silty to silty, gravelly SAND to sandy GRAVEL with occasional cobbles.

SPT 'N' values indicate that the material is generally medium dense. The results are presented in figure 6.4.1 and show an increase in density with depth.

The results of the permeability testing are shown in figure 6.4.2. The tests gave a minimum permeability of 1.01E-05 and a maximum permeability of 4.57E-05. The results indicate that the material has a low degree of permeability.

Based moderately conservatively on the SPT N values, a characteristic friction angle, ϕ ' of 31 degrees has been selected. The friction angle has been derived using the empirical relationship with SPT 'N' from Peck et al (1974).

The modulus of elasticity has been derived based on empirical relationships with SPT 'N' contained within Ciria Report 143 (1995), where E' is approximated to be 1.0N (MN/m²) for granular material. On this basis an E' of 13.7MN/m² was considered to be an appropriate characteristic value.

Due to the limited geotechnical information available, a unit weight, γ , of 19 kN/m³ has been selected for the granular made ground, based on published values (Barnes, 2000).

Relic Peat and Organic Lenses

Table 6.5 – Summary of testing on Relic Peat and Organic Lenses

Type of Test	No. of tests undertaken	Results
In situ:		
Standard Penetration Test (SPT)	7	5 to 34 (18 average)
Laboratory:		
Moisture Content	4	81 to 190 % (117 % average)
		LL: 38 to 48 % (average 44 %)
Atterberg Limits	3	PL: 25 to 36 % (average 29 %)
		PI: 22 to 50 % (average 35 %)
Triaxial Test	10	35 to 50 kN/m² (average 43 kN/m²)
Bulk Density	3	1.27 to 1.41 Mg/m ³ (average 1.33)
		M _v : 0.37 to 0.65 m ² /MN (average 0.48 m ² /MN)
Oedometer	1	C_{v90} : 0.8 to 7.8 m ² /year (average 3.8 m ² /year)

Layers of Relic Peat and organic lenses were encountered within the alluvium deposits. These layers are discontinuous and were encountered mainly in the middle and western areas of the site. The peat layers, where present, vary between 0.2m and 1.75m thickness and were encountered at depths ranging from 6.85 m to 22.6 m.

Throughout the majority of the site the peat layers were described as firm brown to black slightly clayey pseudo fibrous PEAT. However in some boreholes up to a chainage of 500 m the peat is described as soft or very soft.

SPT 'N' values indicate that the material is generally medium dense. The results are presented in figure 6.5.1 and show that the peat has been compacted to a reasonable density.

Atterberg limit tests on the peat indicate an intermediate plasticity, with all the results shown to be clayey, as shown in figure 6.5.2. Plasticity index results are summarised in figure 6.5.3, and are between 20 and 50 %.

Based moderately conservatively on plasticity index, a characteristic friction angle, ϕ ' of 20.5 degrees has been selected. The friction angle has been derived from an empirical relationship between angle of friction and plasticity index for cohesive soils (Gibson, 1953).

The modulus of elasticity has been derived based on empirical relationships with SPT 'N' contained within Ciria Report 143 (1995), where E' is approximated to be 0.9N (MN/m²) and E_u is approximated to be 1.1N (MN/m²) for cohesive material. On this basis an E' of 5.74 MN/m² and an E_u of 7.01 MN/m² were considered to be appropriate characteristic values.

The undrained shear strength, c_u , was derived from a combination or the results from triaxial tests, SCPT pressuremeter tests, SBPM tests and SPT tests, as shown in figure 6.5.4. The triaxial, SCPT and SBPM testing all gave direct results in terms of c_u , while c_u was derived from the SPT 'N' values and using the empirical relationship given by Stroud (1974). The Characteristic c_u was derived using a statistical approach for all of these results combined, and on this basis a value of 38 kN/m² has been deemed to be appropriate.

Based on the results from the laboratory bulk density testing (Figure 6.5.5) a characteristic value of 13 kN/m³ has been derived.

Oedometer tests gave results for the coefficient of volume compressibility, m_v , and the coefficient of consolidation, C_v , as shown in figures 6.5.6 and 6.5.7 respectively. Characteristic values were derived statistically from these results, giving an m_v of 0.56 m²/MN and a C_{v90} of 6.36 m²/year.

Cohesive Glacial Till

Table 6.6 – Summary of testing on (cohesive) Glacial Till

Type of Test	No. of tests undertaken	Results
In situ:		
iii Situ.		
Standard Penetration Test (SPT)	45	10 to 42 (25 average)
Dormonhility (folling hood toot)	4	1.77E-07 to 1.41E-06 (average 4.85E-07) k
Permeability (falling head test)	4	1.77E-07 to 1.41E-00 (average 4.85E-07) k
Permeability (constant head test)	5	3.03E-06 to 7.00E-06 (average 2.53E-07) k
Laboratory:		
Laboratory.		
Particle Size Distribution (PSD)	10	See text
Moisture Content	14	12 to 28 % (19% average)

Type of Test	No. of tests undertaken	Results
LL: 39 to 73 % (average 47 %) Atterberg Limits 12 PL: 15 to 25 % (average 21 %)		, ,
		Pl: 11 to 26 % (average 16 %)
Triaxial Test	21	21 to 315 kN/m² (average 180 kN/m²)
Bulk Density	18 2.05 to 2.27 Mg/m³ (average	
Oedometer	4	M_{ν} : 0.10 to 1.48 m²/MN (average 4.40 m²/MN) $C_{\nu 90}$: 4.4 to 30.1 m²/year (average 12.2m²/year)

Glacial till deposits were found to be present and underlying the alluvium in the majority of the site and only not encountered in the region of the Humber Docks. The glacial till was encountered between a minimum depth of $8.2 \, \text{m}$ and a maximum depth of $23.5 \, \text{m}$, with the thickness of the layer varying between $0.4 \, \text{m}$ and $6.75 \, \text{m}$.

The glacial till is predominantly cohesive, and field logs describe the deposits as firm to stiff slightly sandy to sandy slightly gravelly to gravelly CLAY. The gravel is fine to medium of chalk and some flint.

Comparison between field descriptions and particle size distribution data shows that glacial till is in fact firm to stiff slightly sandy to sandy slightly gravelly to gravelly SILT.

Laboratory testing indicates that the material is generally medium to very high strength. The results are presented in figure 6.6.1 and show no apparent relationship with depth.

The results of permeability testing are shown in figure 6.6.8. The tests gave a minimum permeability of 1.77E-07 and a maximum permeability of 7.00E-06. The results indicate that the material has a low degree of permeability.

Atterberg limit tests on the glacial till indicate a plasticity range from intermediate to very high, with the majority of the results falling into the intermediate category, as shown in figure 6.6.2. Plasticity index results are summarised in figure 6.6.3, and are generally between 10 and 20 % and do not vary with depth.

Based moderately conservatively on plasticity index, a characteristic friction angle, ϕ of 29 degrees has been selected. The friction angle has been derived from an empirical relationship between angle of friction and plasticity index for cohesive soils (Gibson, 1953).

The modulus of elasticity has been derived based on a relationship with undrained shear strength, where E' has been approximated to be $400C_u$ (MN/m²) (Yandzio, 1998) and E_u has been approximated to be 1.25 E'. On this basis an E' of 45.6MN/m² and an E_u of 57.0 MN/m² were considered to be appropriate characteristic values.

The undrained shear strength, c_u , was derived from a combination of the results from triaxial tests, SCPT pressuremeter tests, SBPM tests and SPT tests, as shown in figure 6.6.4. The triaxial, SCPT and SBPM testing all gave direct results in terms of c_u , while c_u was derived from the SPT 'N' values and using the

empirical relationship given by Stroud (1974). On this basis a value of 114 kN/m² has been deemed to be appropriate.

Based on the results from the laboratory bulk density testing (figure 6.6.5) a characteristic value of 22 kN/m³ has been derived.

Oedometer tests gave results for the coefficient of volume compressibility, m_v , and the coefficient of consolidation, C_v , as shown in figures 6.6.6 and 6.6.7 respectively. Characteristic values were derived statistically from these results, giving an m_v of 0.56 m²/MN and a C_{v90} of 15.1 m²/year.

Glaciolacustrine

Table 6.7 - Summary of testing on Glaciolacustrine

Type of Test	No. of tests undertaken	Results
In situ:		
III Situ.		
Standard Penetration Test (SPT)	92	9 to 37 (22 average)
Laboratory:		
Particle Size Distribution (PSD)	1	See text
Moisture Content	29	18 to 31 % (26 % average)
- Molotal G G G Molit		70 to 0 : 70 (20 70 divolugo)
		LL: 36 to 56 % (average 45 %)
Atterberg Limits	24	PL: 13 to 42 % (average 21 %)
		PI: 15 to 32 % (average 23 %)
Triaxial Test	58	31 to 128 kN/m² (average 74 kN/m²)
Bulk Density	31	1.95 to 2.09 Mg/m³ (average 2.03 Mg/m³)
		M _v : 0.08 to 1.28 m ² /MN (average 0.39 m ² /MN)
Oedometer	3	C _{v90} : 9.7 to 65.1 m ² /year (25.0 m ² /year)

Glaciolacustrine material is present across the entire site area, typically underlying the glacial till but occasionally immediately underlying the alluvium. The glaciolacustrine was found between a minimum depth of 13.3 m and a maximum depth of 26.6 m, with a thickness of between 3.4m and 9.7m. The stratum is at its thickest in the middle and western side of the site, becoming thinner towards the east.

Field logs typically describe the material as firm to stiff thinly laminated slightly sandy CLAY with occasional sand and silt partings. In some areas the material is slightly gravelly slightly sandy CLAY.

The single particle size distribution test confirms the Glaciolacustrine to be slightly sandy CLAY.

Laboratory testing indicates that the material is generally medium strength. The results are presented in figure 6.7.1 and show no apparent relationship with depth.

Atterberg limit tests on the glaciolacustrine indicate a plasticity range from intermediate to high, with the majority of the results falling into the intermediate category, as shown in figure 6.7.2. Plasticity index results are summarised in figure 6.7.3, and are generally between 15 and 30 % and do not vary with depth.

Based moderately conservatively on plasticity index, a characteristic friction angle, ϕ , of 28 degrees has been selected. The friction angle has been derived from an empirical relationship between angle of friction and plasticity index for cohesive soils (Gibson, 1953).

The modulus of elasticity has been derived based on a relationship with undrained shear strength, where E' has been approximated to be $400C_u$ (MN/m²) (Yandzio, 1998) and E_u has been approximated to be 1.25 E'. On this basis an E' of 28.0 MN/m^2 and an E_u of 35.0 MN/m^2 were considered to be appropriate characteristic values.

The undrained shear strength, c_u , was derived from a combination or the results from triaxial tests, SCPT pressuremeter tests, SBPM tests and SPT tests, as shown in figure 6.7.4. The triaxial, SCPT and SBPM testing all gave direct results in terms of c_u , while c_u was derived from the SPT 'N' values and using the empirical relationship given by Stroud (1974). On this basis a value of 70 kN/m² has been deemed to be appropriate.

Based on the results from the laboratory bulk density testing (figure 6.7.5) a characteristic value of 20 kN/m³ has been derived.

Oedometer tests gave results for the coefficient of volume compressibility, m_v , and the coefficient of consolidation, C_v , as shown in figures 6.7.6 and 6.7.7 respectively. Characteristic values were derived statistically from these results, giving an m_v of 0.57 m²/MN and a C_{v90} of 41.4 m²/year.

Fluvio-glacial

Table 6.8 – Summary of testing on Fluvio-glacial

Type of Test	No. of tests undertaken	Results	
In alter			
In situ:			
Standard Penetration Test (SPT)	94	7 to >50 (36 average)	
Laboratory:			
Particle Size Distribution (PSD)	15	See text	

Fluvio-glacial deposits overlay the chalk bedrock across the majority of the site and are thickest towards the east end of the site. It is encountered between a minimum depth of 19.0 m and a maximum depth of 33.6 m and varies in thickness, where encountered, between 0.9m and 9.6m.

Comparison between field descriptions and particle size distribution data confirms that the fluvio-glacial deposits may be described as silty to very silty gravelly SAND to sandy GRAVEL. Gravel is fine to coarse predominantly chalk and some flint.

SPT 'N' values indicate that the material is generally dense. The results are presented in figure 6.8.1 and show no apparent relationship with depth.

Based conservatively on the SPT N values, a characteristic friction angle, ϕ of 34 degrees has been selected. The friction angle has been derived using the empirical relationship with SPT 'N' from Peck et al (1974). All characteristic values were derived following the statistical procedure set out in Eurocode EN 1990, which takes the characteristic value of a set of data as the mean value minus the standard deviation multiplied by a factor dependant on the number of values in the data set.

The modulus of elasticity has been derived based on empirical relationships with SPT 'N' contained for overconsolidated sands, where E' is approximated to be 1.8+0.75N (MN/m²) (Yandzio, 1998). On this basis an E' of 35.5 MN/m² was considered to be an appropriate characteristic value.

Due to the limited geotechnical information available, a unit weight, γ , of 19 kN/m³ has been selected for the granular made ground, based on published values (Barnes, 2000).

Table 6.9 - Summary of Soil Parameters

Stratum	Material Parameter	Characteristic Value	Rationale	Reference
	Unit weight (kN/m³)	19	Published value	Barnes (2000)
	Angle of friction, φ (°)	31	Moderately conservative value derived statistically from SPT results	Peck et al (1974)
Made Ground (granular)	Drained stiffness, E' (MN/m²)	13.6	Moderately conservative value derived statistically from SPT results	CIRIA 143 (1995)
	Earth pressure coefficient, k ₀	0.485	1-sin φ	Jaky (1948)
	Poisson's ratio, μ	0.3	Engineering Judgement	
	Unit weight (kN/m³)	19	Average value derived from bulk density tests on samples	
	Undrained shear strength, C_u (kN/m ²)	16	Moderately conservative value derived from combined SPT, SBPM, SCPT and triaxial test results	
	Angle of friction, φ (°)	27.4	Moderately conservative value derived statistically from plasticity index.	Gibson (1953)
Made Ground	Cohesion, _C ' (kN/m ²)	0	Conservative assumption	
(cohesive)	Coefficient of volume compressibility, $m_{\rm v} ({\rm m}^2/{\rm MN})$	0.61	Moderately conservative value derived statistically from oedometer results	
	Coefficient of consolidation, C_{v90} (m²/year)	10.1	Moderately conservative value derived statistically from oedometer results	
	Undrained stiffness, E_u (MN/m ²)	2.40	Moderately conservative value derived statistically from SPT results	CIRIA 143 (1995)
	Drained stiffness, E'	1.96	Moderately conservative value derived from SPT	CIRIA 143 (1995)

Stratum	Material Parameter	Characteristic Value	Rationale	Reference
	(MN/m ²)		results	
	Earth pressure coefficient, k ₀	0.540	1-sinφ	Jaky (1948)
	Poisson's ratio, μ	0.3	Engineering Judgement	
	Unit weight (kN/m³)	18	Average value derived from bulk density tests on samples	
	Undrained shear strength, C_u (kN/m ²)	Depths <8 m bgl: 8 Depths >8 m bgl: 8+(Depth-8)X4	Moderately conservative value derived from combined SPT, SBPM, SCPT and triaxial test results	
	Angle of friction, φ (°)	28.3	Moderately conservative value derived statistically from plasticity index.	Gibson (1953)
	Cohesion, _C ' (kN/m ²)	0	Conservative assumption	
Cohesive Alluvium	Coefficient of volume compressibility, $m_{\rm v}({\rm m}^2/{\rm MN})$	1.03	Moderately conservative value derived statistically from oedometer results	
	Coefficient of consolidation, C_{v90} (m ² /year)	8.9	Moderately conservative value derived statistically from oedometer results	
	Undrained stiffness, E_u (MN/m ²)	Depths <8 m bgl: 1.0 Depths >8 m bgl: 1.0 + (Depth-8)X0.5	E _u = 1.25E'	
	Drained stiffness, E' (MN/m²)	Depths <8 m bgl: 0.8 Depths >8 m bgl: 0.8 + (Depth-8)X0.4	Moderately conservative value derived from relationship with Cu	Yandzio (1998)
	Earth pressure coefficient, k ₀	0.526	1-sinφ	Jaky (1948)
	Poisson's ratio, μ	0.3	Engineering Judgement	
	Unit weight (kN/m³)	19	Published value	Barnes (2000)
Granular Alluvium	Angle of friction, φ (°)	31	Moderately conservative value derived statistically from SPT results	Peck et al (1974)
	Drained stiffness, E' (MN/m²)	13.7	Moderately conservative value derived statistically from SPT results	
	Earth pressure coefficient, k ₀	0.526	1-sinφ	Jaky (1948)
	Poisson's ratio, μ	0.3	Engineering Judgement	
	Unit weight (kN/m³)	13	Average value derived from bulk density tests on samples	
Relic Peat and organic lenses	Undrained shear strength, C_u (kN/m ²)	38	Moderately conservative value derived from combined SPT, SBPM, SCPT and triaxial test results	
organio ionoco	Angle of friction, φ (°)	21	Moderately conservative value derived statistically from plasticity index	Gibson (1953)
	Cohesion, _C ' (kN/m ²)	0	Conservative assumption	

Stratum	Material Parameter	Characteristic Value	Rationale	Reference
	Coefficient of volume compressibility, $m_{\rm v} ({\rm m}^2/{\rm MN})$	0.56	Moderately conservative value derived statistically from oedometer results	
	Coefficient of consolidation, $C_{v=0}$ (m²/year)	6.4	Moderately conservative value derived statistically from oedometer results	
	Undrained stiffness, E_u (MN/m ²)	7.01	Moderately conservative value derived statistically from SPT results	CIRIA 143 (1995)
	Drained stiffness, E' (MN/m²)	5.74	Moderately conservative value derived statistically from SPT results	CIRIA 143 (1995)
	Earth pressure coefficient, k ₀	0.650	1-sin $arphi$	Jaky (1948)
	Poisson's ratio, μ	0.3	Engineering Judgement	
	Unit weight (kN/m³)	22	Average value derived from bulk density tests on samples	
	Undrained shear strength, C_u (kN/m ²)	114	Moderately conservative value derived from combined SPT, SBPM, SCPT and triaxial test results	
	Angle of friction, φ (°)	29.3	Moderately conservative value derived statistically from plasticity index	Gibson (1953)
	Cohesion, c' (kN/m²)	0	Conservative assumption	
Glacial Till (cohesive)	Coefficient of volume compressibility, $m_v (\text{m}^2/\text{MN})$	0.56	Moderately conservative value derived statistically from oedometer results	
	Coefficient of consolidation, C_{veo} (m²/year)	15.1	Moderately conservative value derived statistically from oedometer results	
	Undrained stiffness, E_u (MN/m ²)	52.6	E _u = 1.5Ε'/(1+μ)	Vermeer (1998)
	Drained stiffness, E' (MN/m²)	45.6	Moderately conservative value derived from relationship with Cu	Yandzio (1998)
	Earth pressure coefficient, k ₀	0.75	Engineering Judgement	
	Poisson's ratio, μ	0.3	Engineering Judgement	
	Unit weight (kN/m³)	20	Average value derived from bulk density tests on samples	
Glaciolacustrine	Undrained shear strength, C_u (kN/m²)	70	Moderately conservative value derived from combination of SPT, SBPM, SCPT and triaxial test results	
	Angle of friction, φ (°)	27.8	Moderately conservative value derived statistically from plasticity index	Gibson (1953)

Stratum	Material Parameter	Characteristic Value	Rationale	Reference
	Cohesion, c' (kN/m²)	0	Conservative assumption	
	Coefficient of volume compressibility, $m_v (\text{m}^2/\text{MN})$	0.57	Moderately conservative value derived statistically from oedometer results	
	Coefficient of consolidation, C_{v90} (m²/year)	41.4	Moderately conservative value derived statistically from oedometer results	
	Undrained stiffness, E_{ν} (MN/m ²)	32.3	E _u = 1.5E'/(1+µ)	Vermeer (1998)
	Drained stiffness, <i>E'</i> (MN/m²)	28.0	Moderately conservative value derived from relationship with Cu	Yandzio (1998)
	Earth pressure coefficient, k ₀	0.75	Engineering Judgement	
	Poisson's ratio, μ	0.3	Engineering Judgement	
	Unit weight (kN/m³)	19	Published value	Barnes (2000)
	Angle of friction, φ (°)	34	Moderately conservative value derived statistically from SPT results	Peck et al (1974)
Fluvio-glacial	Drained stiffness, E' (MN/m²)	35.5	Moderately conservative value derived statistically from SPT results	Yandzio (1998)
	Earth pressure coefficient, k ₀	0.75	Engineering Judgement	
	Poisson's ratio, μ	0.3	Engineering Judgement	

Chalk

Table 6.10 – Summary of testing on Chalk

Type of Test	No. of tests	Results
In situ:		
Standard Penetration Test (SPT)	93	31 to >50 (49 average)
Permeability (packer test)	8	9.45E-08 to 7.35E-06 (Average 3.02E-06)
Permeability (falling head test)	28	5.44E-08 to 1.49E-04 (average 4.65E-05)
Laboratory:		
Point Load	211	Is ₅₀ : 0.004 to 1.494 MN/m ²
	10	
Moisture Content	(47)	0.9 to 18.8 %
Density	10	Bulk Density: 2.10 to 2.26 Mg/m ³

Type of Test		No. of tests	Results
		(12)	Dry Density: 1.77 to 2.24 Mg/m ³
Unconfined Com Strength	mpressive	10	4.7 to 14.1 MPa

^{*} Numbers in brackets include results taken in other tests.

Chalk bedrock was encountered across the site, with a layer of weathered chalk overlying more solid chalk. The weathered chalk occurs from a minimum recorded depth of 20.6 m (-17.94 m AOD) in Borehole BH04 to a maximum depth of 33.6 m (-28.96 m AOD) in Borehole BH45. The maximum recorded thickness of weathered chalk is 9 m (average thickness 4.6 m where fully penetrated).

Weathered chalk ranges from very weak to medium strong sub-angular to angular gravel and cobbles. The chalk bedrock is of White Chalk sub-group and contains seams of flints throughout.

SPT 'N' values indicate that the material is very dense, as is expected from chalk bedrock. The results are presented in figure 6.10.1.

The results of permeability testing are shown in figure 6.10.4. The tests gave a minimum permeability of 5.44E-08 and a maximum permeability of 1.49E-04. The results indicate that the permeability of the chalk varies from very low to medium.

Based moderately conservatively on the SPT N values, a characteristic friction angle, ϕ of 37 degrees has been selected. The friction angle has been derived using the empirical relationship with SPT 'N' from Peck et al (1974).

A characteristic unconfined compressive strength of the rock of 6.5MN/m² was derived statistically from the laboratory test results, as shown in figures 6.10.2 and 6.10.3.

Due to the limited geotechnical information available, a unit weight, γ , of 20 kN/m³ has been selected for the chalk, based on published values (Barnes, 2000).

The deformation modulus for intact rock, E_i , and the deformation modulus for the rock mass, E_m , were derived from the SPT results using approximated relationships of E_i = 50N (MN/m²) and E_m = 5N (MN/m²) (Ciria Report 143 (1995)).

Table 6.11- Summary of Chalk Parameters

Material Parameter	Characteristic Value	Rationale	Reference
Unit weight (kN/m³)	20	Published value	Barnes (2000)
Angle of friction, ϕ (°)	37	Moderately conservative value derived from SPT results	Peck et al (1974)
Unconfined Compressive Strength (MN/m²)	6.5	Moderately conservative value derived conservatively from point load test results	
Deformation Modulus for intact rock, E_i (GN/m ²)	2.50	Moderately conservative value derived statistically from SPT results	CIRIA 143 (1995)
Deformation Modulus for the rock mass, E_m (GN/m ²)	0.250	Moderately conservative value derived statistically from SPT	CIRIA 143 (1995)

Material Parameter	Characteristic Value	Rationale	Reference
		results	
Earth pressure coefficient, k ₀	0.75	Published value	
Poisson's ratio, μ	0.3	Engineering Judgement	

6.4 Groundwater Chemistry

Please refer to the Ground Contamination Assessment 1168-10-211-RE-001 (2014)

7 Geotechnical Risk Register

7.1 Risk Rating

The risk rating is derived from Risk Rating = Risk Likelihood x Risk Severity. Where risk likelihood and risk severity are defined as:

RISK LIKELIHOOD RISK SEVERITY

1. LOW (Unlikely)1. LOW2. MEDIUM (Possible)2. MEDIUM3. HIGH (Probable)3. HIGH

This result in a risk that can be described as MINIMAL (0-3), RESIDUAL (4) or SIGNIFICANT (6-9) as per the risk matrix in Table 7.1:

Table 7.1 – Risk Matrix

			Severity				
		1	2	3			
	1	Minimal	Minimal	Minimal			
Likelihood	2	Minimal	Residual	Significant			
	3	Minimal	Significant	Significant			

7.2 Geotechnical Risks

Table 7.2 presents site wide geotechnical risks relating to the scheme.

Table 7.2 – Geotechnical Risks

					Post Desi	gn Measure		
Ref No.	Design Concept	Hazard / Activity	Risk / Potential outcomes	Design measures taken to remove or reduce risk	Risk Likelihood	Risk Severity	Risk	Residual risk actions
1	Central cutting	Glacial till, potentially acting as an aquiclude, may be discontinuous and may not be suitable to form a groundwater cut off.	Potential uplift of slab. Unmanageable groundwater inflow into excavation.	Continuous groundwater monitoring and pump tests during GI to try to gain a better understanding of material properties. Installation of tension piles. Use of jet grouting ground improvement.	2	2	Residual	Contractor to consider appropriate sequencing of work.
2	Central cutting	Under drainage of soft alluvium	Potential dewatering induced settlement.	Provide adequate cut off by secant piling. Installation of secant piled wall and jet grouting ground improvement to reduce groundwater ingress	2	2	Residual	-
3	Central cutting	Variable ground conditions - anticipated variability of the material properties	Could result in unexpected failures and differential settlements.	Installation of secant piled wall. Jet grouting ground improvement.	2	2	Residual	Contractor to consider appropriate sequencing of work.
4	Central cutting	High groundwater level with tidal influence	High water pressures could result in uplift of slab and excessive groundwater flow into excavation.	Continuous ground water monitoring and pump tests during GI to try to gain a better understanding of material properties. Installation of tension piles and secant piled wall. Jet grouting ground improvement.	2	2	Residual	Contractor to consider appropriate sequencing of work
5	Central cutting	Artesian and sub artesian pressures within chalk/fluvio-glacial and glacial till	High water pressures could result in uplift of slab and damage the toe of deep piles during excavation.	Tension piles are required. Use of jet grouting ground improvement to increase resistance in alluvial layer to potentially reduce pile lengths.	2	3	Minimal	Contractor to consider appropriate sequencing of work
6	Excavation and	Piping sands if pile interlock	Failure of retaining	NA	2	3	Minimal	If used potential

					Post Desig	ın Measure		
Ref No.	Design Concept	Hazard / Activity	Risk / Potential outcomes	Design measures taken to remove or reduce risk	Risk Likelihood	Risk Severity	Risk	Residual risk actions
	Construction outside of main excavation.	is not adequately achieved on minor retaining walls and temporary works	wall					significant risk
7	Central cutting	Unmanageable temporary and permanent seepage quantities	Serviceability failure	Use of secant bored piles and appropriate permanent waterproofing utilising hydrophilics, water bars etc	2	2	Residual	
8	Central cutting	Ground gas (methane)	Migration, accumulation and potential for asphyxiation / explosion. Delay in progress of works. Could cause major traffic disruption and reputational risk to client.	Protection measures to be outlined in the Construction Environmental Management Plan (CEMP) and implemented during construction (e.g. PPE, personal monitors/alarms) Migration pathways to adjacent site users to be considered and mitigated, as outlined in CEMP.	2	2	Residual	Contractor monitoring of gases during operations. All excavations undertaken to be treated as confined spaces. Contractor to consider the installation of an appropriate gas monitoring regime with the potential for a 'traffic light' system to provide an early warning
9	Central cutting	Ground gas (other / depleted oxygen)	Migration, accumulation and	Protection measures to be outlined in the CEMP and implemented during construction (e.g. PPE,	2	2	Residual	Contractor monitoring of

					Post Desig	n Measure		
Ref No.	Design Concept	Hazard / Activity	Risk / Potential outcomes	Design measures taken to remove or reduce risk	Risk Likelihood	Risk Severity	Risk	Residual risk actions
			potential for asphyxiation / explosion. Delay in progress of works.	personal monitors/alarms) Migration pathways to adjacent site users to be considered and mitigated, as outlined in CEMP.				gases during operations. All excavations undertaken to be treated as confined spaces. Contractor to consider the installation of an appropriate gas monitoring regime with the potential for a 'traffic light' system to provide an early warning
10	Scheme wide area	Work force coming into contact with contaminated materials	Delay progress of works and a risk to health of the workforce through direct contact and ingestion.	CEMP to outline requirements for mitigation required during construction (e.g. personal protective equipment (PPE)). Additional sampling to be undertaken during earthworks in accordance with a Materials Management Plan (MMP) to establish suitability for material reuse and/or requirements for disposal. Ensure that measures are in place to contain and deal with contamination.	2	2	Residual	Contractor to undertake ongoing sampling and testing, ensure working practices are appropriate, provision of appropriate PPE

					Post Desig	n Measure		
Ref No.	Design Concept	Hazard / Activity	Risk / Potential outcomes	Design measures taken to remove or reduce risk	Risk Likelihood	Risk Severity	Risk	Residual risk actions
11	Central cutting	Vibration causing clay/silt instability in sensitive cohesive materials	Could result in excessive settlement or instability.	The preliminary design specifies that vibrations caused by pile installation are kept to a minimum throughout use	1	3	Minimal	Ongoing monitoring of vibrations throughout construction.
12	Central Cutting and foot bridges	Aggressivity of ground towards concrete	Deterioration / decrease in strength of concrete slab and pile foundations could be affected.	Testing undertaken during site investigation and class of ground aggressivity evaluated.	1	2	Minimal	-
13	Central Cutting	Soft material underlying structures	Excessive/differential settlement. Bearing capacity failure.	Bearing resistance / settlement calculations undertaken.	1	3	Minimal	Formation inspections during construction and monitoring.
14	Central Cutting	Working / forming excavation with cutting.	Retaining wall instability /failure of earthwork.	Retaining wall stability assessment undertaken, the propping to be used in the temporary case	1	3	Minimal	Formation inspections during construction.
15	Central Cutting	Ground conditions/groundwater conditions resulting in pile integrity issues during construction	Would result in serious delays to the works and would require replacement of piles at substantial cost.	Employment of a bored piling system to form retaining and cut off walls.	1	2	Minimal	-
16	Central Cutting	Encountering obstructions	Obstructions could cause delays in excavation and installation of piles.	Extend guide wall excavation for the secant piled walls to base of made ground	2	1	Minimal	-
17	Scheme wide	Encountering services/Interaction with services	Service strike. Injury/death	Services survey to be undertaken prior to site works. Deflections and settlements to be minimised outside of construction area.	1	2	Minimal	-
				Service diversions to be undertaken.				

					Post Desig	n Measure		
Ref No.	Design Concept	Hazard / Activity	Risk / Potential outcomes	Design measures taken to remove or reduce risk	Risk Likelihood	Risk Severity	Risk	Residual risk actions
18	Scheme wide	Excavation, piling and trafficking ground in an area with a moderate risk of UXO encounter.	Serious injury/death. Delays to construction programme. Major traffic disruption. Reputational risk to client	BACTECH and EOD reports obtained and surveys undertaken.	1	2	Residual	Contractor to undertake further surveys during construction works. A UXO specialist should either supervise works or clear higher risk areas.
19	Central Cutting	site workers safety at	Only appropriate plant/equipment to be used.	1	2	Minimal	-	
			risk from failure of ground	Ensure save working distance from any excavations. Continual visual inspections of surrounding ground conditions of work area.				
				Ensure stabilizers on any equipment are in place.				
				Ground improvement of very low strength material prior to excavation.				
20	Hadaman d Oation	Everyations in an area of	Company to a material and	Installation of Secant Pile Wall and	1	1	Minimal	-
	Underground Option -	Excavations in an area of	General construction					
	formation of a cutting	poor ground, high groundwater with sensitive	risks, ground instability, excavation	use of Jet Grouting Ground Improvement to reduce the risk				
		structures in close proximity	collapse, groundwater	likelihood of ground instability,				
		Structures in close proximity	ingress, settlement	excavation collapse, groundwater				
			ingress, settlement	ingress and settlement. The				
				installation of stiff low permeability				
				structure will reduce the magnitude				
				of any remaining risk thus reducing				
				the risk severity (Refer to reference				

					Post Desig	n Measure		
Ref No.	Design Concept	Hazard / Activity	Risk / Potential outcomes	Design measures taken to remove or reduce risk	Risk Likelihood	Risk Severity	Risk	Residual risk actions
				2 and 5).				
21	Secant Piling to form groundwater cut off	Operating piling rigs in an urban environment in close proximity to live traffic and other site operations	Injury to personnel general public or damage to property caused by piling operations. Spillage of contaminated material	Construction Phasing has been considered during the preliminary design stage and should be developed further during detailed design stage to ensure that piling operations are appropriately sequenced to avoid unnecessary interaction between plant/personnel.	2	2	Residual	Contractor to consider appropriate sequencing of work to ensure safety of operatives and general public.
22	Tension Piling	Operating piling rigs in an urban environment in close proximity to live traffic and other site operations and piling in to ground with elevated groundwater pressure	Injury to personnel, general public. Installation of tension piles potentially creating preferential pathway for groundwater flows. Instability of ground beneath piling rig	Tension piles are required, no design measures taken to reduce the risk	2	2	Residual	Contractor to consider appropriate sequencing of work to ensure safety of operatives and general public
23	Other piling activities	Operating piling rigs in an urban environment in close	Injury to site personnel , damage to nearby	The Preliminary Design Specifies that vibrations caused by pile	1	3	Minimal	Contractor to ensure that

					Post Desig	n Measure		
Ref No.	Design Concept	Hazard / Activity	Risk / Potential outcomes	Design measures taken to remove or reduce risk	Risk Likelihood	Risk Severity	Risk	Residual risk actions
		proximity to live traffic and	structures	installation shall be kept to a				vibrations are
		other site operations. Sheet		minimum through the use of				monitored
		piling installation causing		suitable installation techniques				throughout
		vibration						construction.
24					1	2	Minimal	
	Jet Grouting and	Operating jet grouting	Injury to personnel	The Preliminary Design Specifies				Contractor to
	Ground Improvement	equipment in an urban	caused by grouting	that vibrations caused by pile				consider
	(Mainline)	environment with ground	operations, generation	installation shall be kept to a				appropriate
		that is susceptible to heave	of contaminated	minimum through the use of				sequencing of
			slurry/arisings,	suitable installation techniques				work to ensure
			potential for ground					safety of general
			heave					public
25					2	1	Minimal	NA
	Excavation of material	Formation of excavations in	Injury to personnel	Ground Improvement (lime	_			
	within cutting	urban environment using	due to restricted	stabilisation) will increase the				
		large plant	working areas and	stability of the material to be				
			instability of material	excavated making the material more				
			to be excavated	manageable				

					Post Desig	n Measure		
Ref No.	Design Concept	Hazard / Activity	Risk / Potential outcomes	Design measures taken to remove or reduce risk	Risk Likelihood	Risk Severity	Risk	Residual risk actions
26	Excavations below groundwater level	Forming excavations below natural groundwater level	Excessive groundwater inflow if groundwater cut off is not adequately achieved and ground instability either when working below groundwater level or induced through dewatering activities	Installation of Secant Pile Wall and use of Jet Grouting Ground Improvement to reduce groundwater ingress by reducing permeability	2	1	Minimal	NA
27	Dewatering activities	Dewatering activities causing groundwater levels to be locally depressed	Movement, settlement and instability of surrounding structures	Installation of Secant Pile Wall and use of Jet Grouting Ground Improvement to reduce groundwater ingress and thus reducing the likely scope of the dewatering operations.	2	1	Minimal	NA
28	Ground Improvement (side roads)	General construction risks	Injury to personnel, generation of contaminated slurry/arisings.	NA	2	1	Minimal	Contractor to implement suitable control measures, RAMS to manage risks

					Post Desig	n Measure		
Ref No.	Design Concept	Hazard / Activity	Risk / Potential outcomes	Design measures taken to remove or reduce risk	Risk Likelihood	Risk Severity	Risk	Residual risk actions
29	Construction works and clearance of burial ground	Excavation of human remains both above and below groundwater level	Human Health related issues, infectious diseases, injuries due to confined working environment	A pre enabling works Ground Investigation is planned. After the investigation more will be known about the potential condition of any human remains which will allow suitable methods of working to be specified	2	3	Significant area not investigated	Contractor to implement control procedures such as ongoing contamination assessment to ensure that PPE is suitable
30	Piling and Construction in the vicinity of the dock	Piling and excavation in close proximity to the docks. Alteration to the old dock wall	Injury to personnel caused by piling operations. Damage to the structure of the dock due to piling/excavation	Additional Ground Investigation has been recommended in the area of the docks to take account of a proposed change to design	2	2	Residual	If additional GI is undertaken this information should be built in to temporary works design. Contractor to implement suitable control measures for working in close proximity to water. A

						n Measure		
Ref No.	Design Concept	Hazard / Activity	Risk / Potential outcomes	Design measures taken to remove or reduce risk	Risk Likelihood	Risk Severity	Risk	Residual risk actions
								monitoring and
								inspection
								programme
								should be
								implemented

Table UT1 - Services

Utility	New / Existing / To divert	Affected Area
Existing Openreach Equipment Existing Kingston Communications Equipment	Existing, not affected To divert	
Existing Kingston Communications Equipment	Existing, not affected	
Existing National Power Grid (LV) Equipment	To divert	
Existing National Power Grid (HV 11kV)	To divert	Scheme wide
Existing National Power Grid (LV and HV 11kV)	Existing, not affected	
Existing Northern Gas Network (low pressure)	To divert	
Existing Northern Gas Network	Existing, not affected	
Yorkshire Water Sewer	Existing, not affected	Commercial Road and Queen Street

8 References

Previous Desk Studies

Pell Frischmann	A63 Castle Street Improvements, Hull, Project Support Framework – Preliminary Sources Study Report, Report Reference W11189/VAA/02 Revision 1.	2009a
Ground Investigation	ns (General)	
Allied Exploration & Geotechnics Ltd.	A63 Trunk Road Improvement, Castle Street Hull – Ground Investigation	1994
Geotechnics Ltd.	A63 Castle Street Improvement, Hull, Reference PC135220, October 13	2013
Site Specific Reports	3	
Acer	A63 Trunk Road Improvements, Castle Street, Hull – Geotechnical Interpretative Report on Ground Investigation	1995
Landmark Information Group Services	Report Ref 166624-1-1, Envirocheck Report on Castle Street, Hull	2002
BACTEC	Explosive Ordnance Threat Assessment of A63, Castle Street, Hull	2008
GroundSure Ltd	Report ref EMS_65650_82556, Environmental Data Report	2008
Highways Agency	A63 Trunk Road Improvements – Hull, Technical Appraisal Report	2008
Pell Frischman	A63 Castle Street Improvement Hull, Flood Risk Assessment	2009b
Pell Frischman	A63 Castle Street Improvement Hull - Environmental Assessment Report (Options Selection Stage), Report Reference W11189/T13/02 Final Rev 2	2010
Pell Frischman	A63 Castle Street Improvements – Environmental Statement Scoping Report	2011
Landmark Information Group Services	Report Ref. 43865337-1, Envirocheck Report on Castle Street, Hull	2013

Guidance Documents

Geology of the Country around Kingston upon Hull and Brigg, Memoir for 1:50,000 geological sheets 80 and 89. HMSO 1992

Ground Contamination Assessment 1168-10-211-RE-001 (2014)

BS 1377:1990: Methods of Test for Soils for Civil Engineering Purposes

BS 5930:1999: Code of Practice for Site Investigations.BS EN 1997-1:2004: Eurocode 7, Geotechnical

Design - Part 1: General Rules

BS EN 1997-2:2007: Eurocode 7, Geotechnical Design - Part 2: Ground Investigation and Testing

HD 22/08 'Managing Geotechnical Risk' (DMRB, 2008)

Mott MacDonald Grontmij Reports

MMGJV The Groundwater Report - 1168-10-223-RE-001-PD1

MMGJV The Pumping Test Report - 1168-10-223-RE-002-PD1

MMGJV The Groundwater Modelling Report - 1168-10-223-RE-003-PD1

General

Barnes (2000) Soil Mechanics - Principals and Practice, 2nd Ed. Macmillan Press Limited

Vermeer P.A. (1998) Plaxis, Finite Element Code for Soil and Rock Analysis – Version 7, Material Models Manual, p2.7. Rotterdam: Balkema.

British Geological Survey, BGS (1980) Sheet TA 12 NW, 1:10,560 scale

British Geological Survey (1982) Sheet TA 02 NE, 1:10,560 scale

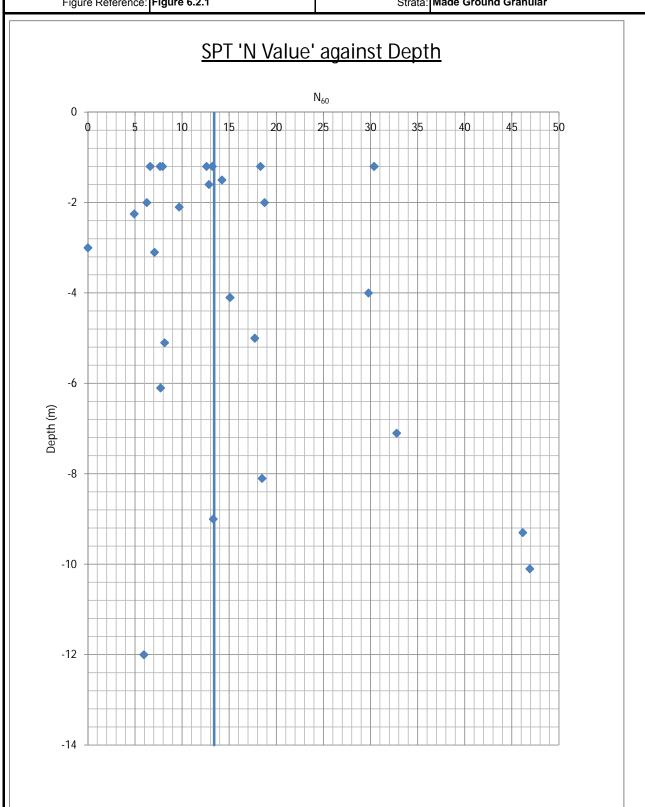
British Geological Survey (1983) Sheet 80 Kingston upon Hull, 1:50,000 scale, Drift Edition

Ciria Report 143 (1995) The standard penetration test (SPT): methods and use.

Gibson (1953) Experimental Determination of the True Cohesion and True Angle of Internal Friction in Clays, Proc. of the Third Int. Conf. on Soil Mechanics and Foundation Engineering, Zurich.

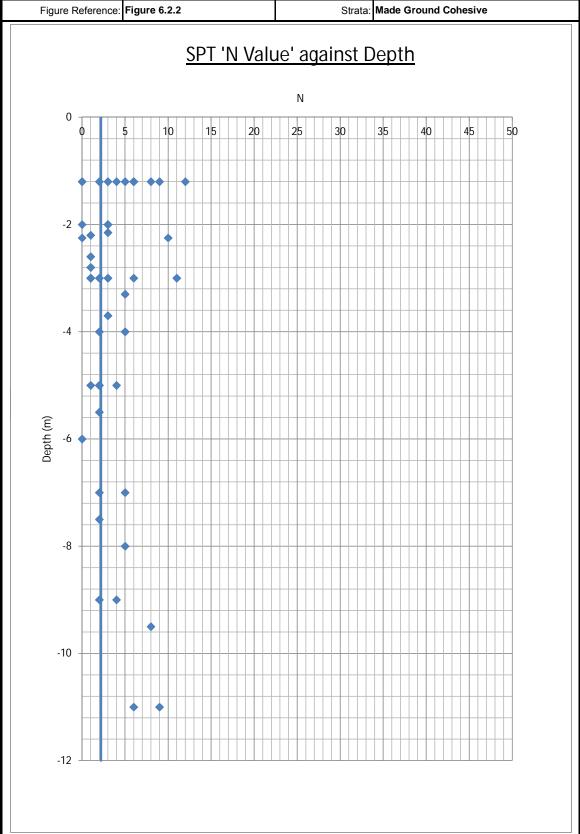
Jaky J. (1948) Pressure in silos, 2nd ICSMFE, London, Vol. 1, pp 103-107.

Peck R.B, Hanson, W.E, and Thornburn, T.H, (1974) Foundation Engineering, 2nd Ed., John Wiley, New York.


Underpass Drainage System Strategy 1168-08-005-RE-002.

Yandzio E. (1998) SCI-P-187: 'Design Guide for Steel Sheet Pile Bridge Abutments', pp27-35.

FIGURES



Report Reference:	1168-09-152-RE-001	Project Title:	A63 Castle Street Improvements
Figure Reference:	Figure 6.2.1	Strata:	Made Ground Granular

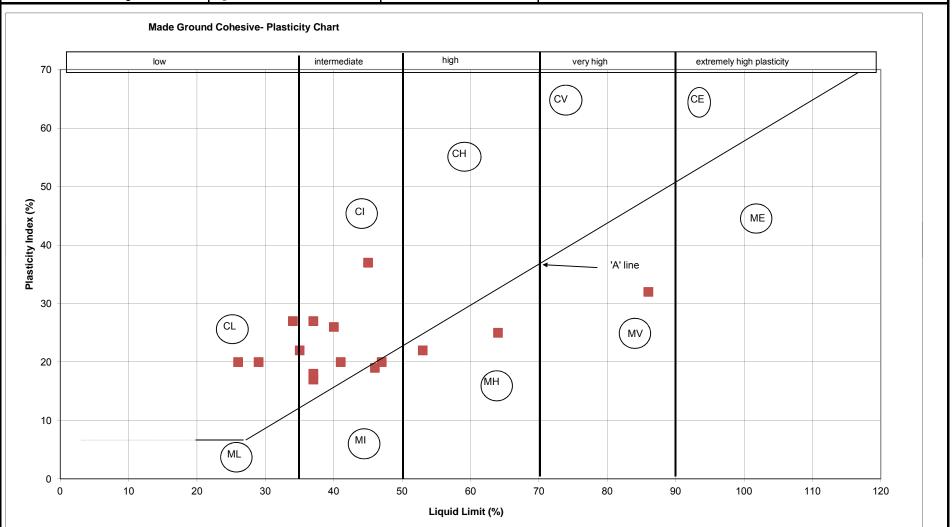

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Improvements

Figure Title: Plasticity Chart

Report Reference: 1168-09-152-RE-001	Project Title: A63 Castle Street
Figure Reference: Figure 6.2.3	Strata: Made Ground Cohesive

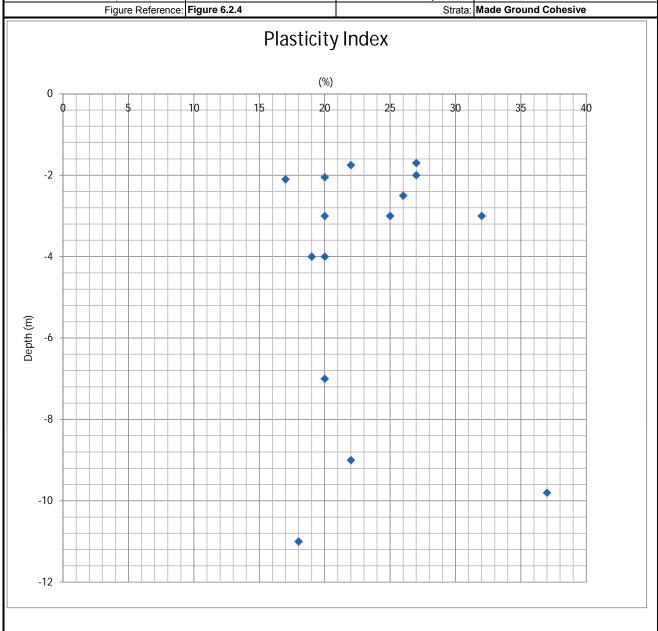


Figure Title: Plasticity Index

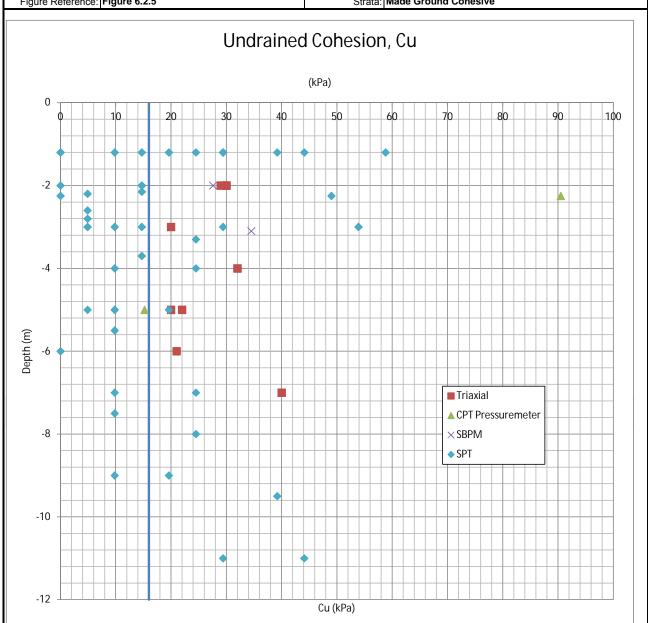

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street

Figure Reference: Figure 6.2.4 Strata: Made Ground Cohesive

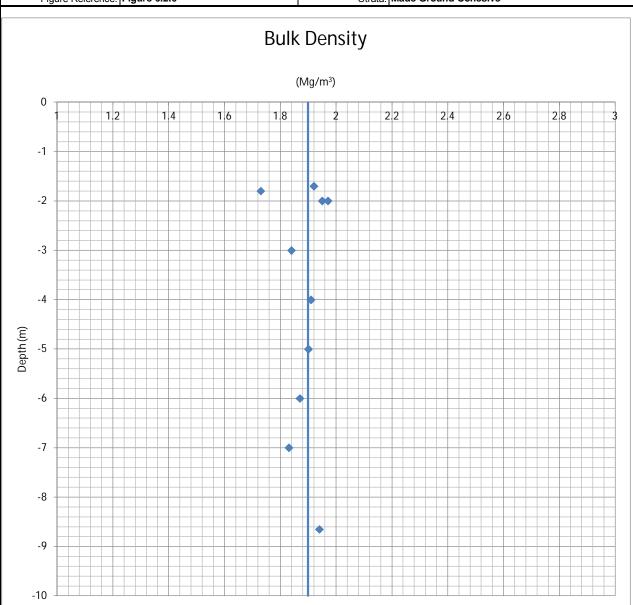

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.2.5 Strata: Made Ground Cohesive

Figure Title: Bulk Density

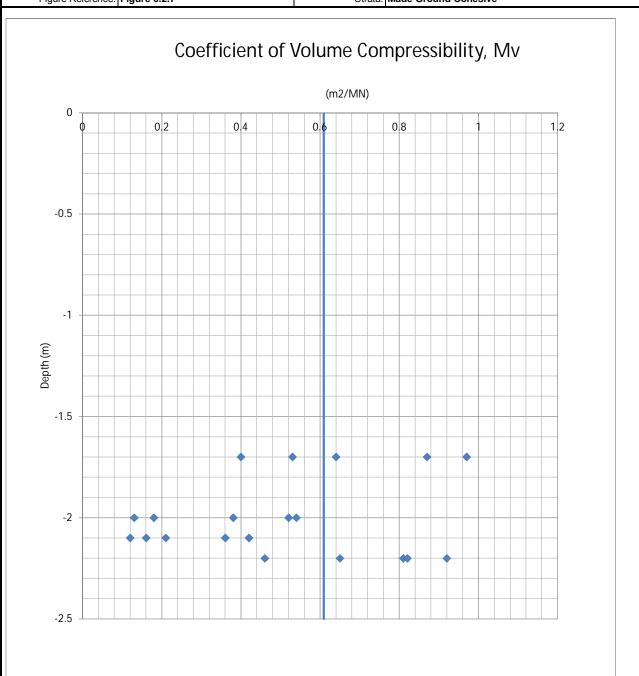

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.2.6 Strata: Made Ground Cohesive

Figure Title: Coefficient of Volume Compressibility

Report Reference: 1168-09-19	52-RE-001	Project Title:	A63 Castle Street
Figure Reference: Figure 6.2	2.7	Strata:	Made Ground Cohesive

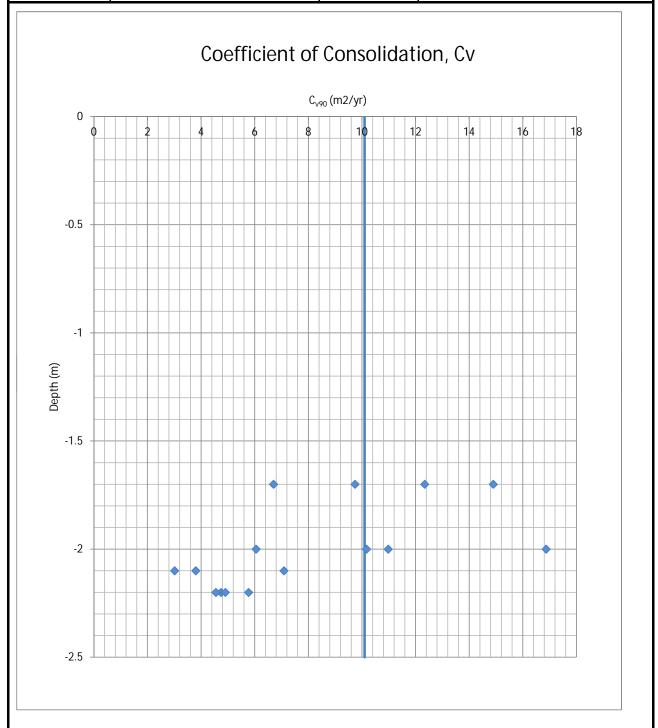


Figure Title: Coefficient of Consolidation

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street

Figure Reference: Figure 6.2.8 Strata: Made Ground Cohesive

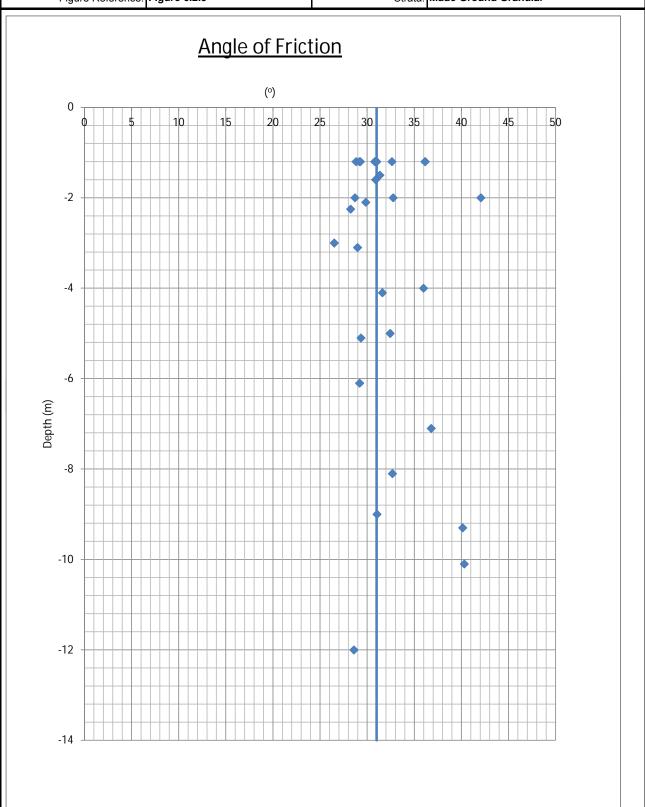


Figure Title: Angle of Friction

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Improvements

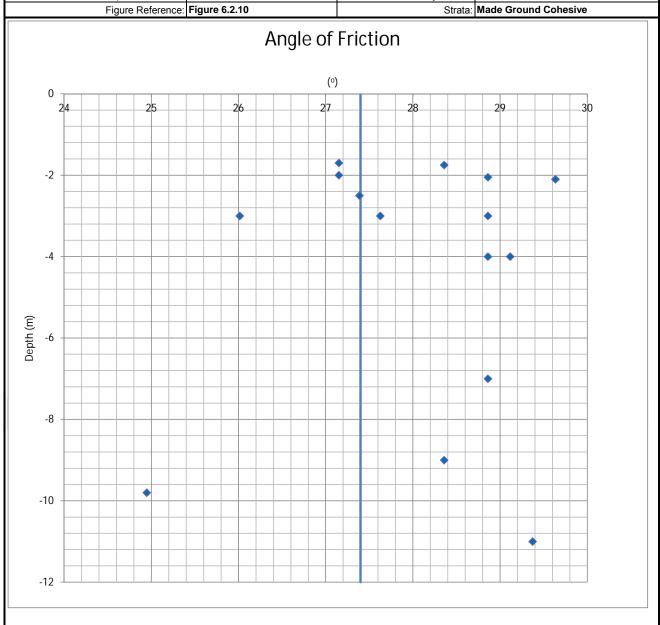
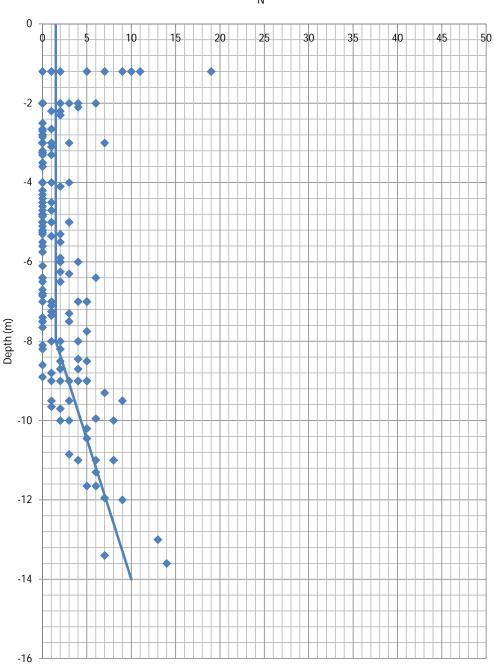
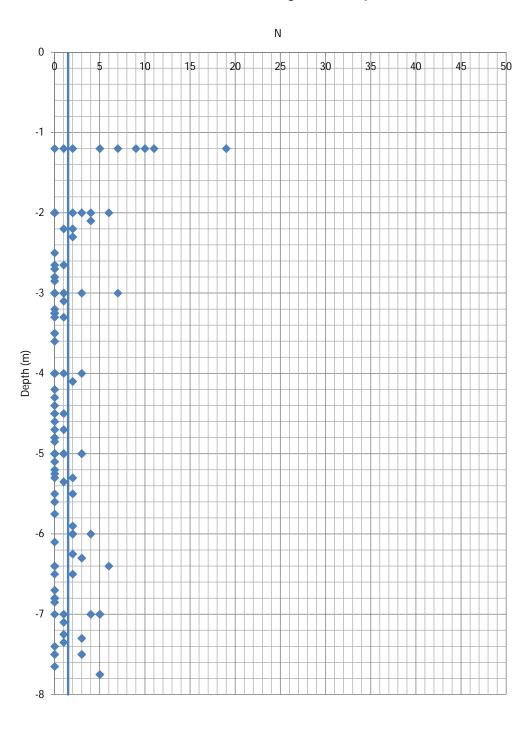
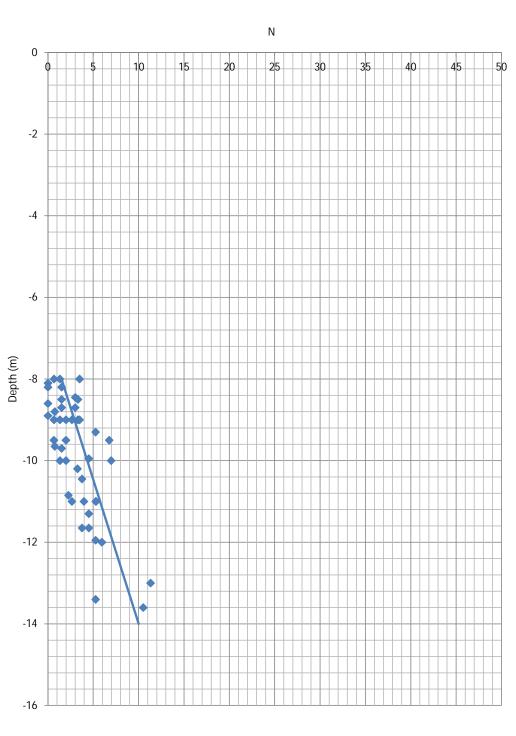

Figure Reference: Figure 6.2.9 Strata: Made Ground Granular

Figure Title: Angle of Friction


Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.2.10 Strata: Made Ground Cohesive


Report Reference:	1168-09-152-RE-001	Project Title:	A63 Castle Street Improvements
Figure Reference:	Figure 6.3.1	Strata:	Cohesive Alluvium


Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Improvements
Figure Reference: Figure 6.3.2 Strata: Cohesive Alluvium <8m bgl

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Improvements

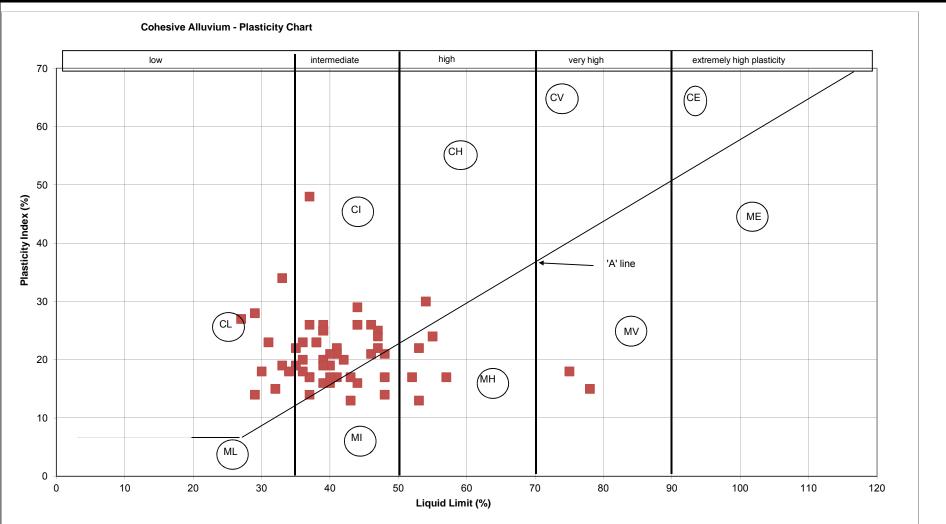
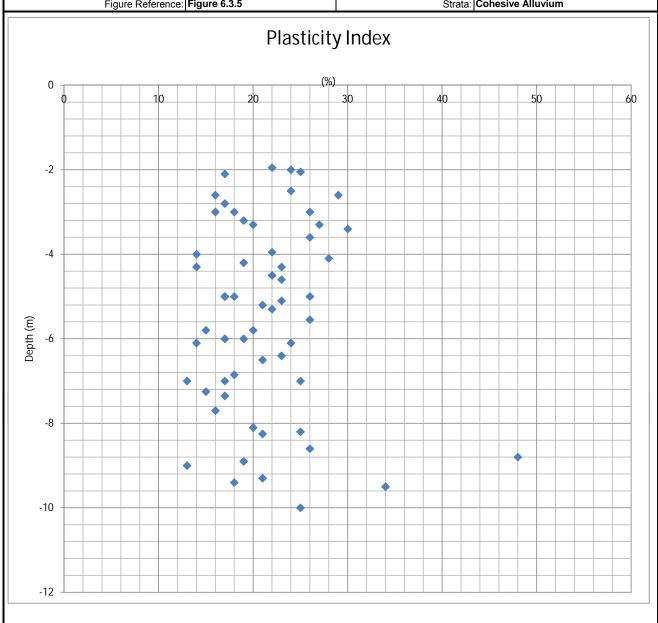
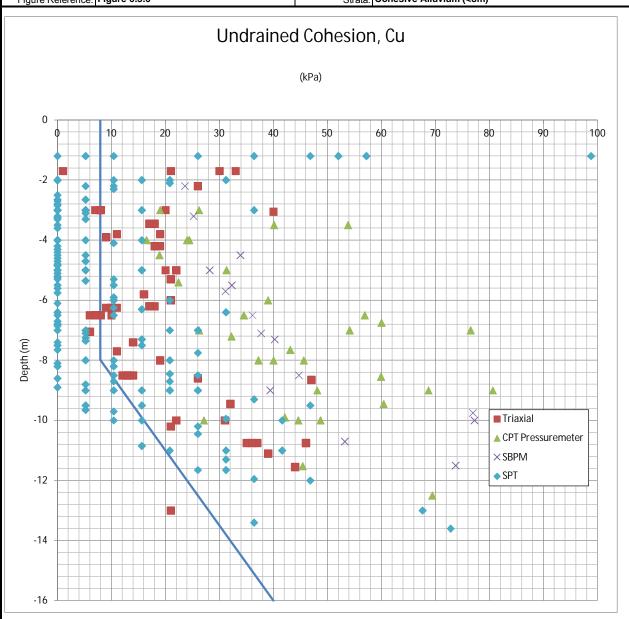
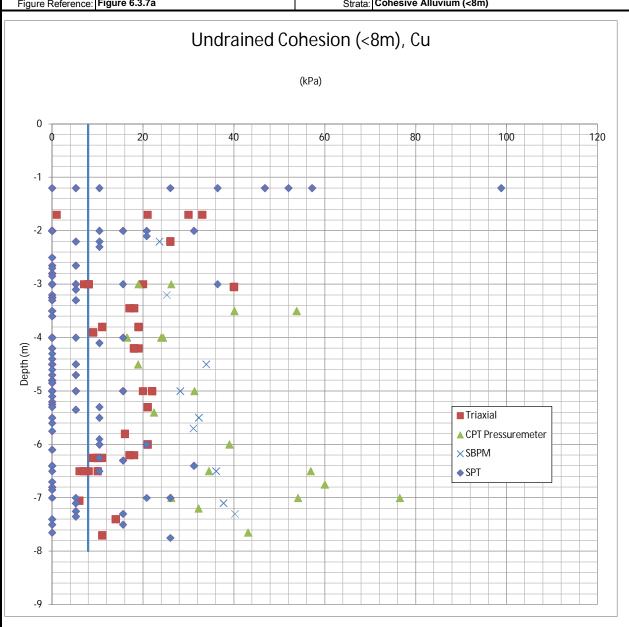

Figure Reference: Figure 6.3.3 Strata: Cohesive Alluvium >8m bgl

Figure Title: Plasticity Chart

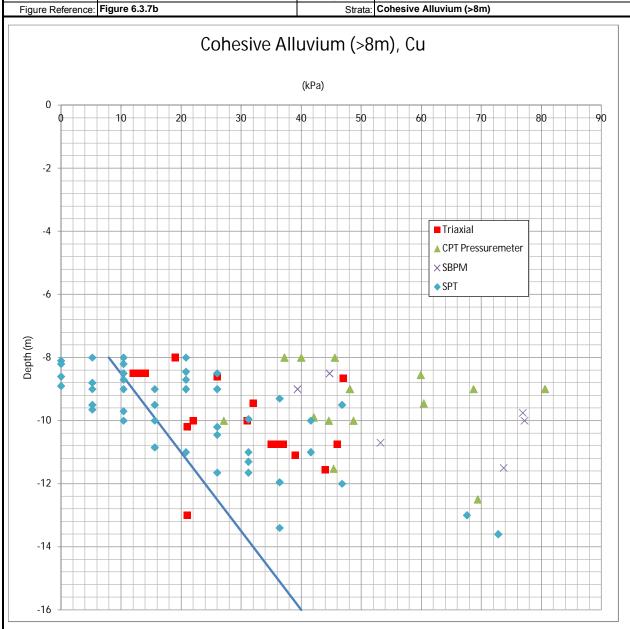

Report Reference:	1168-09-152-RE-001	Project Title:	A63 Castle Street
Figure Reference	Figure 6.3.4	Strata:	Cohesive Alluvium


Figure Title: Plasticity Index

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.3.5 Strata: Cohesive Alluvium



Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.3.6 Strata: Cohesive Alluvium (<8m)



Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.3.7a Strata: Cohesive Alluvium (<8m)

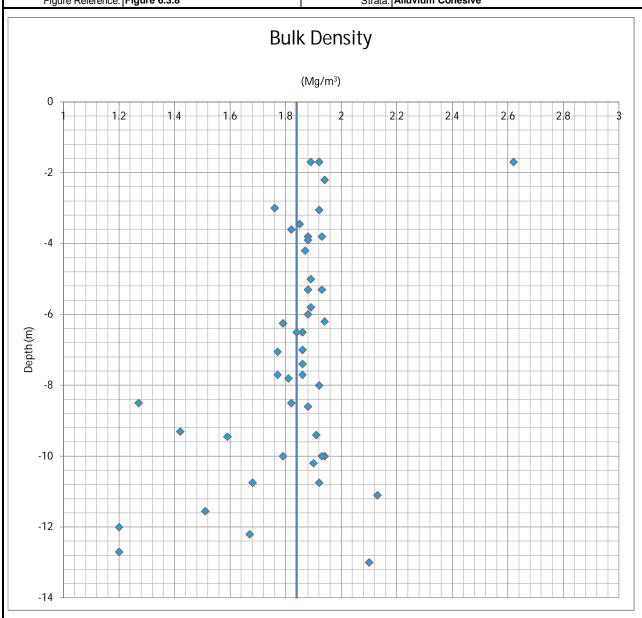

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street

Figure Title: Bulk Density

Report Reference: 1168-09-	-152-RE-001	Project Title:	A63 Castle Street
Figure Reference: Figure 6	5.3.8	Strata:	Alluvium Cohesive

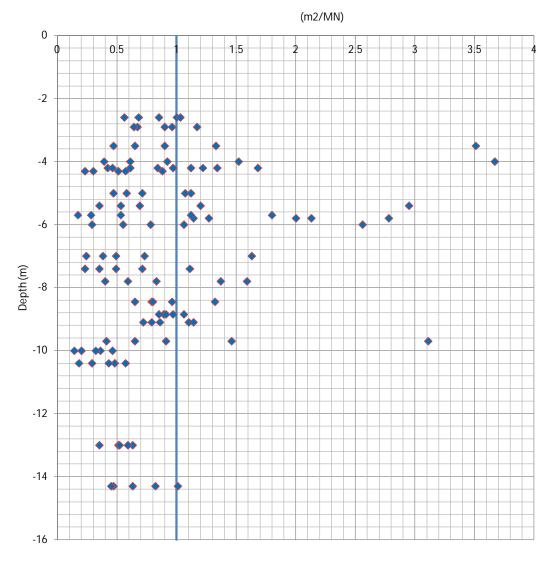


Figure Title: Coefficient of Volume Compressibility

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street

Figure Reference: Figure 6.3.9 Strata: Alluvium Cohesive

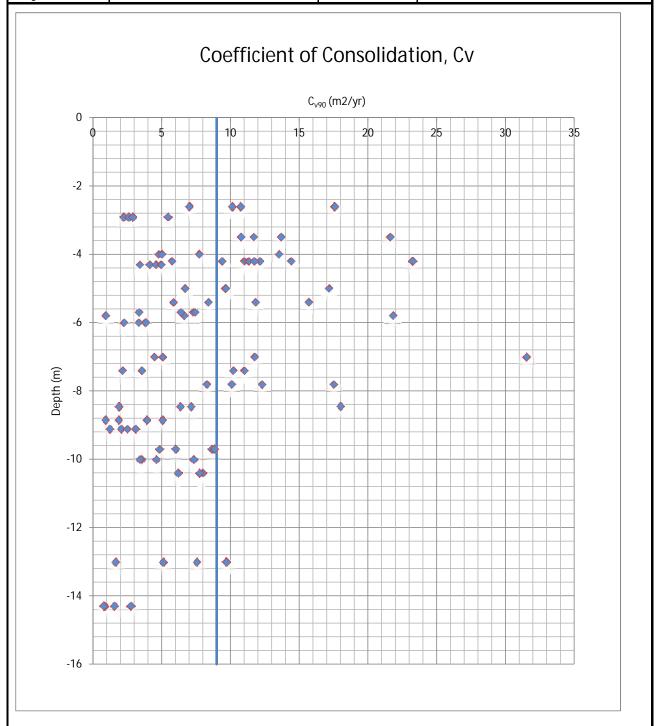

Coefficient of Volume Compressibility, Mv

Figure Title: Coefficient of Consolidation

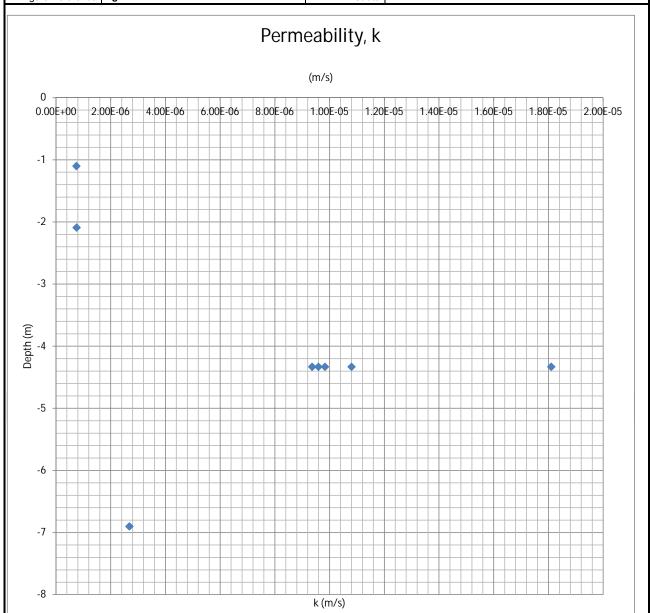

Report Reference: 1168-09-152-RE-001	Project Title: A63 Castle Street
Figure Reference: Figure 6.3.10	Strata: Alluvium Cohesive

Figure Title: Permeability

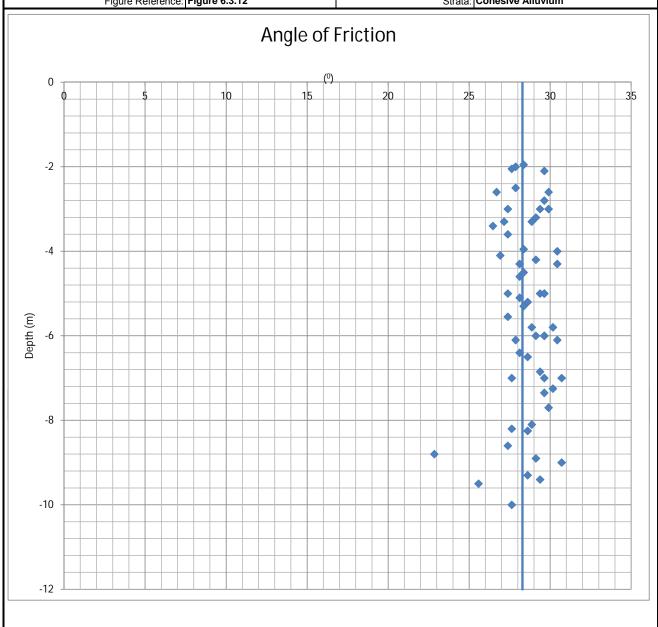
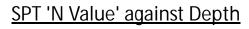
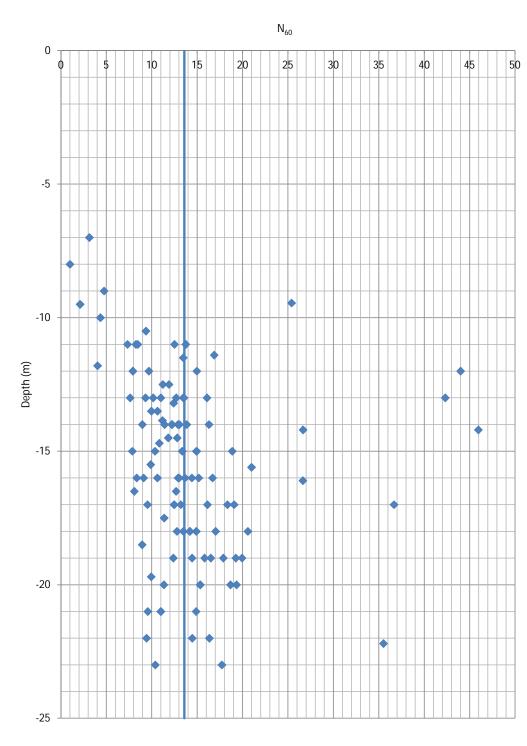

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.3.11 Strata: Cohesive Alluvium

Figure Title: Angle of Friction


Report Reference:	1168-09-152-RE-001	Project Title:	A63 Castle Street
Figure Reference:	Figure 6.3.12	Strata:	Cohesive Alluvium

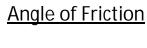


Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Improvements

Figure Reference: Figure 6.4.1 Strata: Granular Alluvium

Figure Title: Permeability

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: 6.4.2 Strata: Granular Alluvium



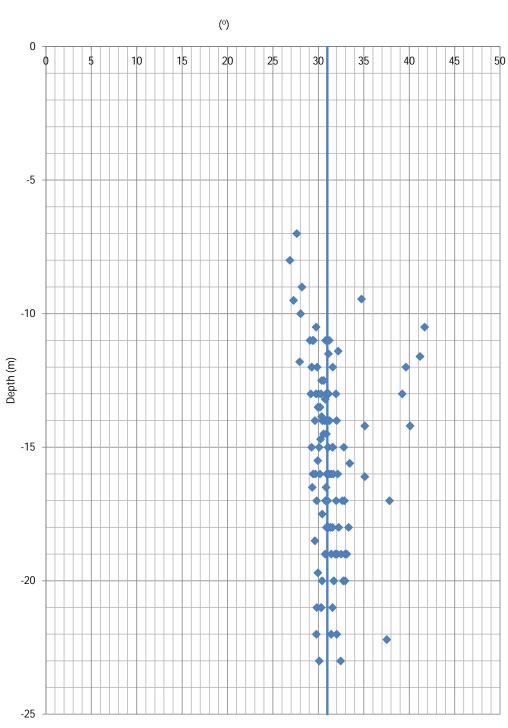
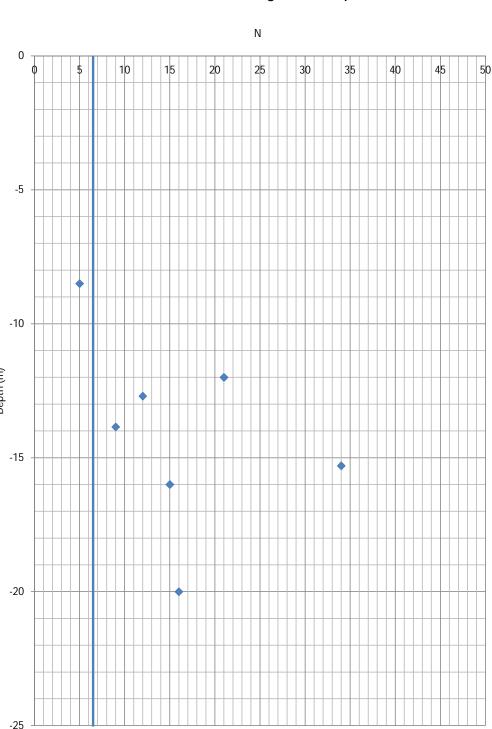


Figure Title: Angle of Friction

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Improvements

Figure Reference: Figure 6.4.3 Strata: Granular Alluvium



Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Improvements

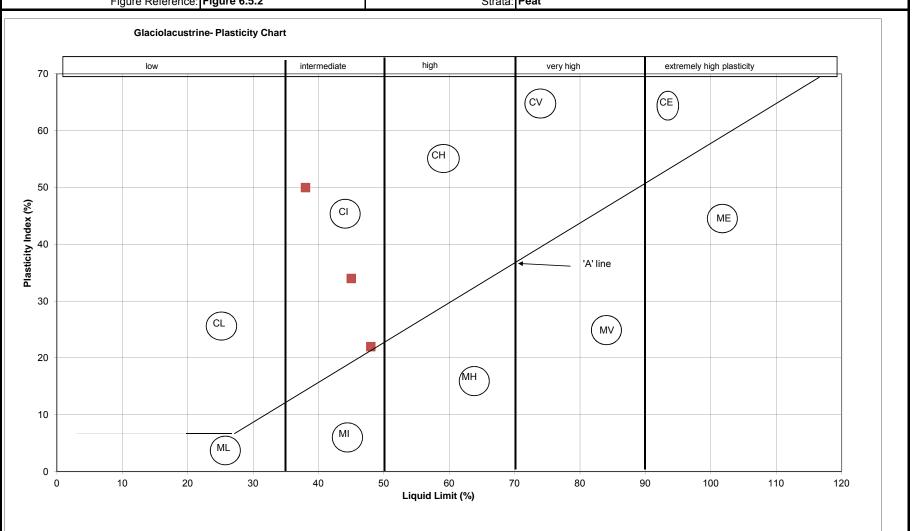
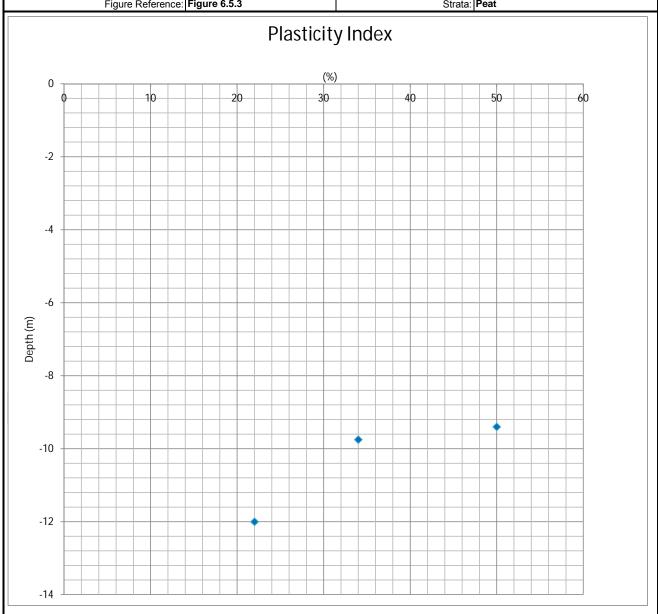
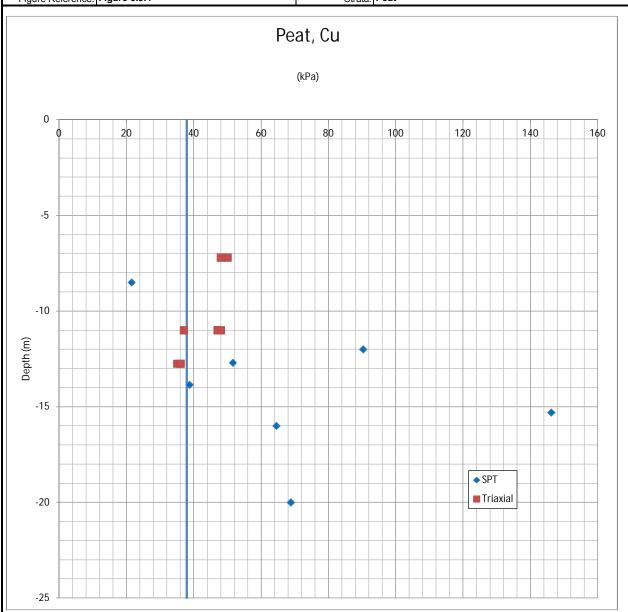

Figure Reference: Figure 6.5.1 Strata: Peat

Figure Title: Plasticity Chart


Report Reference: 1168-09-152-RE-001	Project Title:	A63 Castle Street
Figure Reference: Figure 6.5.2	Strata:	Peat


Figure Title: Plasticity Index

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.5.3 Strata: Peat

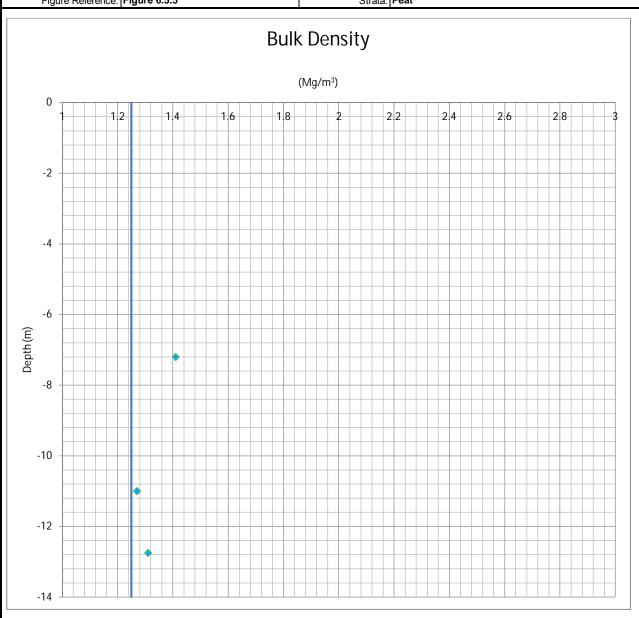
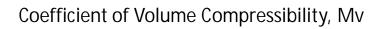

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.5.4 Strata: Peat

Figure Title: Bulk Density


Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.5.5 Strata: Peat

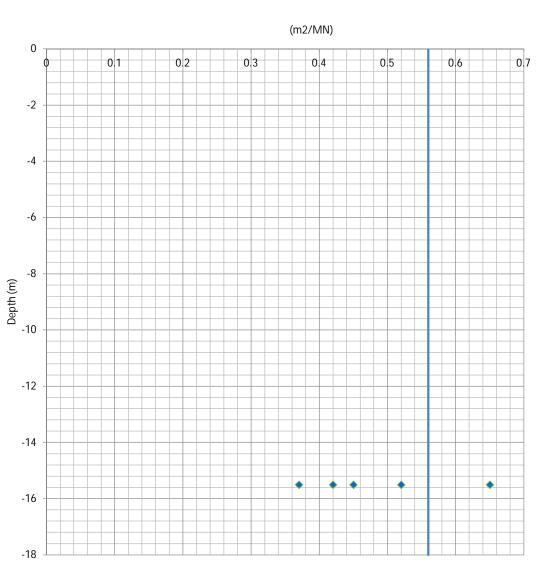


Figure Title: Coefficient of Volume Compressibility

Report Reference:	1168-09-152-RE-001	Project Title:	A63 Castle Street
Figure Reference:	Figure 6.5.6	Strata:	Peat

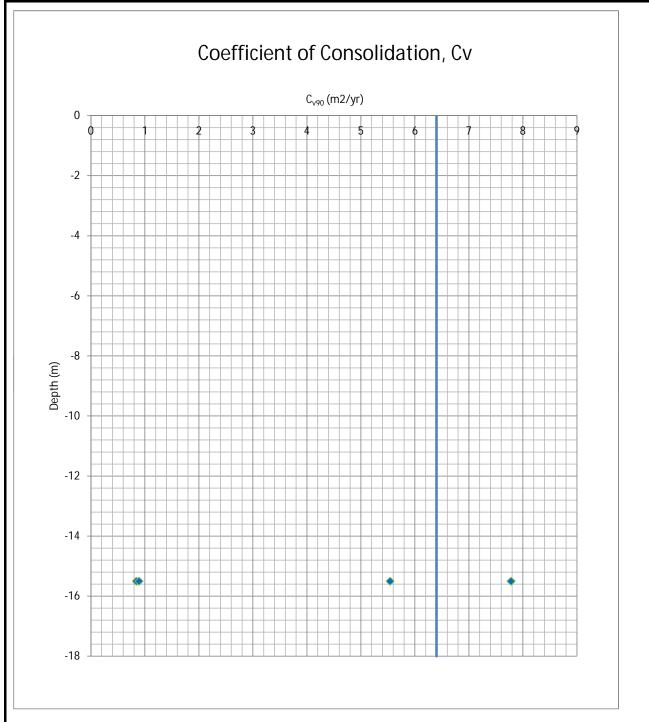


Figure Title: Coefficient of Consolidation

Report Reference: 1168-09-152-RE-001	Project Title: A6	63 Castle Street
Figure Reference: Figure 6.5.7	Strata: Pe	eat

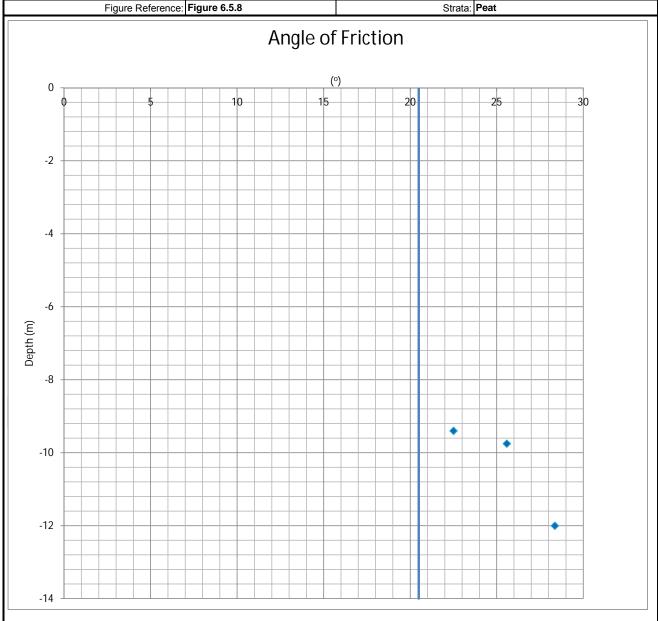


Figure Title: Angle of Friction

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street

Figure Reference: Figure 6.5.8 Strata: Peat

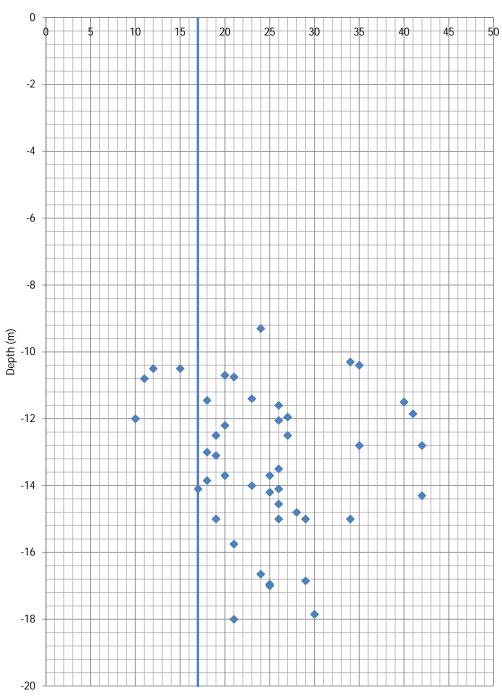


Figure Title: SPT N-Value

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Improvements
Figure Reference: Figure 6.6.1 Strata: Glacial Till

SPT 'N Value' against Depth

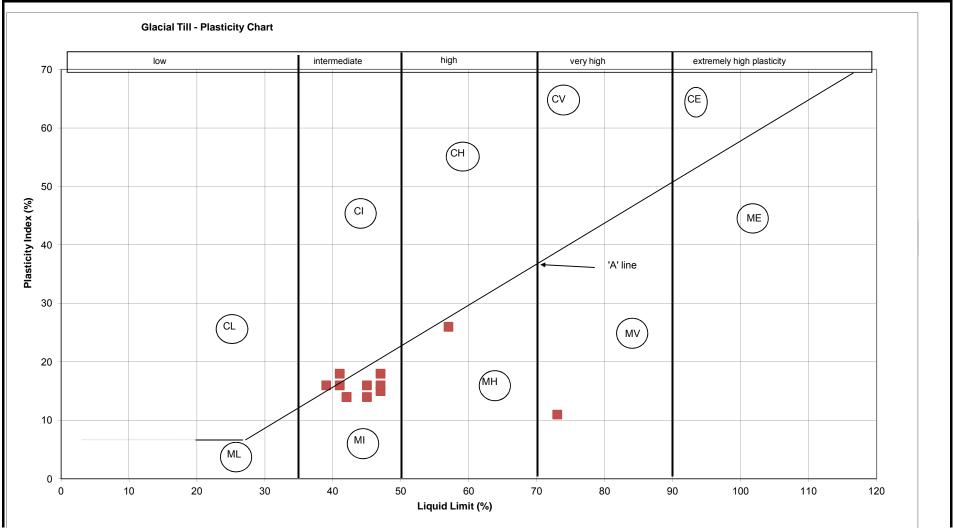


Figure Title: Plasticity Chart

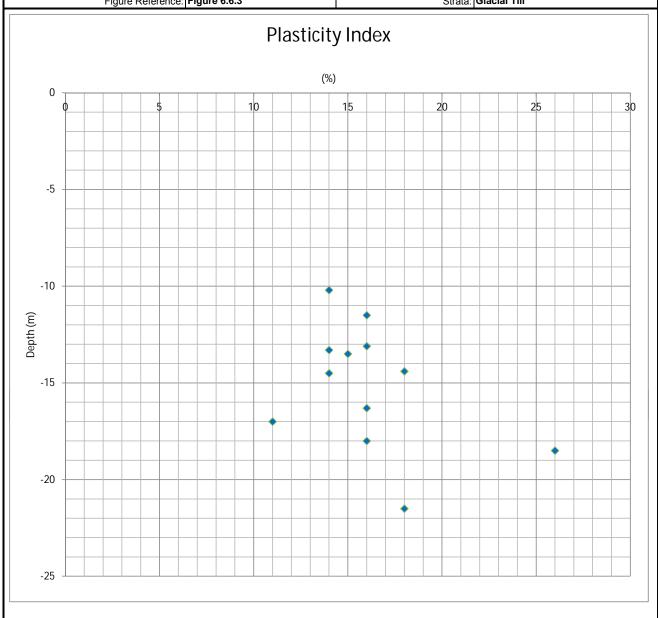

Report Reference: 1168-09-152-RE-	-001 Project Title	A63 Castle Street
Figure Reference: Figure 6.6.2	Strata	: Glacial Till

Figure Title: Plasticity Index

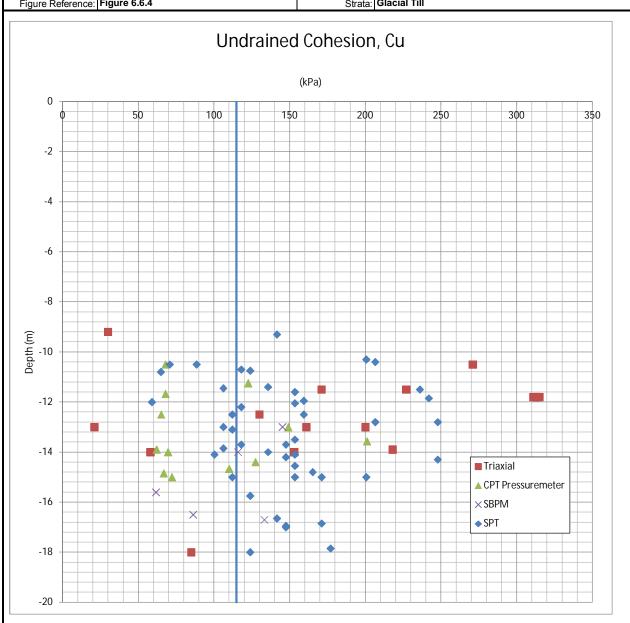

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.6.3 Strata: Glacial Till

Figure Title: Undrained Cohesion

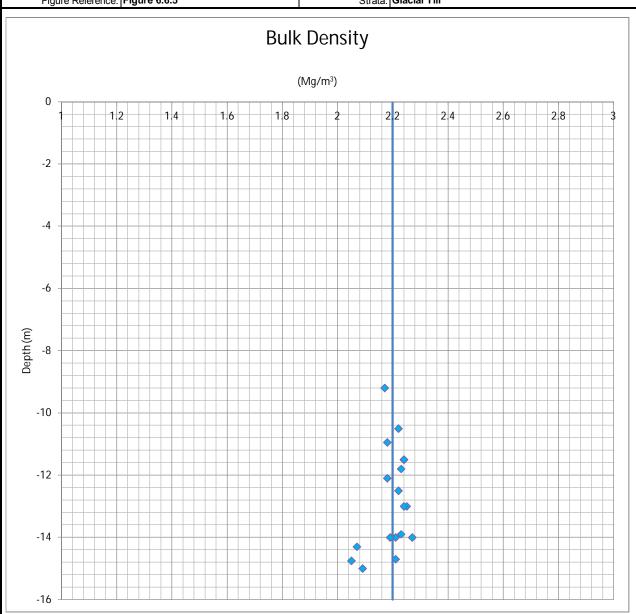
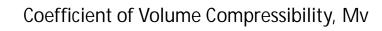
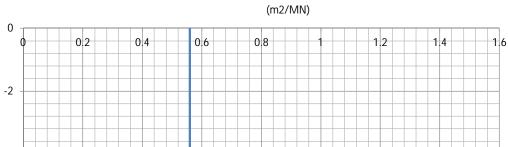

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.6.4 Strata: Glacial Till

Figure Title: Bulk Density


Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.6.5 Strata: Glacial Till



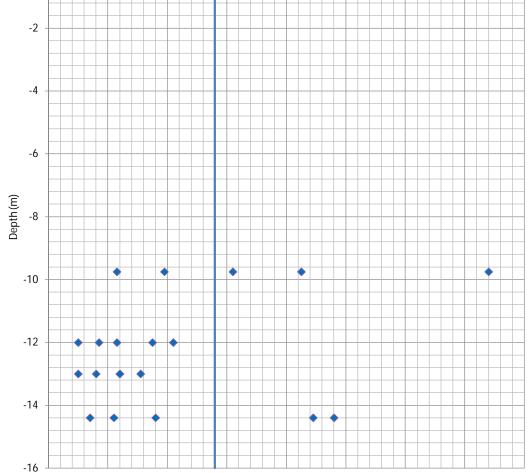


Figure Title: Coefficient of Volume Compressibility

Report Reference:	1168-09-152-RE-001	Project Title:	A63 Castle Street
Figure Reference:	Figure 6.6.6	Strata:	Glacial Till

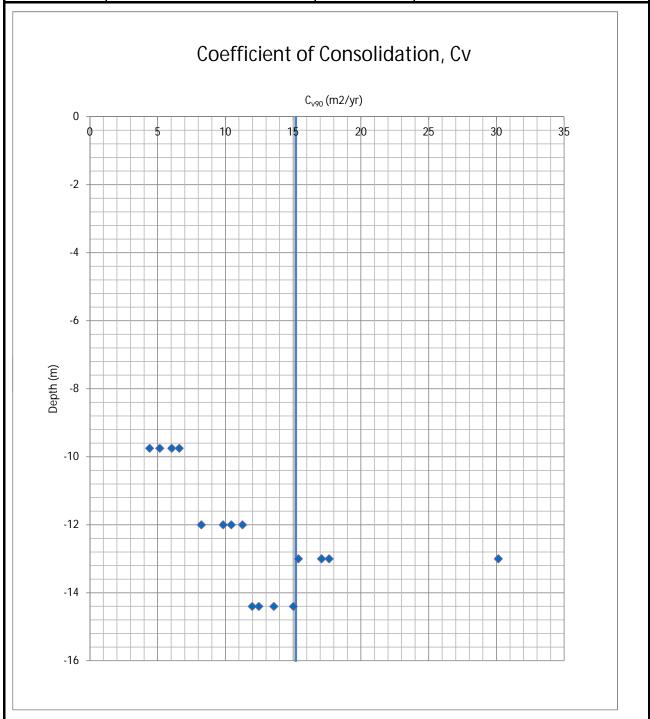


Figure Title: Coefficient of Consolidation

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street

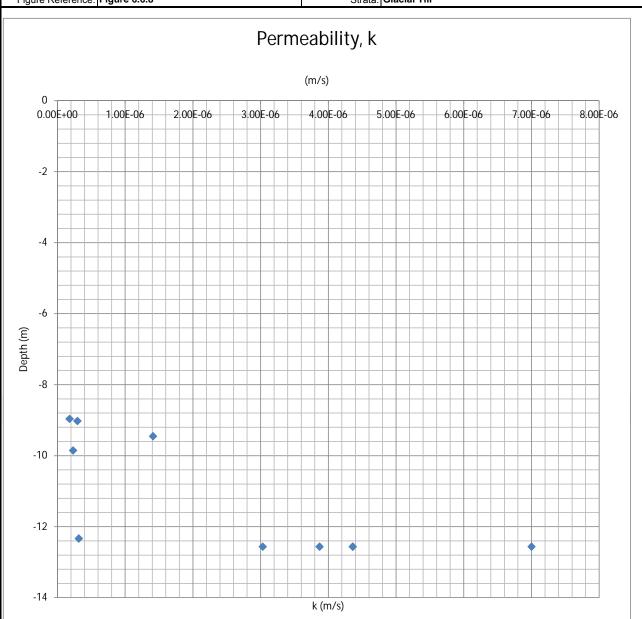

Figure Reference: Figure 6.6.7 Strata: Glacial Till

Figure Title: Permeability

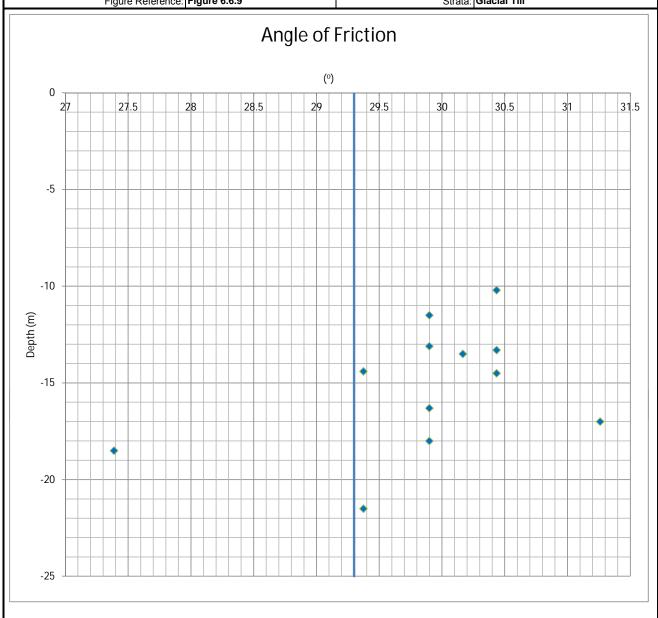

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.6.8 Strata: Glacial Till

Figure Title: Angle of Friction

Report Reference: 1168-09-152-RE-001	Project Title: A63 Castle Street
Figure Reference: Figure 6.6.9	Strata: Glacial Till

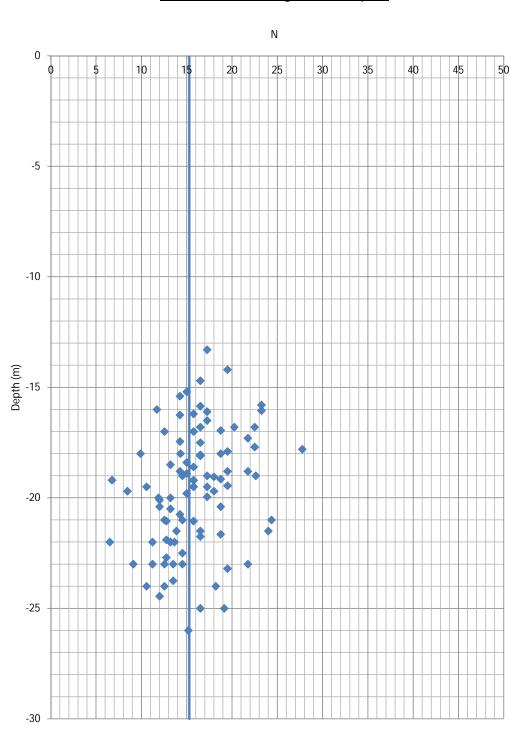


Figure Title: SPT N-Value

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Improvements
Figure Reference: Figure 6.7.1 Strata: Glaciolucustrine

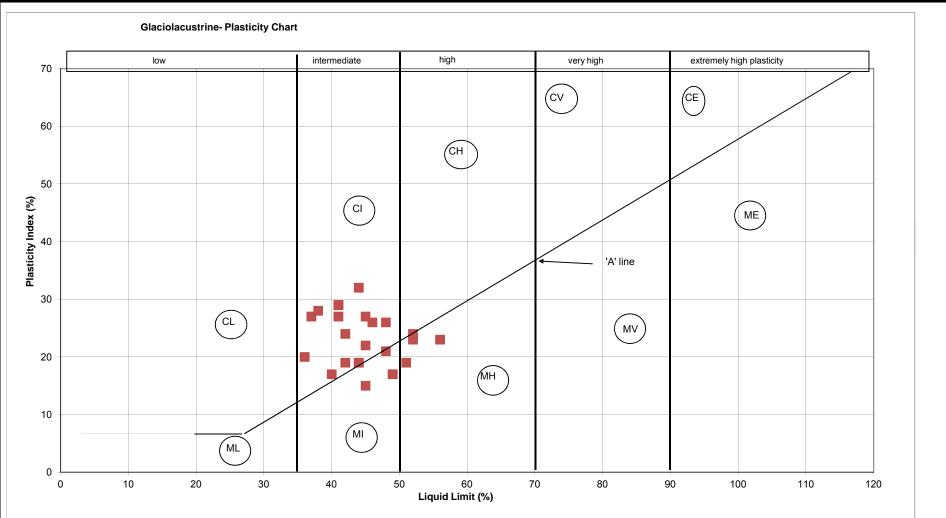

SPT 'N Value' against Depth

Figure Title: Plasticity Chart

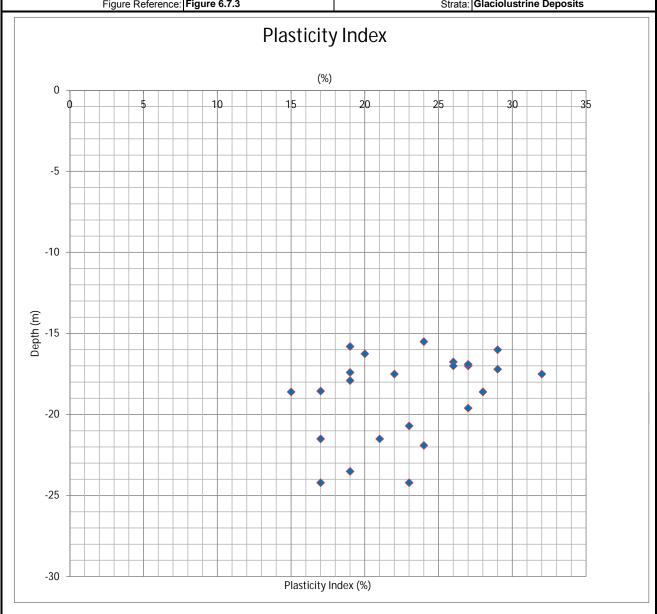

Report Reference:	1168-09-152-RE-001	Project Title:	A63 Castle Street
Figure Reference:	Figure 6.7.2	Strata:	Glaciolacustrine

Figure Title: Plasticity Index

Report Reference: 1168-09-152-RE-00	01 Project Tit	e: A63 Castle Street
Figure Reference: Figure 6.7.3	Stra	a: Glaciolustrine Deposits

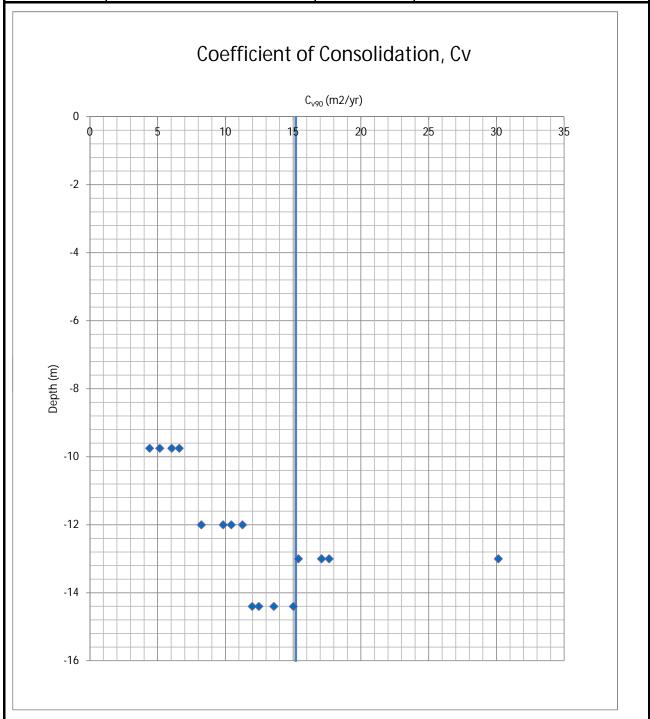


Figure Title: Coefficient of Consolidation

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street

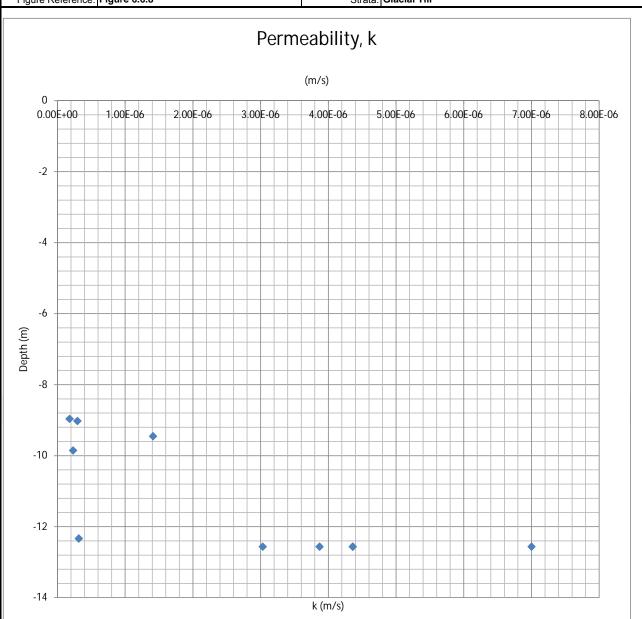

Figure Reference: Figure 6.6.7 Strata: Glacial Till

Figure Title: Permeability

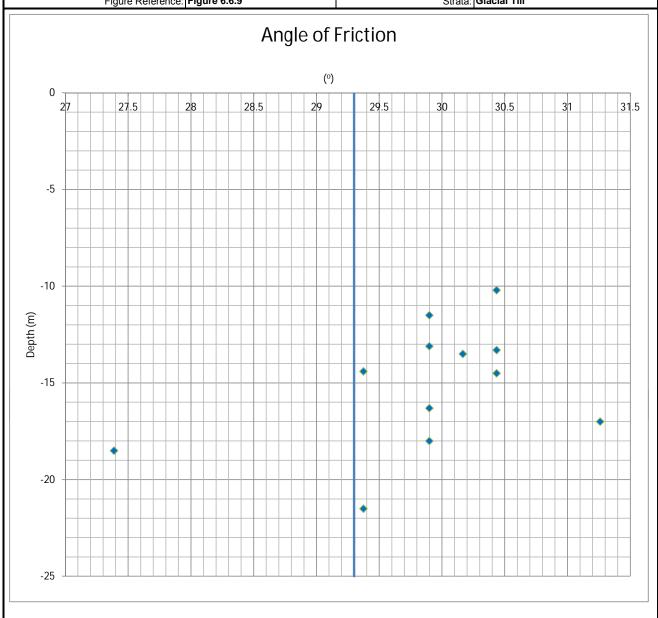

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.6.8 Strata: Glacial Till

Figure Title: Angle of Friction

Report Reference: 1168-09-152-RE-001	Project Title: A63 Castle Street
Figure Reference: Figure 6.6.9	Strata: Glacial Till

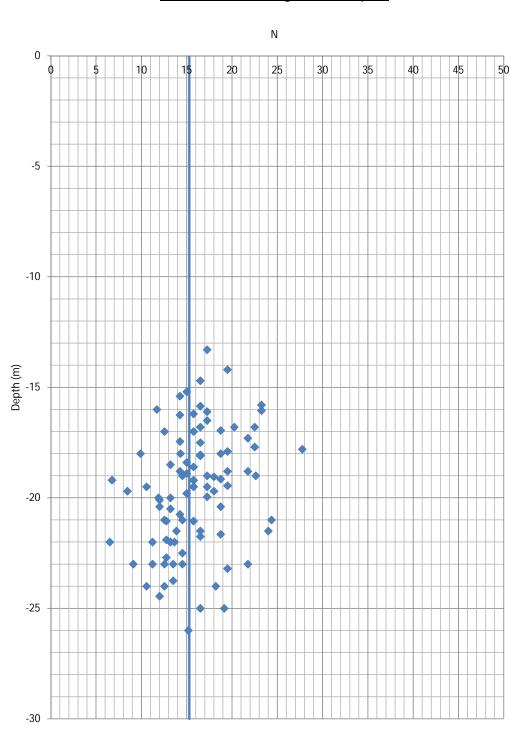


Figure Title: SPT N-Value

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Improvements
Figure Reference: Figure 6.7.1 Strata: Glaciolucustrine

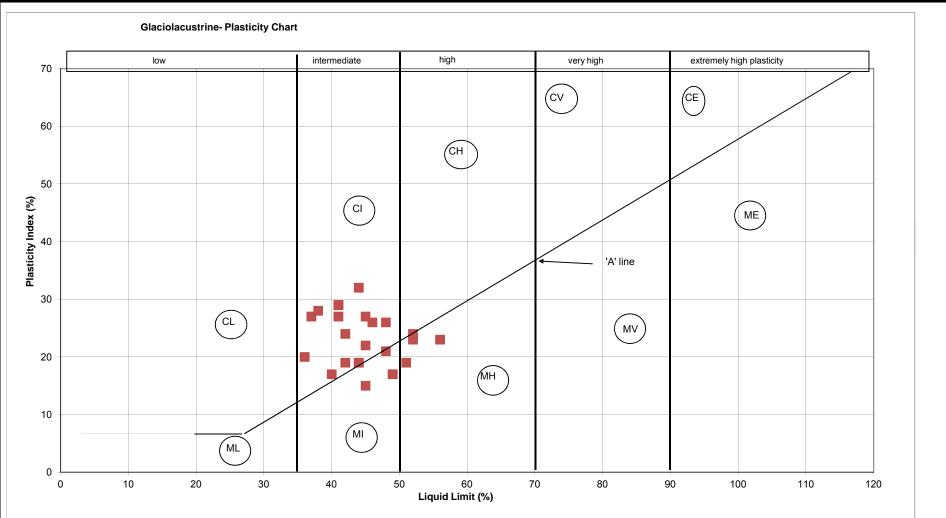

SPT 'N Value' against Depth

Figure Title: Plasticity Chart

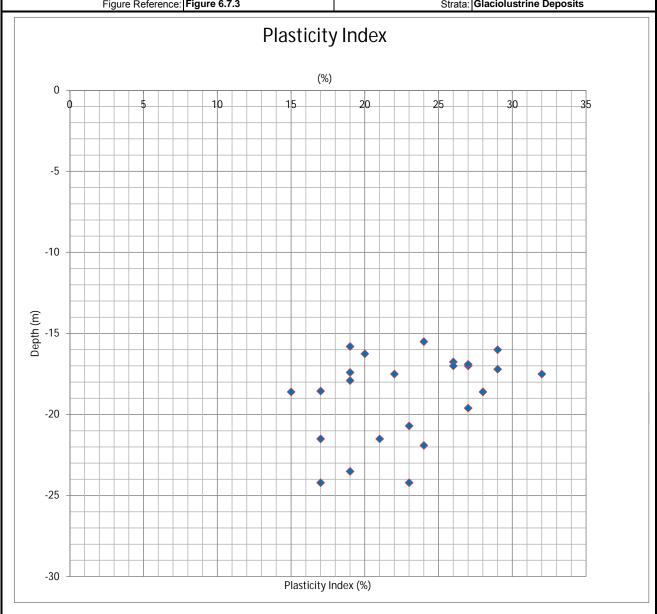

Report Reference:	1168-09-152-RE-001	Project Title:	A63 Castle Street
Figure Reference:	Figure 6.7.2	Strata:	Glaciolacustrine

Figure Title: Plasticity Index

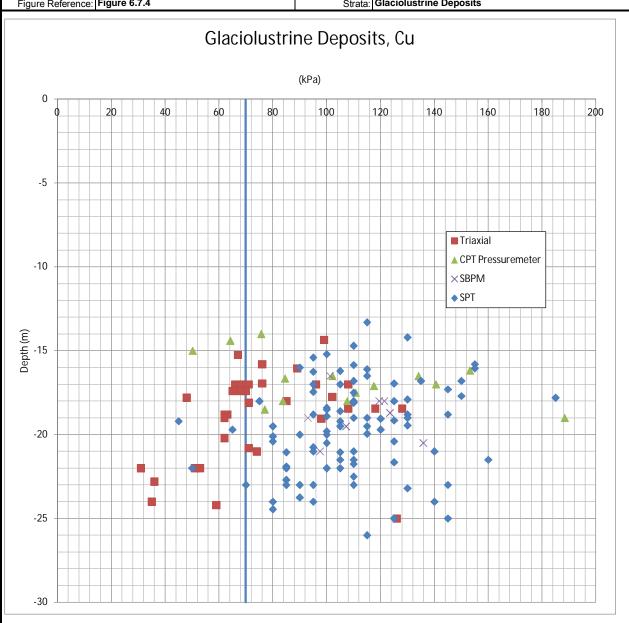

Report Reference: 1168-09-152-RE-00	01 Project Tit	e: A63 Castle Street
Figure Reference: Figure 6.7.3	Stra	a: Glaciolustrine Deposits

Figure Title: Undrained Cohesion

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.7.4 Strata: Glaciolustrine Deposits

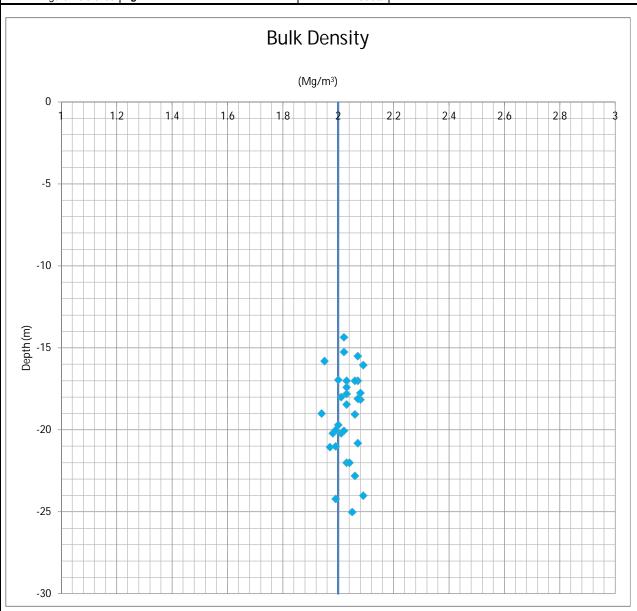


Figure Title: Bulk Density

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street

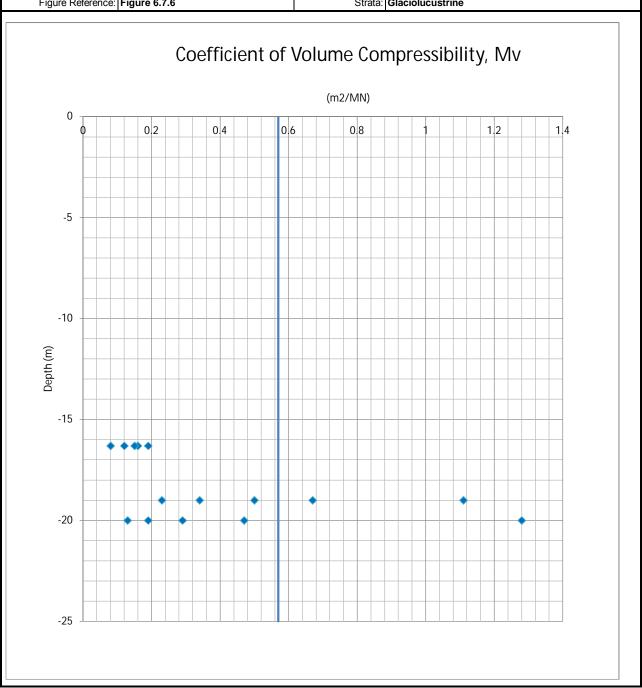

Figure Reference: Figure 6.7.5 Strata: Glaciolucustrine

Figure Title: Coefficient of Volume Compressibility

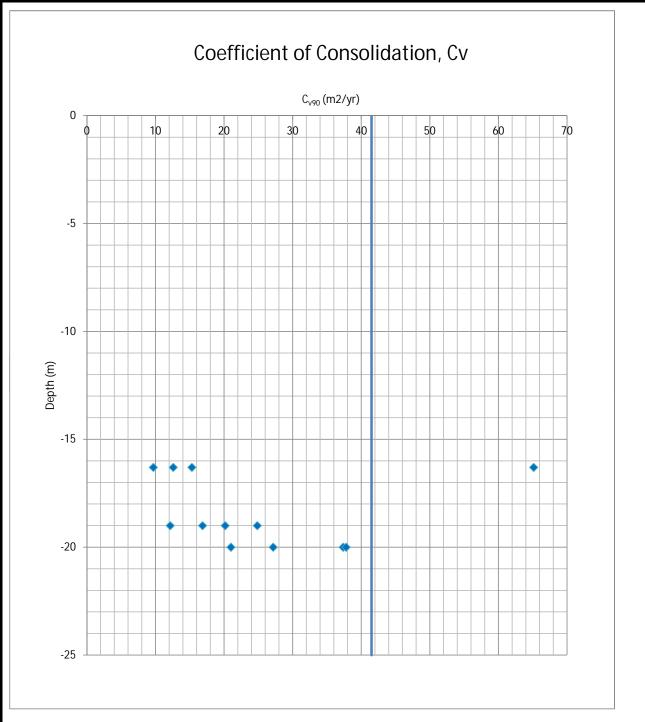

Report Reference: 1168-09-152-RE-0	01 Project Title:	A63 Castle Street
Figure Reference: Figure 6.7.6	Strata	Glaciolucustrine

Figure Title: Coefficient of Consolidation

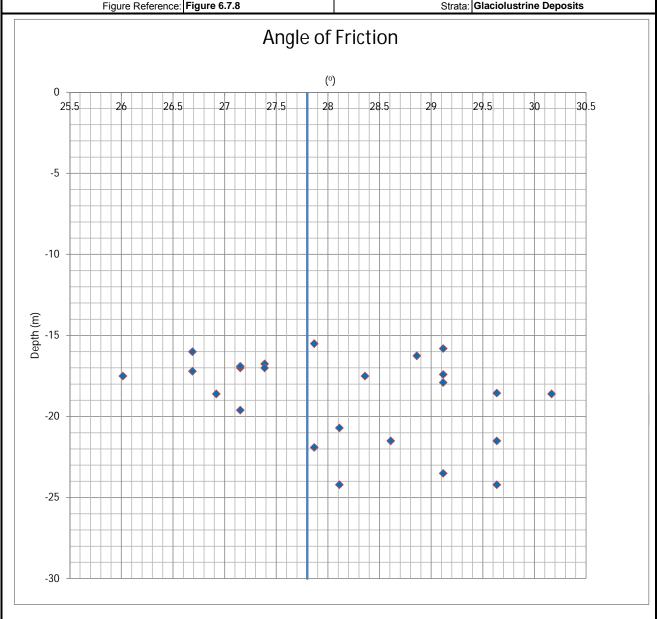

Report Reference: 1168-09-152-RE-001	Project Title: A63 Castle Street
Figure Reference: Figure 6.7.7	Strata: Glaciolucustrine

Figure Title: Angle of Friction

Report Reference: 1168-09-152-RE-001	Project Title: A63 Castle Street
Figure Reference: Figure 6.7.8	Strata: Glaciolustrine Deposits

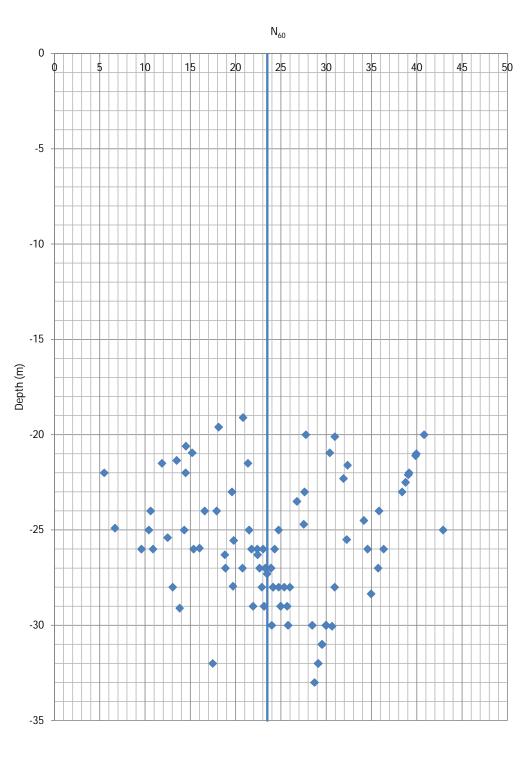


Figure Title: SPT N-Value

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Improvements

Figure Reference: Figure 6.8.1 Strata: Fluvio Glacial Deposits

SPT 'N Value' against Depth

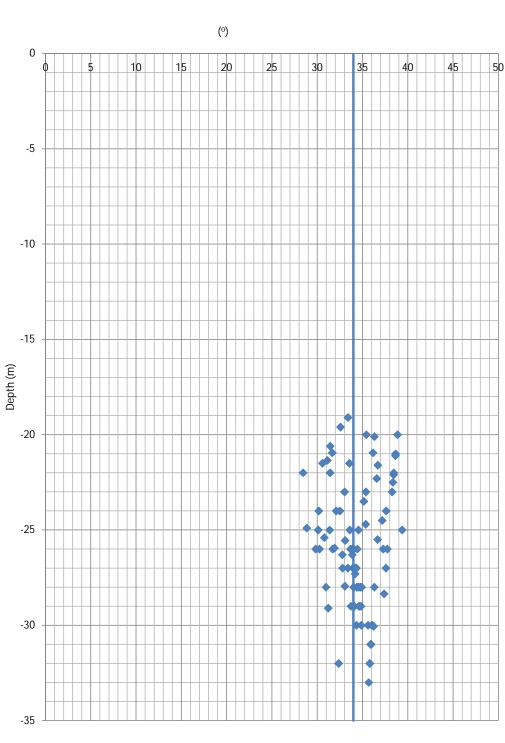


Figure Title: Angle of Friction

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Improvements
Figure Reference: Figure 6.8.2 Strata: Fluvio Glacial Deposits

Angle of Friction

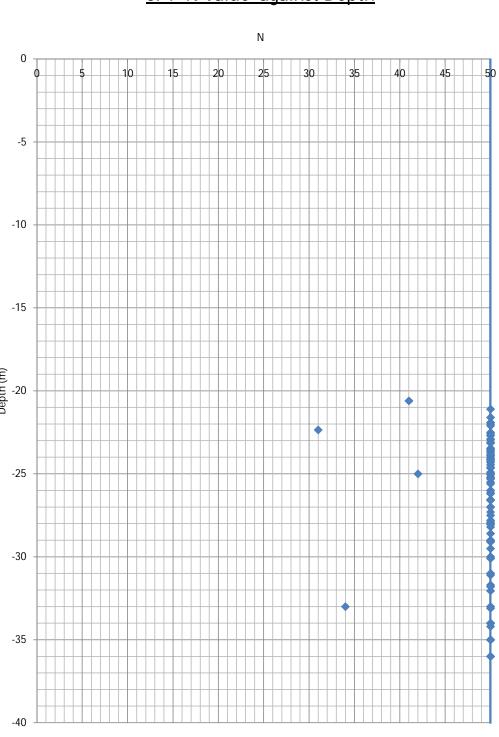


Figure Title: SPT N-Value

Report Reference:	1168-09-152-RE-001	Project Title:	A63 Castle Street Improvements
Figure Reference:	Figure 6.10.1	Strata:	Chalk

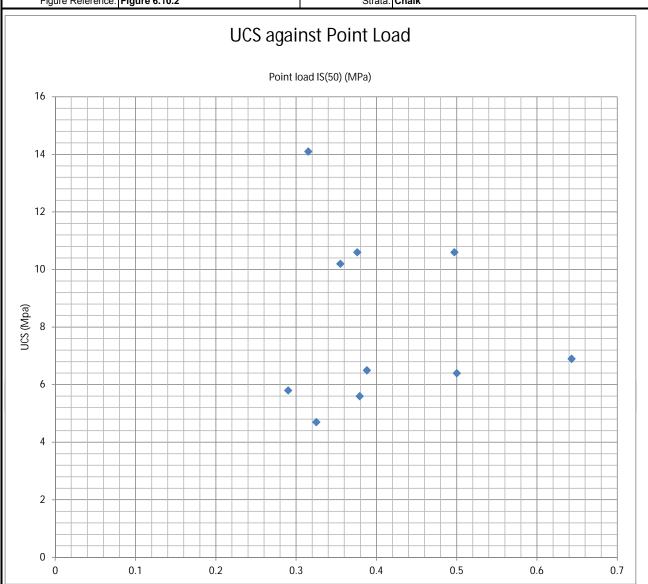

SPT 'N Value' against Depth

Figure Title: Point Load against Unconfined Compressive Strength

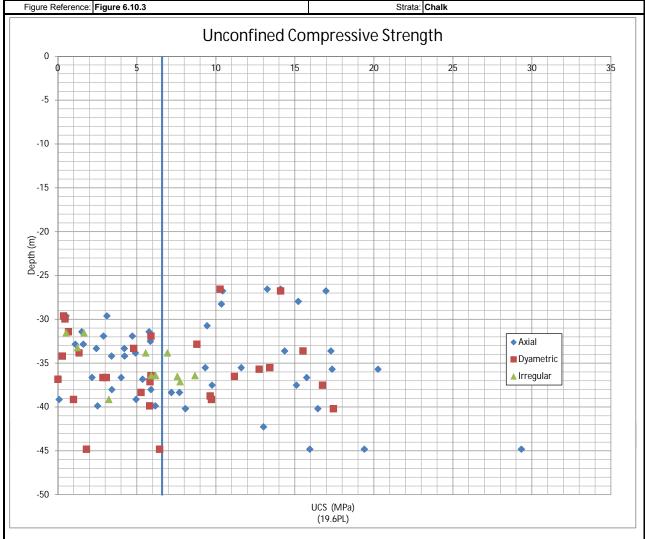

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.10.2 Strata: Chalk

Figure Title: Unconfined Compressive Strength

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Figure 6.10.3 Strata: Chalk

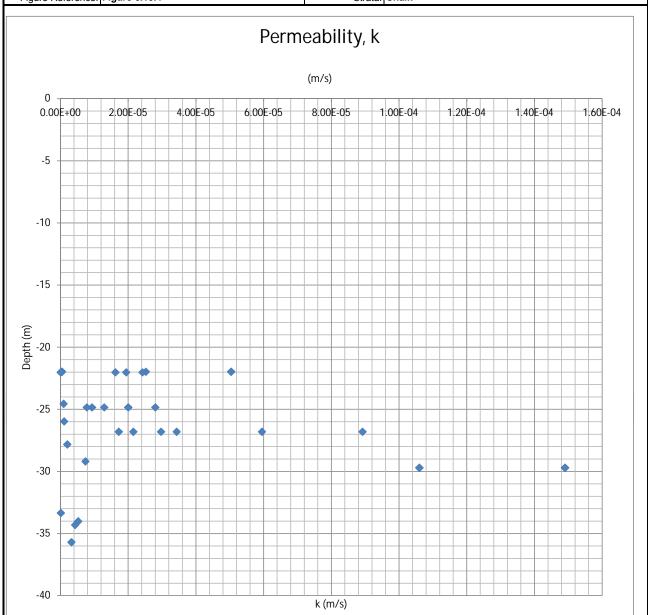
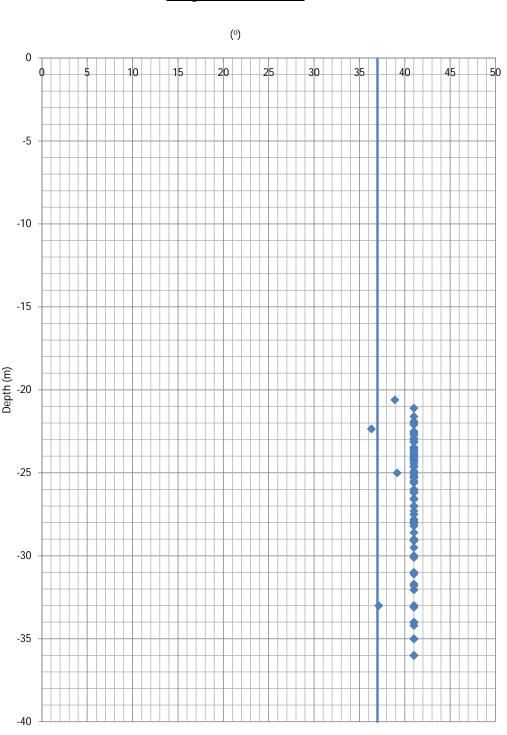
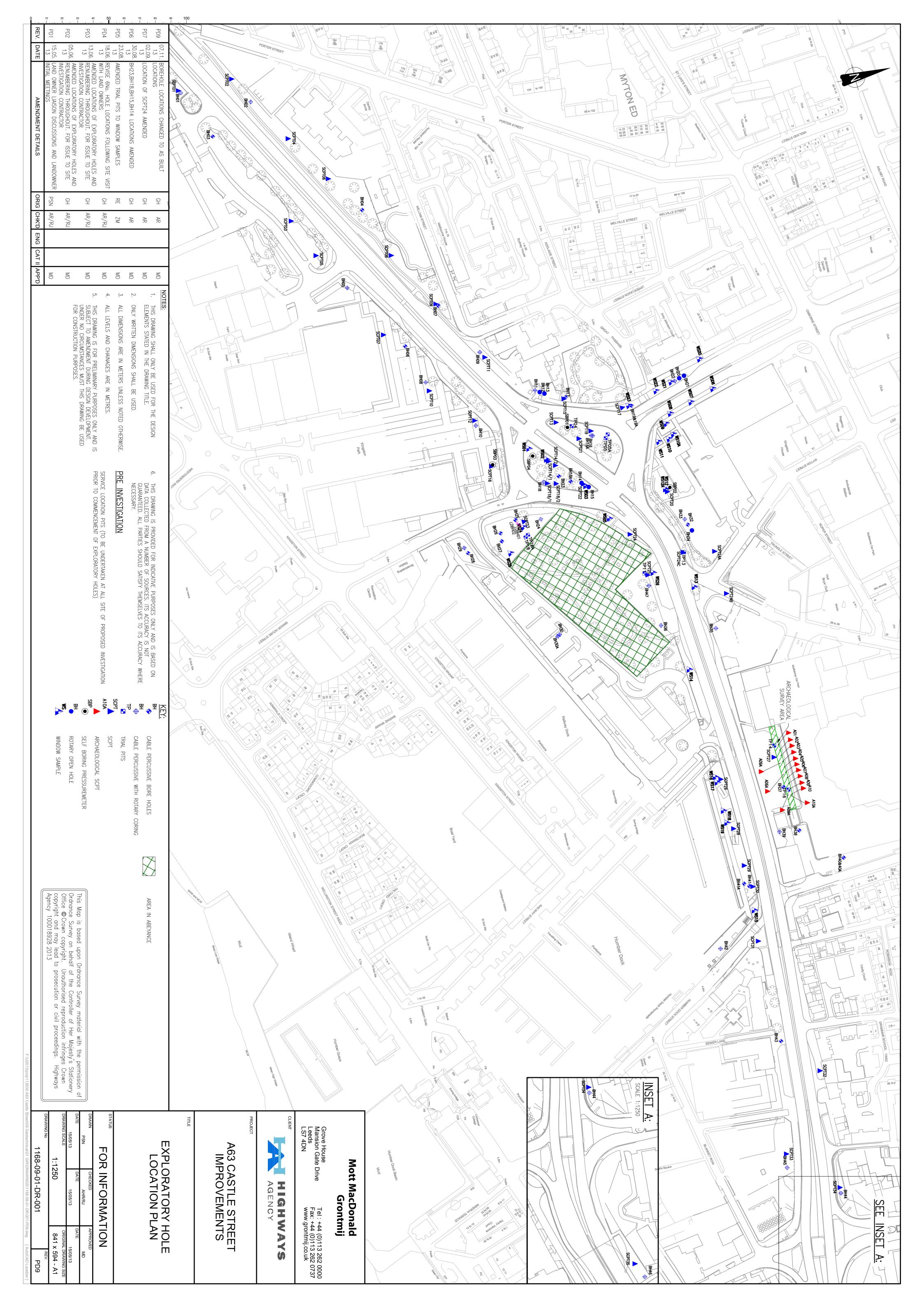


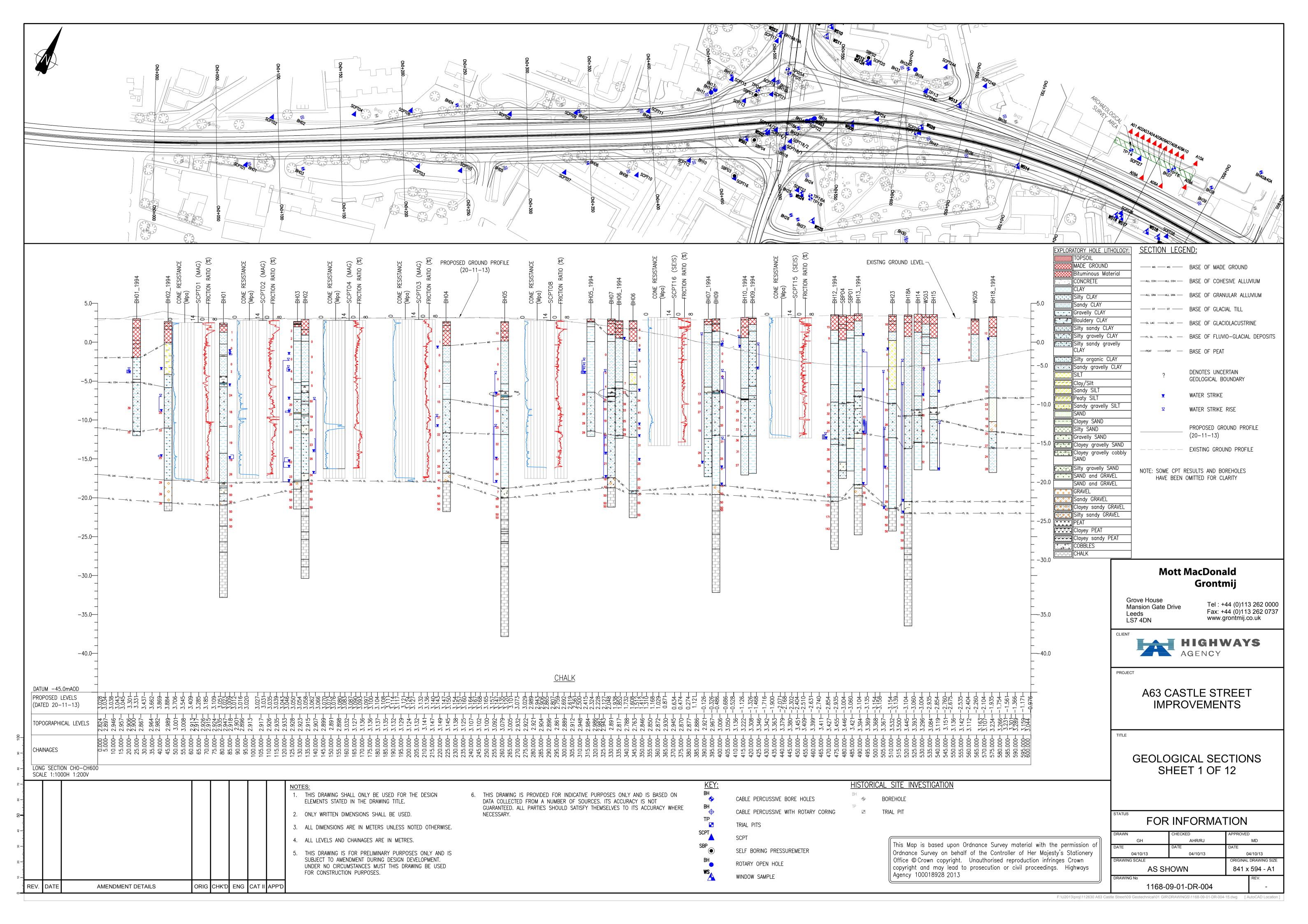
Figure Title: Permeability

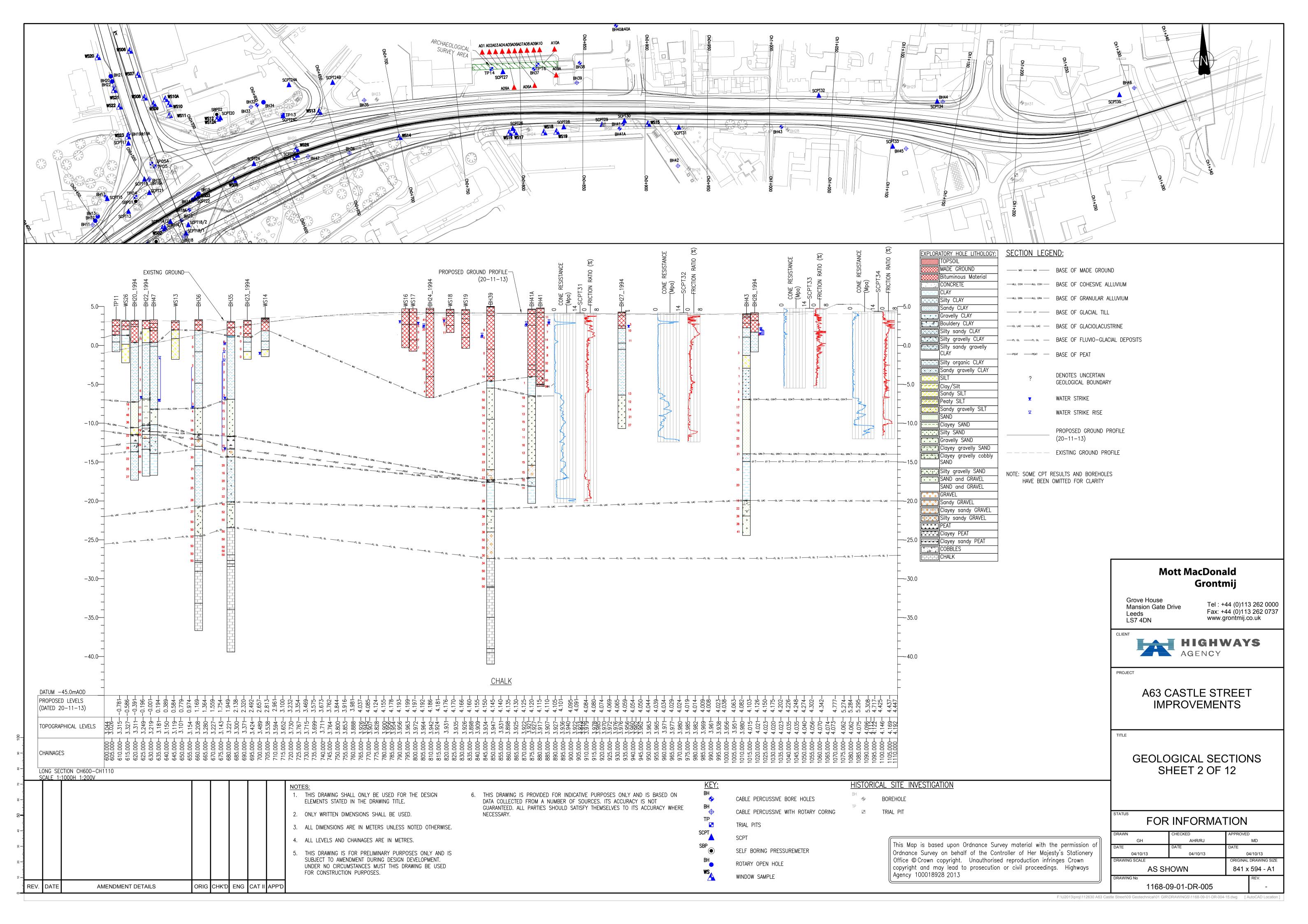
Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street

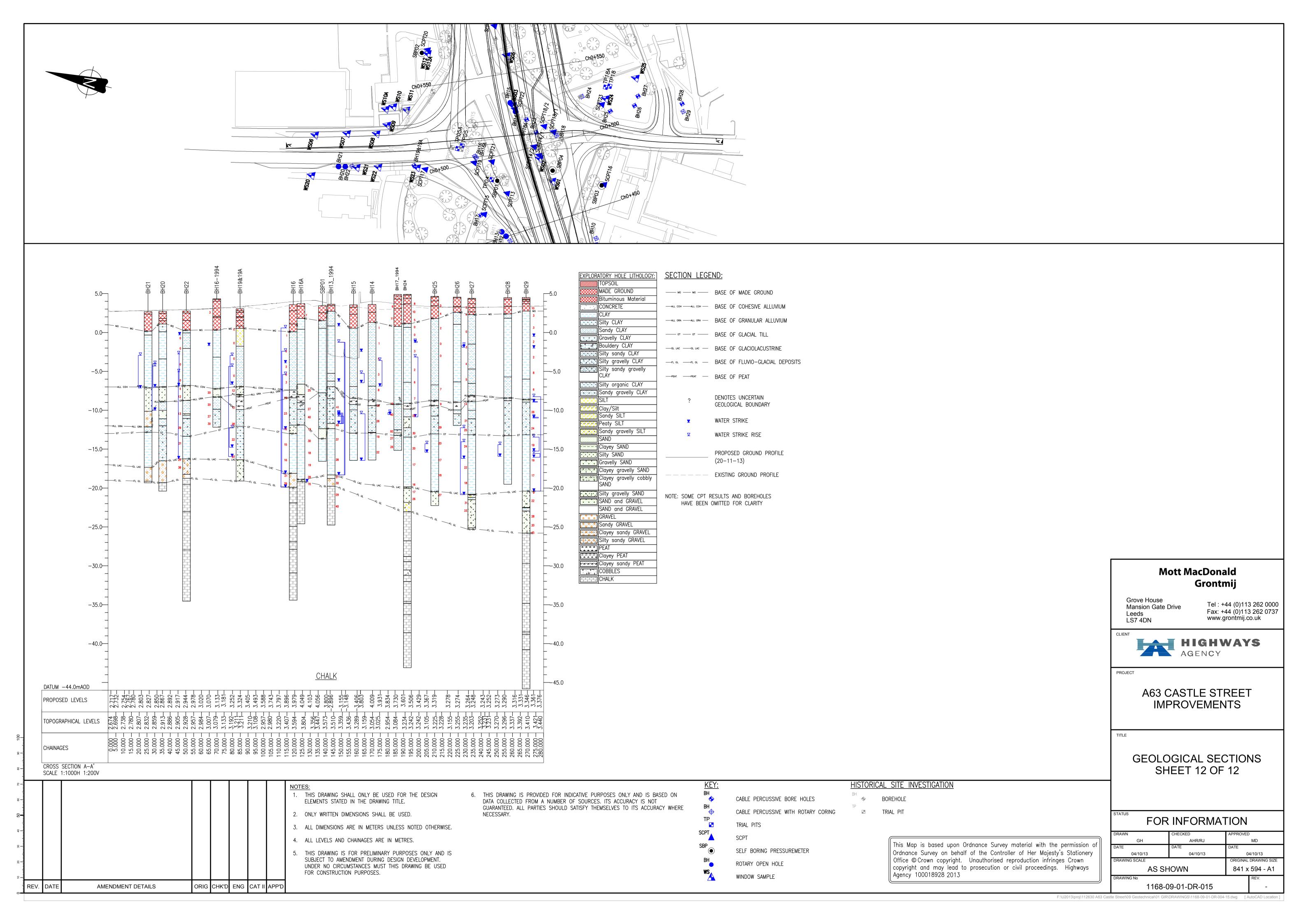
Figure Reference: Figure 6.10.4 Strata: Chalk



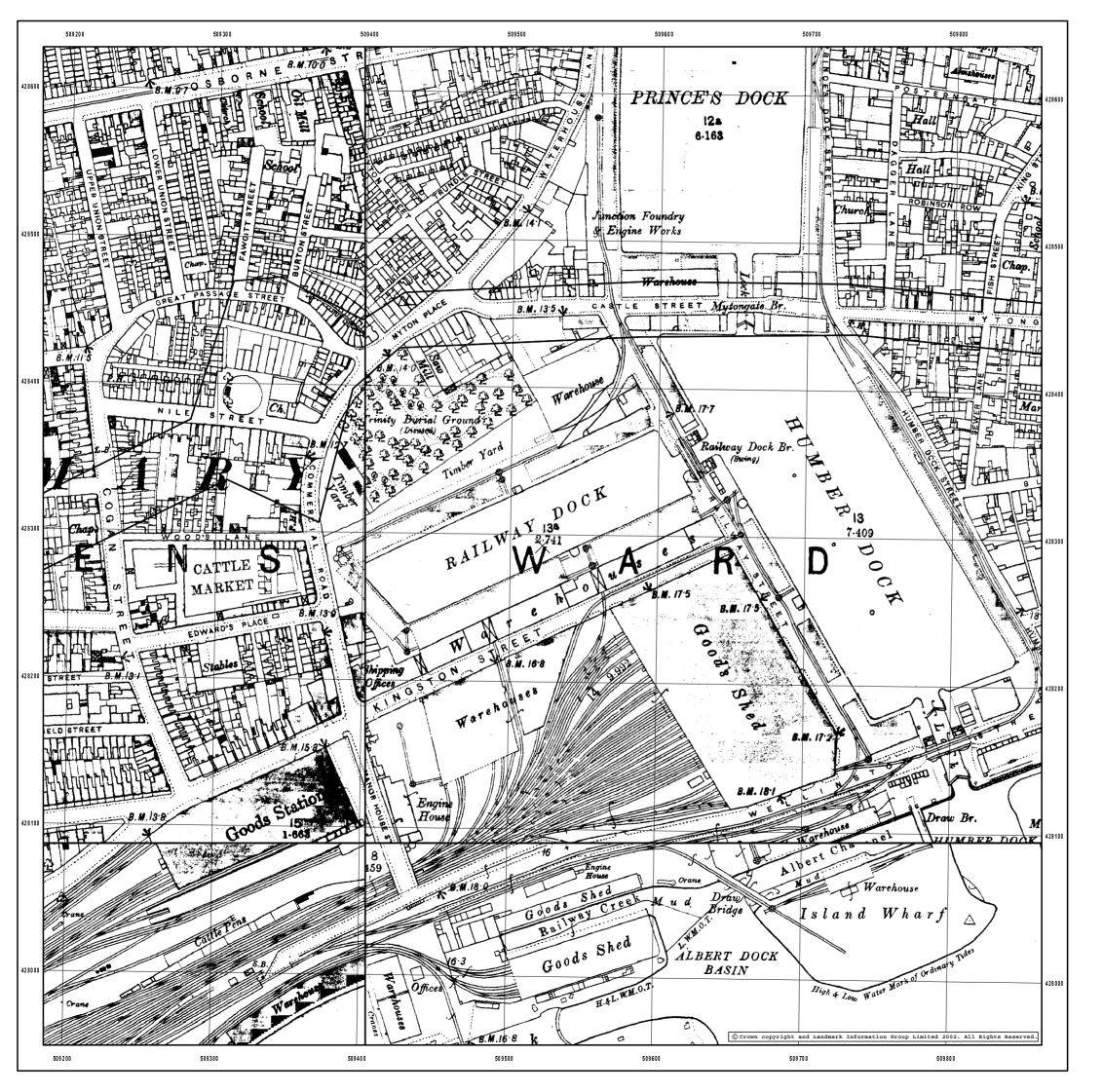

Figure Title: Angle of Friction


Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Improvements
Figure Reference: Figure 6.10.5 Strata: Chalk


Angle of Friction



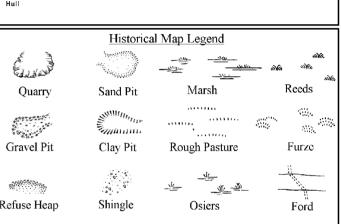
DRAWINGS



Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann


George House George Street WAKEFIELD

West Yorkshire WF1 1LY

Grid Reference 509520 428290

Castle Street

SITE DETAILS

Road

River or Canal

annumuminimuminimum. Cutting

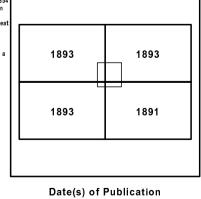
Road crossing

Embankment

Road over River or Canal

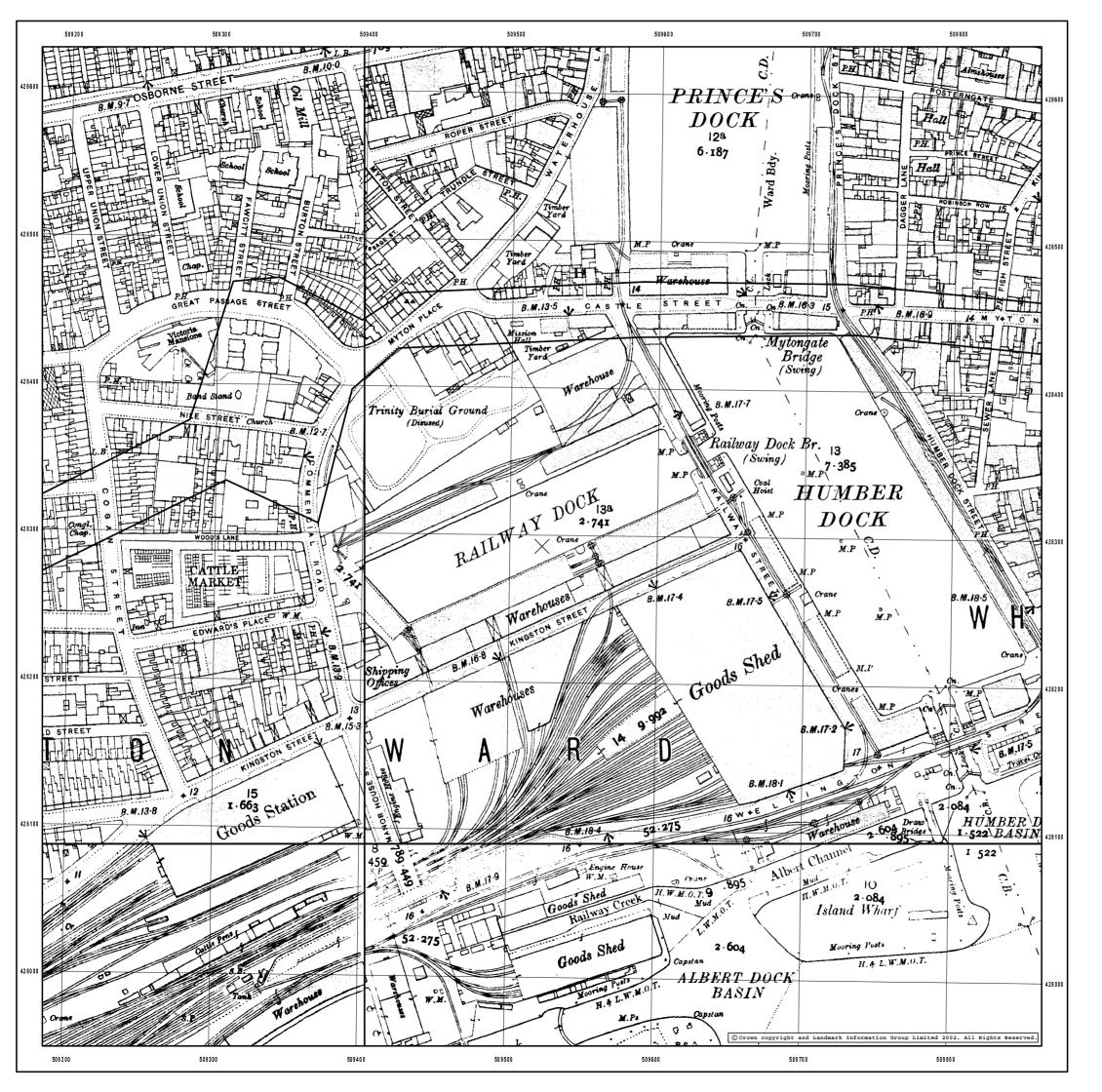
Arrow denotes flow of Water

Railway


YORKSHIRE

Road over

single Stream


The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 he 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given on the right is often some years later than the surveyed date. Before 1933, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Source map scale - 1:2.500

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street WAKEFIELD

West Yorkshire WF1 1LY

Grid Reference 509520 428290

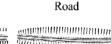
Castle Street

SITE DETAILS

Refuse Heap

Shingle

Rough Pasture


Railway crossing

River or Canal

أ فون ﴿

Road over River or Canal

Arrow denotes flow of Water

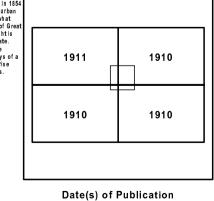
Furze

Ford

Level Crossing

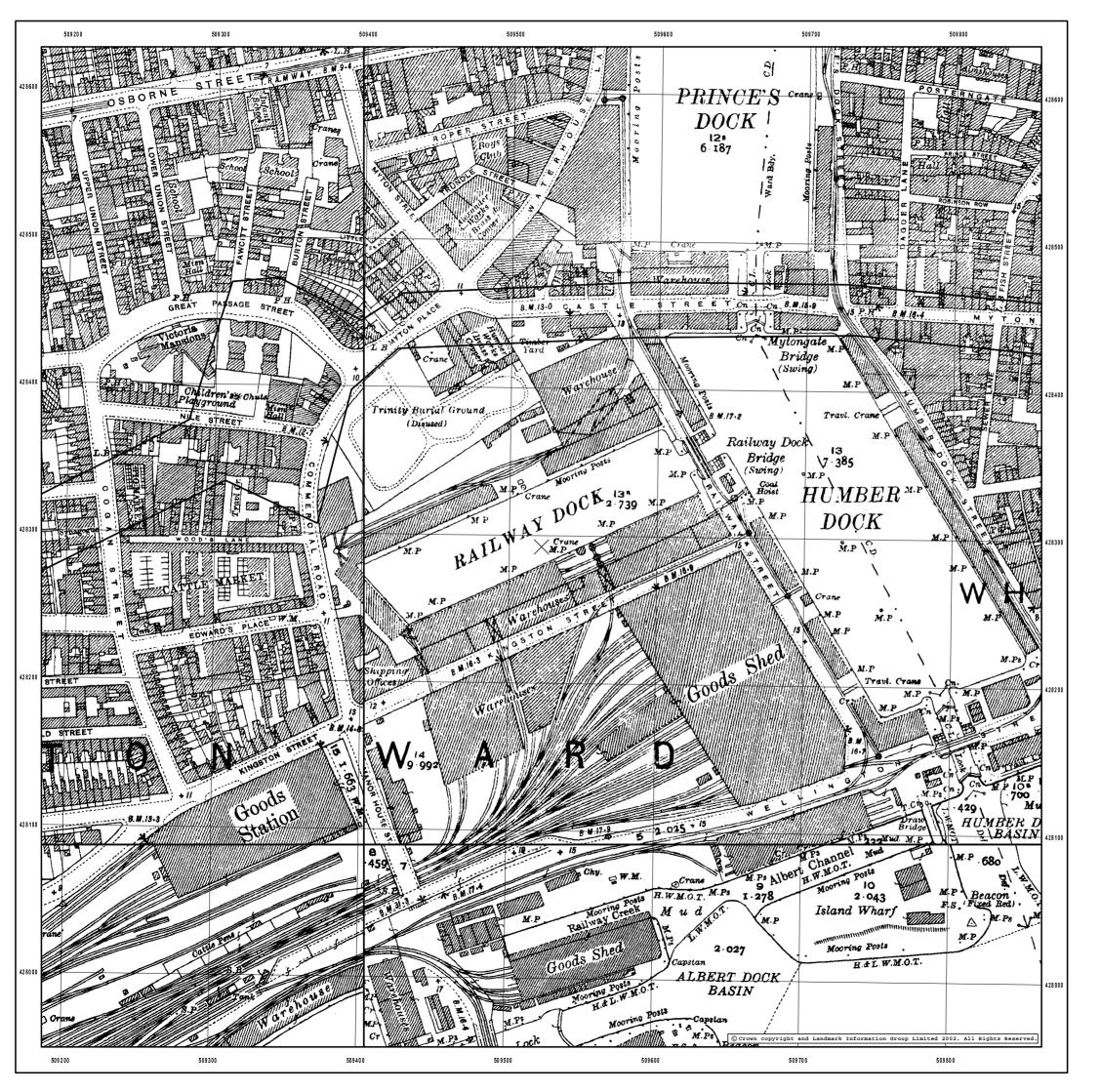
Road crossing

Railway


YORKSHIRE

Road over

single Stream


The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1836 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given on the right is often some years later than the surveyed date. Before 1933, all OS maps were based on the Cassini Projection, with independent surveys of a single country or group of counties, giving rise to significant inaccuracies in outlying areas.

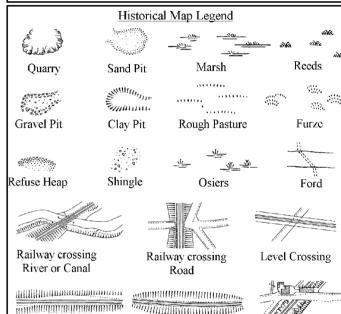
Source map scale - 1:2 500

Envirocheck Order No. EC166624_1_1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street WAKEFIELD


West Yorkshire WF1 1LY

SITE DETAILS

Grid Reference 509520 428290

Castle Street

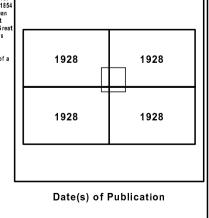
Holl

Cutting

Road over

River or Canal

YORKSHIRE


Road over

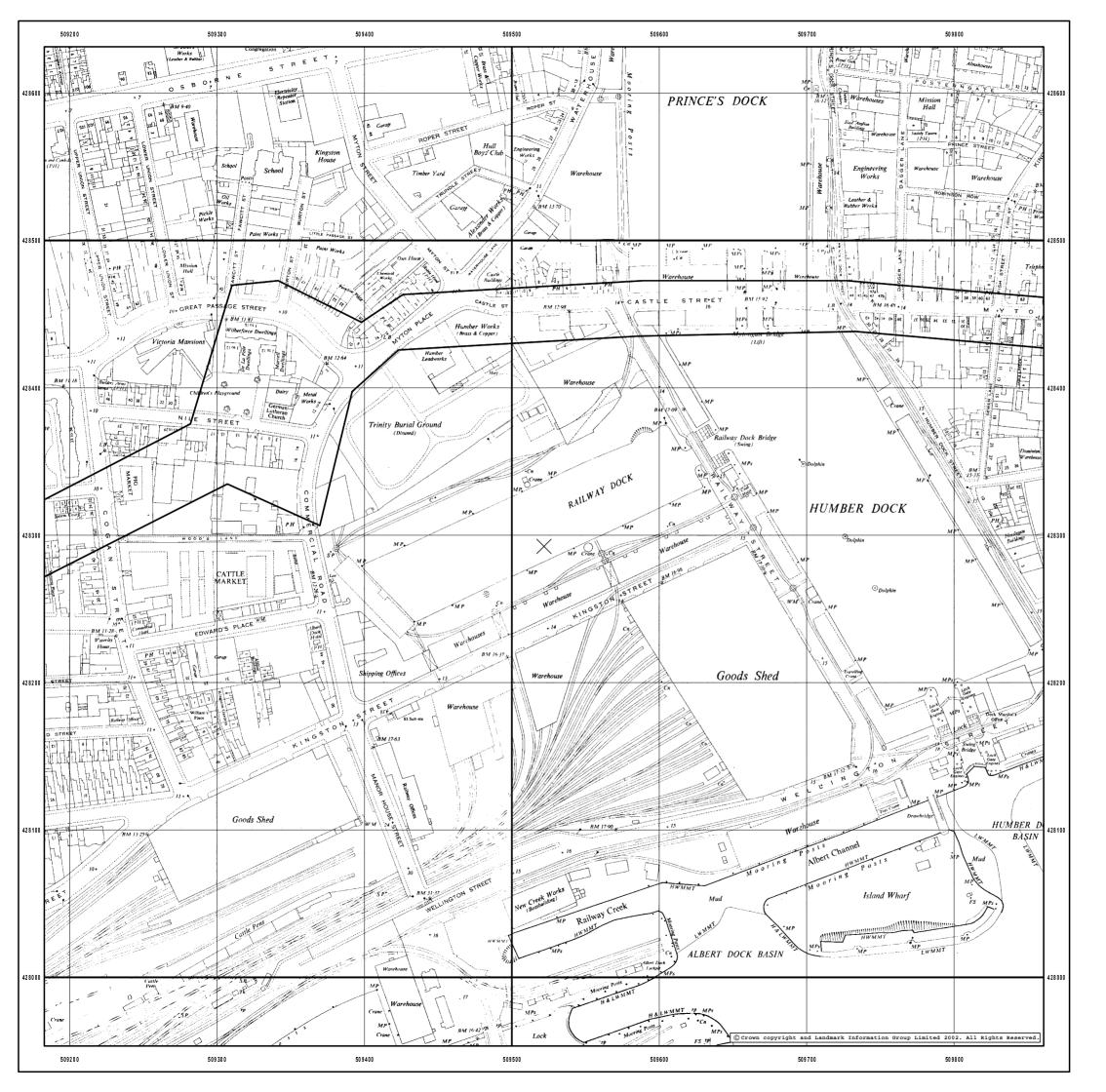
single Stream

Embankment

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1836 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given on the right is often some years later than the surveyed date. Before 1933, all OS maps were based on the Cassini Projection, with independent surveys of a single country or group of counties, giving rise to significant inaccuracies in outlying areas.

Source map scale · 1:2,500

Road crossing


Railway

Arrow denotes

flow of Water

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street

WAKEFIELD West Yorkshire WF1 1LY

SITE DETAILS

Grid Reference 509520 428290

Castle Street

Culvert

Pit or Clay Pit Pit or Clay Pit

Inactive Quarry, Chalk Active Quarry, Chalk

Slope __ E_T_L __

Electricity Transmission Line

Direction of Coppice, Osier Water flow

Marsh

÷

Pylon

Saltings

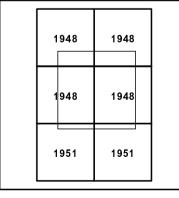
ද Reeds Orchard Tree

Rough Grassland Scrub

, mm, Heath

Ţ Bracken

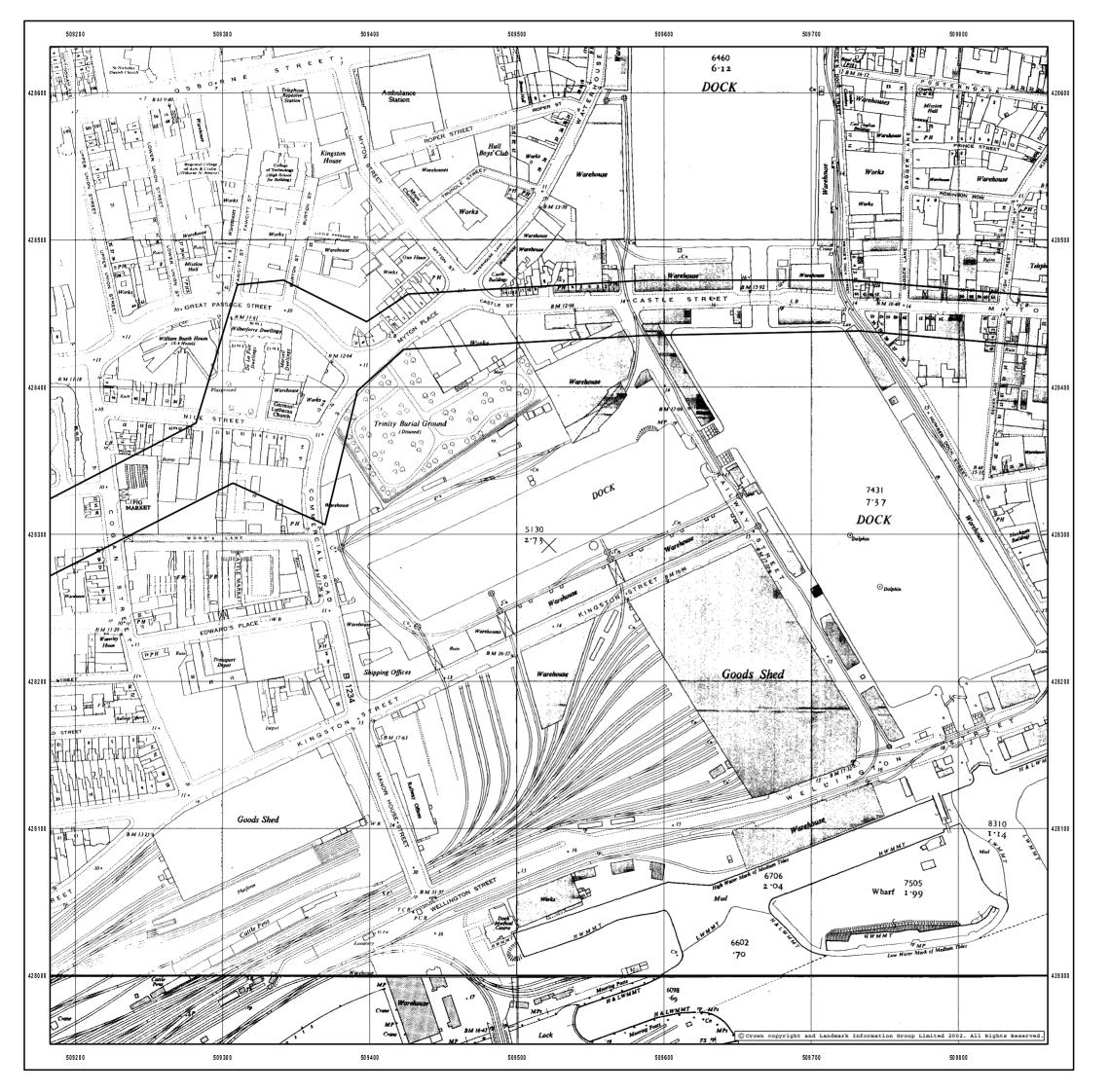
ದ್ದಿಧ


未本

Coniferous Tree Coniferous Tree Non-coniferous Non-coniferous (Not Surveyed) Tree (Surveyed Tree (Not Surveyed)

ORDNANCE SURVEY PLAN

The historical maps shown were reproduced from The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1856 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given on the right is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.


Source map scale - 1:1.250

Date(s) of Publication

Ordnance Survey®

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street WAKEFIELD

West Yorkshire WF1 1LY

SITE DETAILS Grid Reference 509520

Castle Street

428290

Inactive Quarry, Chalk Active Quarry, Chalk Pit or Clay Pit Pit or Clay Pit

Slope

Direction of Coppice, Osier Water flow

Marsh

Pylon

ද Reeds Orchard Tree

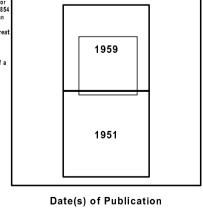
Heath

Rough Grassland

未本 Coniferous Tree Coniferous Tree Non-coniferous Non-coniferous (Not Surveyed) Tree (Surveyed

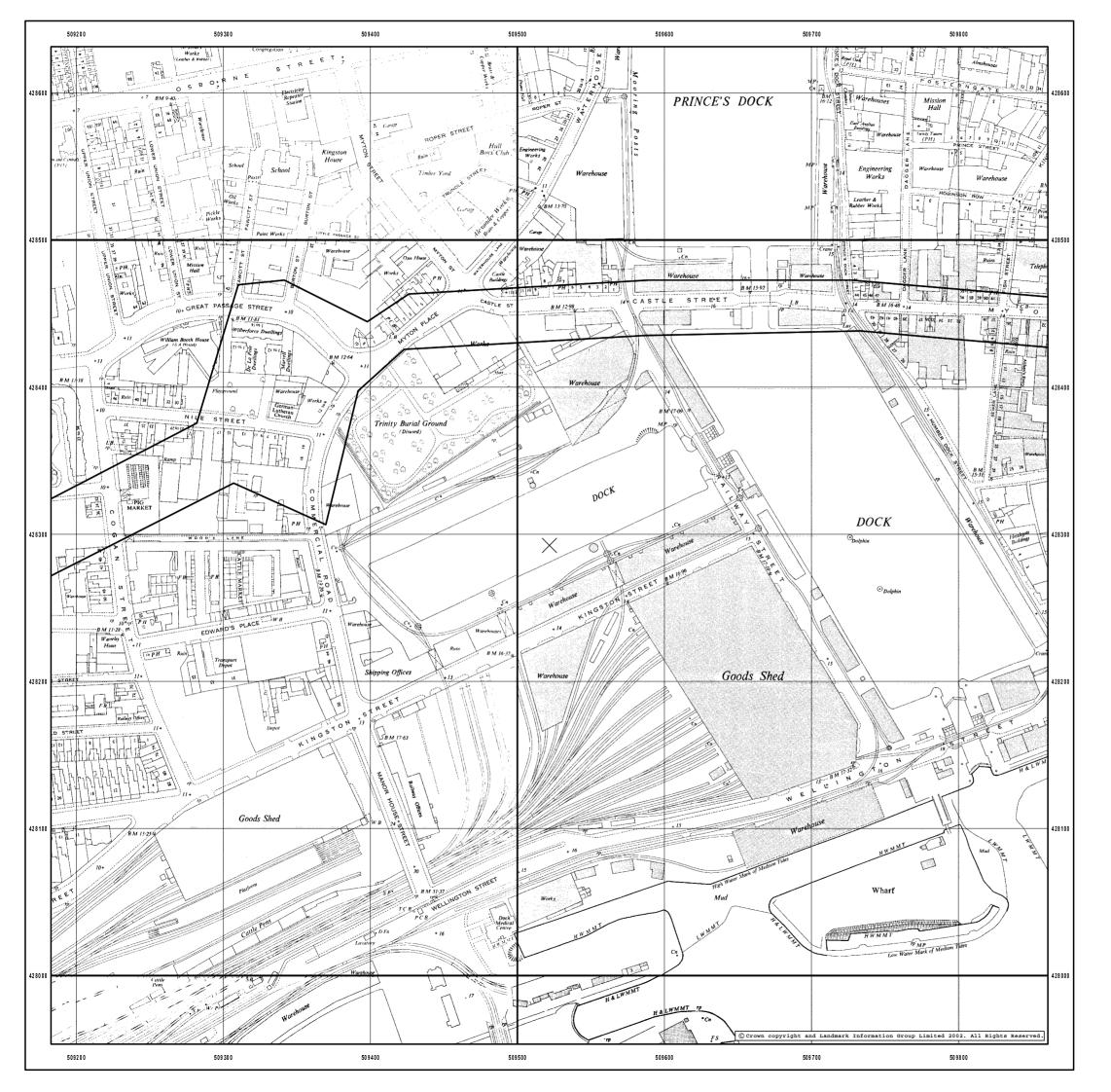
Tree (Not Surveyed)

ದ್ದಿಧ


Ţ

Bracken

ORDNANCE SURVEY PLAN


The historical maps shown were reproduced from The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1856 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given on the right is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Source map scale - 1:2.500

Ordnance Survey®

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street

WAKEFIELD West Yorkshire WF1 1LY

SITE DETAILS Grid Reference 509520

Castle Street

Historical Map Legend

Pit or Clay Pit

428290

Pit or Clay Pit

Inactive Quarry, Chalk Active Quarry, Chalk

÷ Pylon

__ E_T_L __ Electricity Transmission Line

Direction of Coppice, Osier

Reeds

Ţ

Bracken

Marsh

Saltings

ද Orchard Tree

Rough Grassland

Scrub

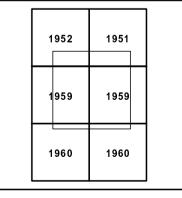
, mm,

Heath

Water flow

未本

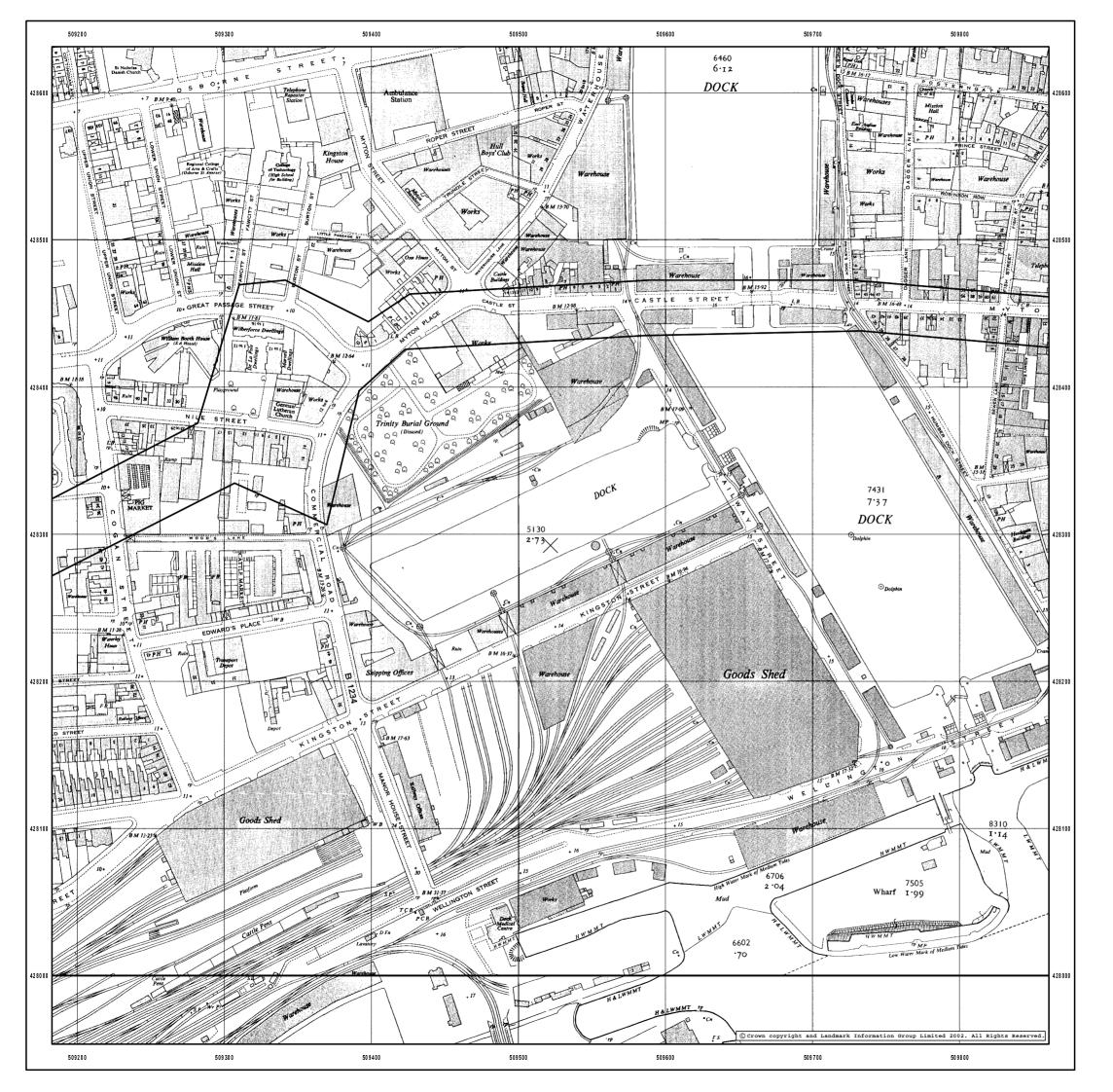
Coniferous Tree Coniferous Tree Non-coniferous Non-coniferous (Not Surveyed) Tree (Surveyed


Tree (Not Surveyed)

ದ್ದಿಧ

ORDNANCE SURVEY PLAN

The historical maps shown were reproduced from The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1856 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given on the right is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.


Source map scale - 1:1.250

Date(s) of Publication

Ordnance Survey®

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street WAKEFIELD

West Yorkshire WF1 1LY

SITE DETAILS Grid Reference 509520

Castle Street

Culvert

428290

Pit or Clay Pit Pit or Clay Pit

Inactive Quarry, Chalk Active Quarry, Chalk

__ E_T_L __

Transmission Line

Saltings

Slope

Electricity Pylon

Direction of Coppice, Osier Water flow

Marsh

ද Orchard Tree

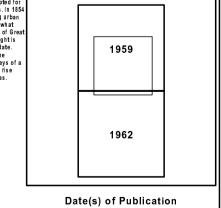
Reeds

Rough Grassland

Scrub

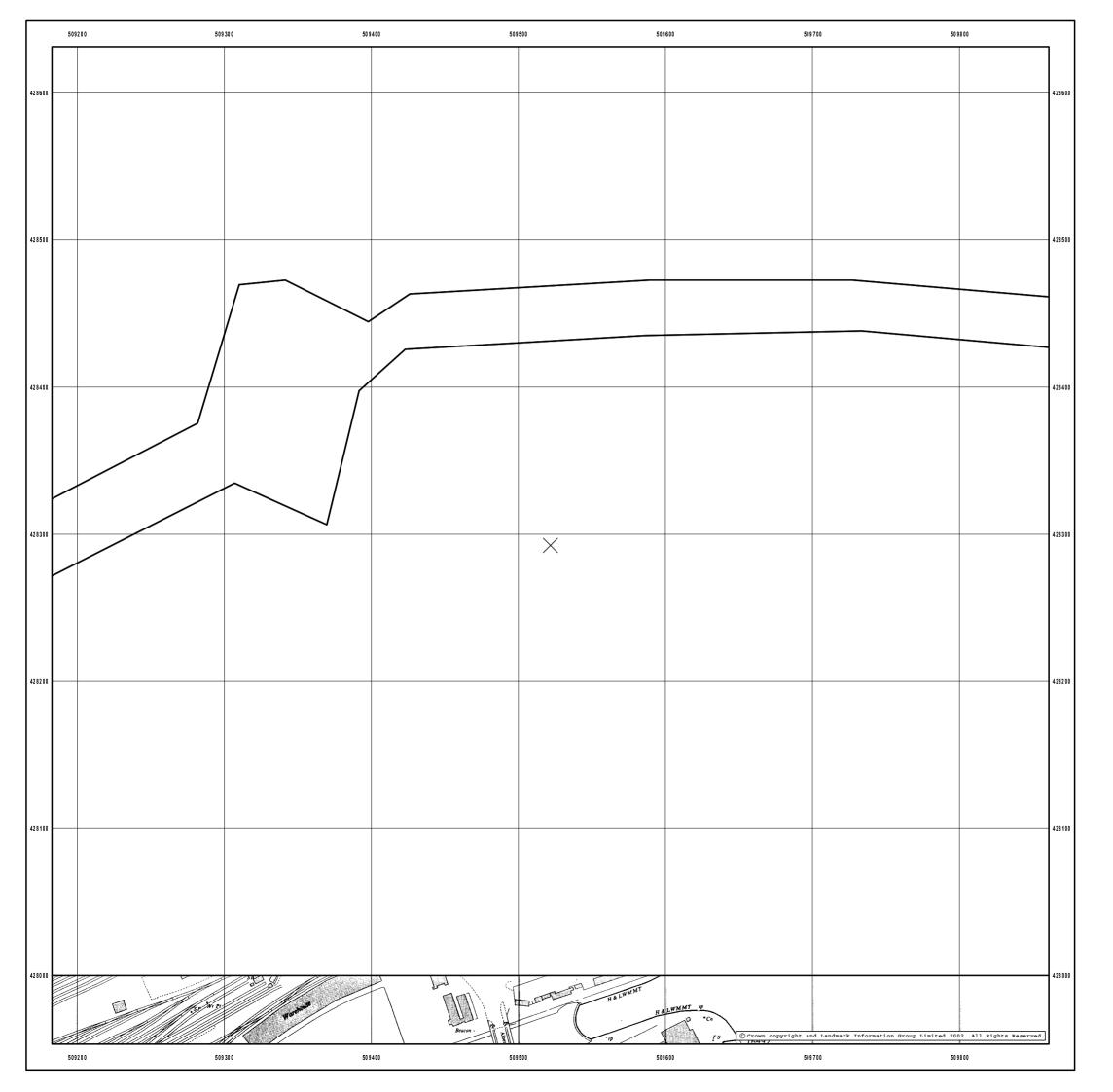
Ţ Bracken Heath

未本


Coniferous Tree Coniferous Tree Non-coniferous Non-coniferous (Not Surveyed) Tree (Surveyed Tree (Not Surveyed)

ದ್ದಿಧ

ORDNANCE SURVEY PLAN


The historical maps shown were reproduced from The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1856 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given on the right is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Source map scale - 1:2.500

Ordnance Survey®

Envirocheck Order No. EC166624_1_1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street WAKEFIELD

West Yorkshire WF1 1LY

SITE DETAILS

Grid Reference 509520 428290

Castle Street

Inactive Quarry, Chalk Active Quarry, Chalk Pit or Clay Pit

Pit or Clay Pit

Pylon

__ETL___ Electricity Transmission Line

Direction of Coppice, Osier Water flow

Marsh

Saltings

ද Reeds Orchard Tree

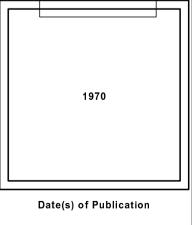
Scrub

, mm, Ţ Bracken Heath

Rough Grassland

未本

Coniferous Tree Coniferous Tree Non-coniferous Non-coniferous (Surveyed) (Not Surveyed) Tree (Surveyed


Tree (Not Surveyed)

ಧ್ಯಧ

ORDNANCE SURVEY PLAN

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840 s. In 1854 het 1:2, 900 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given on the right is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Source map scale - 1:2.500

Ordnance Survey°

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street WAKEFIELD

West Yorkshire WF1 1LY

SITE DETAILS

Grid Reference 509520

Castle Street

Pit or Clay Pit

Culvert

428290

Inactive Quarry, Chalk Active Quarry, Chalk Pit or Clay Pit

Slope

Pylon

__ E_T_L __ Electricity Transmission Line

Direction of Coppice, Osier Water flow

Marsh

Saltings

ද Reeds Orchard Tree

Scrub

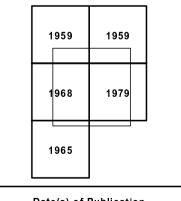
, mm, Bracken Heath

Rough Grassland

未本

Coniferous Tree Coniferous Tree Non-coniferous Non-coniferous (Not Surveyed) Tree (Surveyed

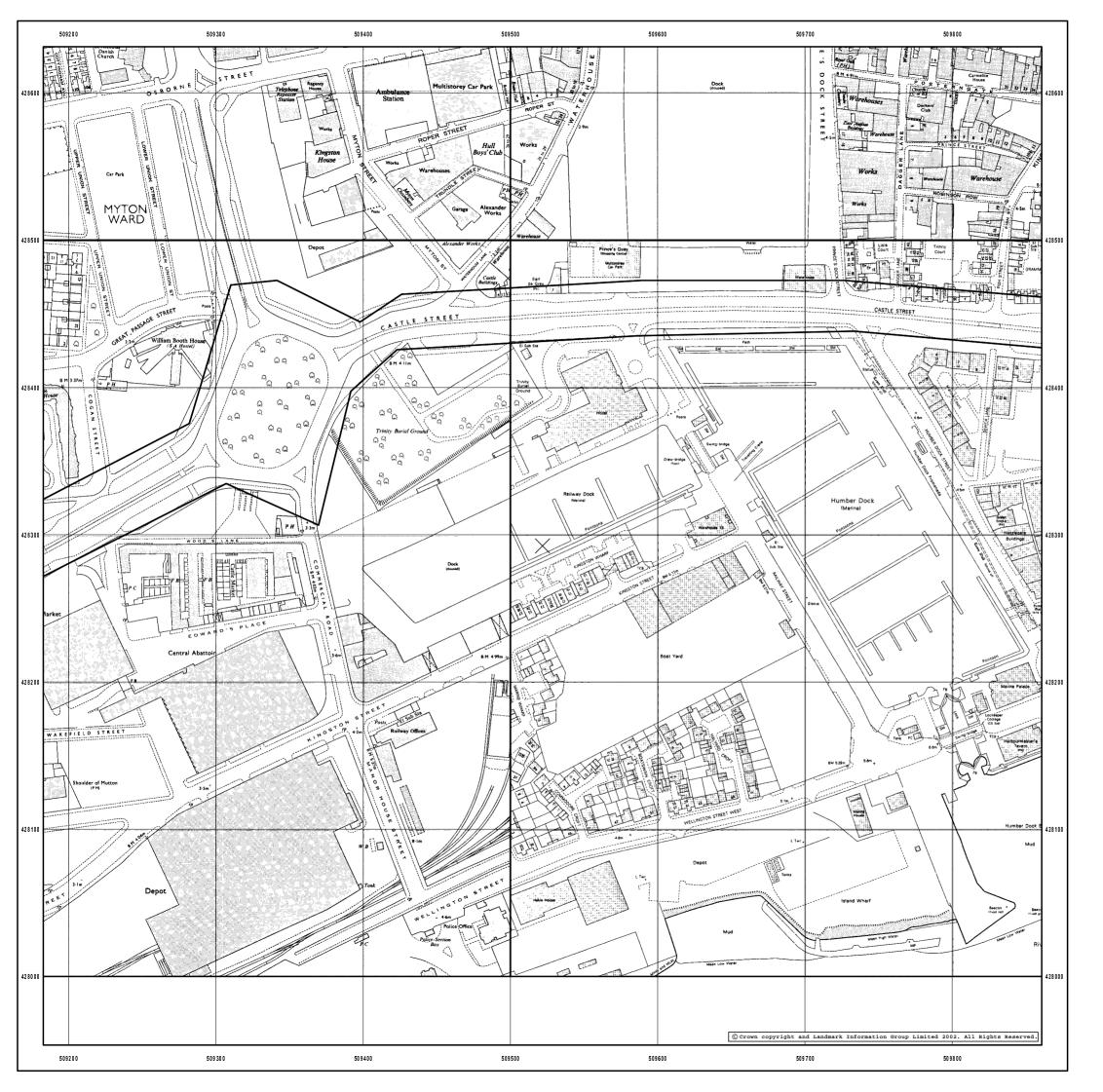
Tree (Not Surveyed)


ದ್ದಿಧ

Ţ

ORDNANCE SURVEY PLAN

The historical maps shown were reproduced from The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1856 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given on the right is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.


Source map scale - 1:1.250

Date(s) of Publication

Ordnance Survey®

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street WAKEFIELD

West Yorkshire WF1 1LY

SITE DETAILS

Grid Reference 509520 428290

Castle Street

Pit or Clay Pit Pit or Clay Pit

Slope

Inactive Quarry, Chalk Active Quarry, Chalk

__ E_T_L __ Electricity

Transmission Line

Direction of Coppice, Osier

Saltings

ද

Water flow

Reeds Orchard Tree

Pylon

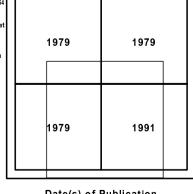
Marsh

Scrub

Ţ Bracken Heath

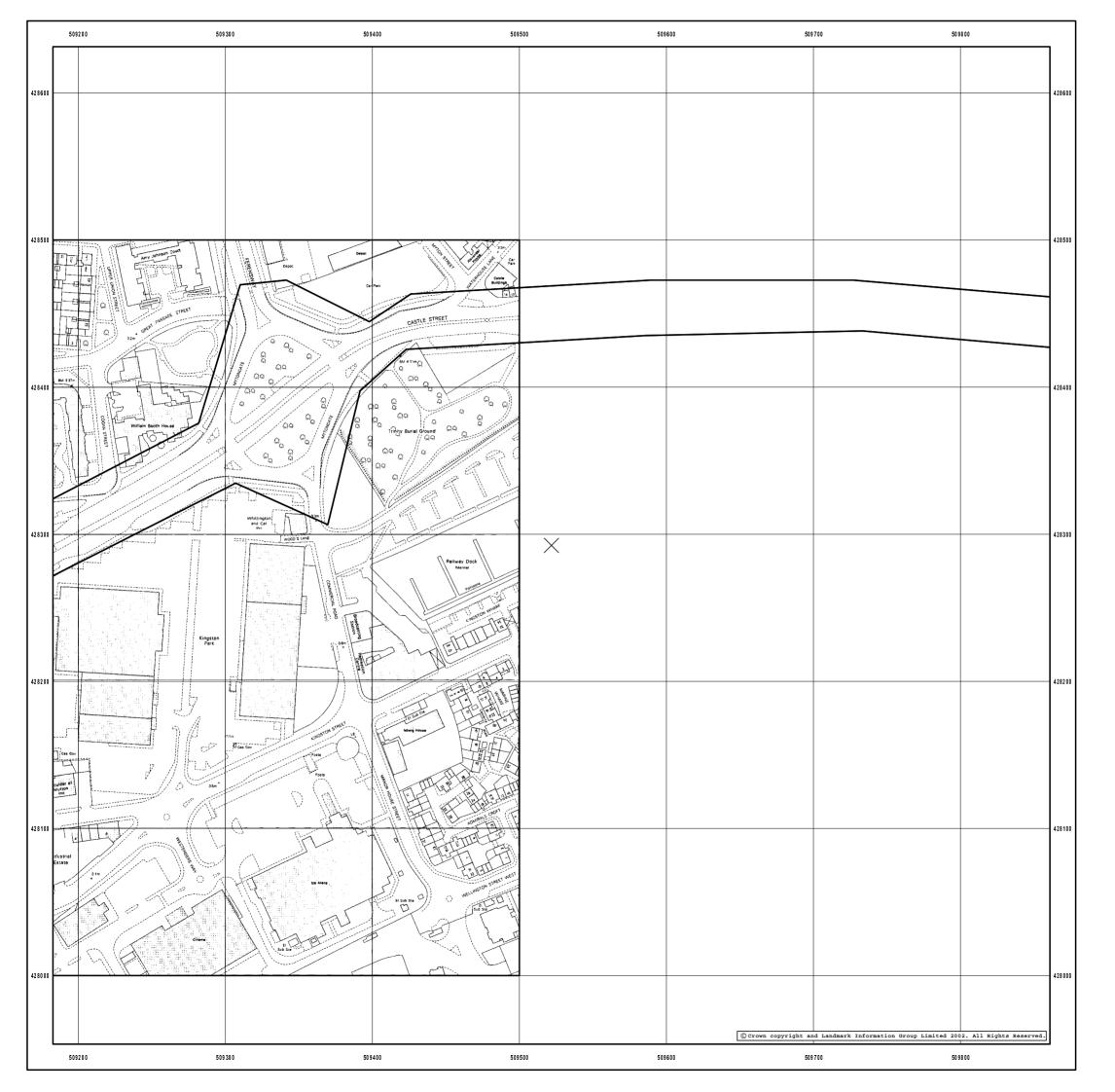
Rough Grassland

未本


್ಲ್ಯ Coniferous Tree Coniferous Tree Non-coniferous Non-coniferous (Not Surveyed) Tree (Surveyed

Tree (Not Surveyed)

ORDNANCE SURVEY PLAN


The historical maps shown were reproduced from The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1856 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given on the right is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Source map scale - 1:1,250

Date(s) of Publication

Ordnance Survey®

Envirocheck Order No. EC166624_1_1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street

WAKEFIELD West Yorkshire WF1 1LY

SITE DETAILS

Grid Reference 509520 428290

Castle Street

Culvert

Inactive Quarry, Chalk Active Quarry, Chalk Pit or Clay Pit Pit or Clay Pit

Slope

__ E_T_L __ ÷ Electricity Pylon

Direction of

Coppice, Osier

Reeds

Marsh

Saltings

Transmission Line

ද Orchard Tree

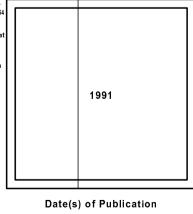
Water flow

Rough Grassland

Scrub

 $\gamma_{ij1111III}$ Ţ Bracken Heath

未本 Coniferous Tree Coniferous Tree Non-coniferous Non-coniferous (Surveyed) (Not Surveyed) Tree (Surveyed


Tree (Not Surveyed)

ಧ್ಯಧ

ORDNANCE SURVEY PLAN

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given on the right is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with in dependent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Source map scale - 1:1.250

Ordnance Survey°

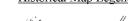
Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street WAKEFIELD

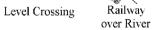
West Yorkshire WF1 1LY

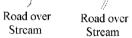

SITE DETAILS

Grid Reference 509520 428290

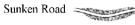
Castle Street

Quarry

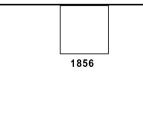




=


Rough Pasture

Raised Road Instrumental Contour

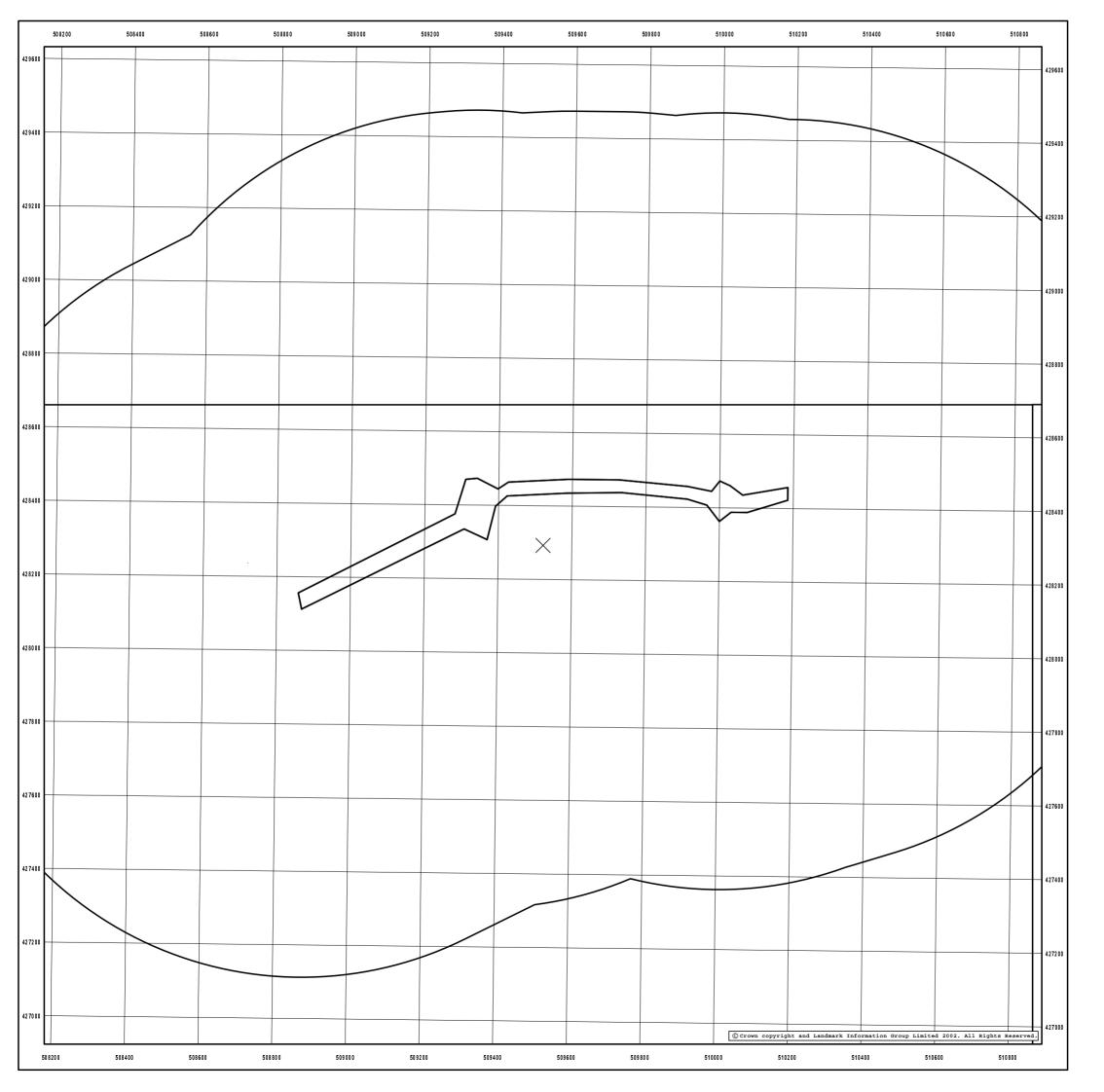


Sketched Contour

YORKSHIRE

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 het 1:2, 500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given on the right therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveyers of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished -with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new edition appearing every 10 years or so for urban areas.



Source map scale • 1:10,560

Date(s) of Publication

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street WAKEFIELD

West Yorkshire WF1 1LY

SITE DETAILS

Grid Reference 509520 428290

Castle Street

Historical Map Legend

Quarry

=

Road over

Stream

Road over

Railway

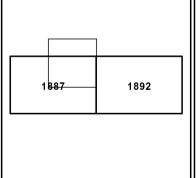
Other Pits

Furze

Rough Pasture

Raised Road

Arrow denotes flow of Water



LINCOLNSHIRE

Source map scale • 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given on the right therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single country or group of counties, giving rise to significant inaccuracies in outlying areas.

In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unifinished -with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new edition appearing every 10 years or so for urban areas.

Date(s) of Publication

Ordnance Survey°

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street WAKEFIELD

West Yorkshire WF1 1LY

SITE DETAILS

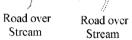
Grid Reference 509520

Castle Street

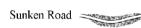
Historical Map Legend

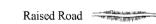
=

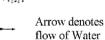
428290


Quarry

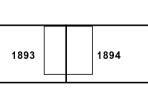
Other Pits




Rough Pasture



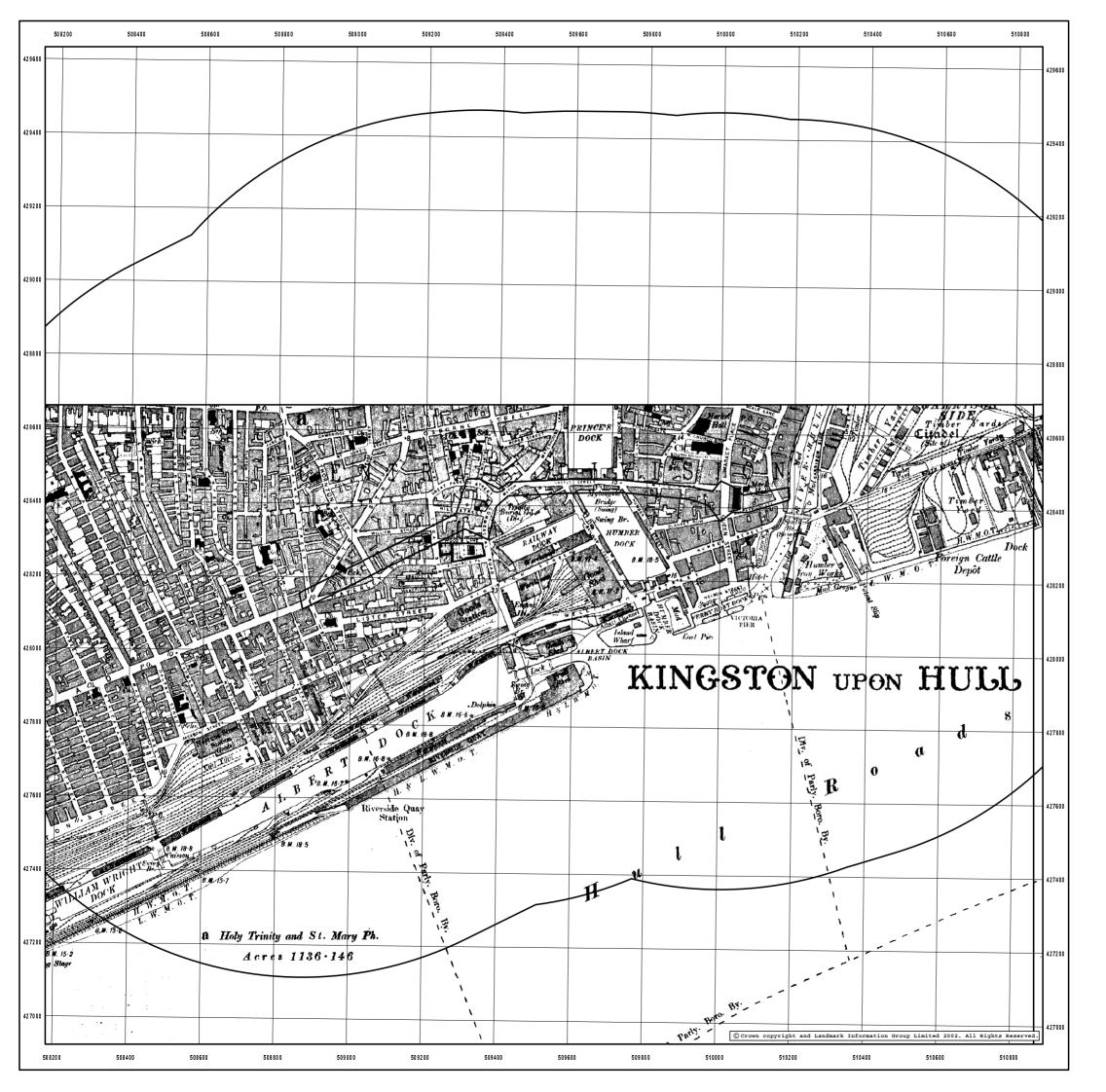
Instrumental Contour



Sketched Contour

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2, 500 scale was adopted for mapping urban areas; these maps were used to update the 1:10.560 maps. The published date given on the right therefore is often some years later than the surveyed date. Before 1933, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished -with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new aditions appearing every 10 years or so for urban areas.



Source map scale · 1:10,560

Date(s) of Publication

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street WAKEFIELD

West Yorkshire WF1 1LY

SITE DETAILS

Grid Reference 509520 428290

Castle Street

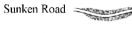
Historical Map Legend

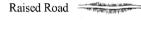
=

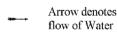
Road over

Stream

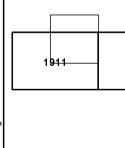
Quarry







Instrumental Contour



Sketched Contour

LINCOLNSHIRE

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 he 1:2,500 scale was adopted for mapping urban areas: these maps were used to update the 1:10,560 maps. The published date given on the right therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initial overprinted with the National Grid. In 1970 the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editio appearing every 10 years or so for urban areas.

ource map scale · 1:10,560

Date(s) of Publication

1911

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

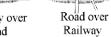
Pell Frischmann

George House George Street WAKEFIELD

West Yorkshire WF1 1LY

SITE DETAILS

Grid Reference 509520

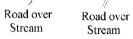

Castle Street

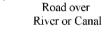
Historical Map Legend

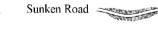
428290

Railway over River =

Quarry







Instrumental Contour

Arrow denotes

flow of Water

Sketched Contour

YORKSHIRE

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840 is. In 1854 het 1:2, 500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given on the right therefore is often some years later than the surveyed date. Before 1933, all OS maps were based on the Cassini Projection, with independent surveyers of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished -with all military camps and other strategic sites removed. These maps were initially overprint bed with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new edition appearing every 10 years or so for urban areas.

1911


ource map scale · 1:10,560

1911

Date(s) of Publication

Ordnance Survey®

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street WAKEFIELD

West Yorkshire WF1 1LY

SITE DETAILS

Grid Reference 509520 428290

Castle Street

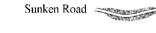
Shingle

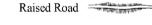
Railway over River =

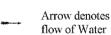
Road over

Stream

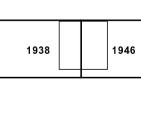
Quarry


Other Pits





Instrumental Contour

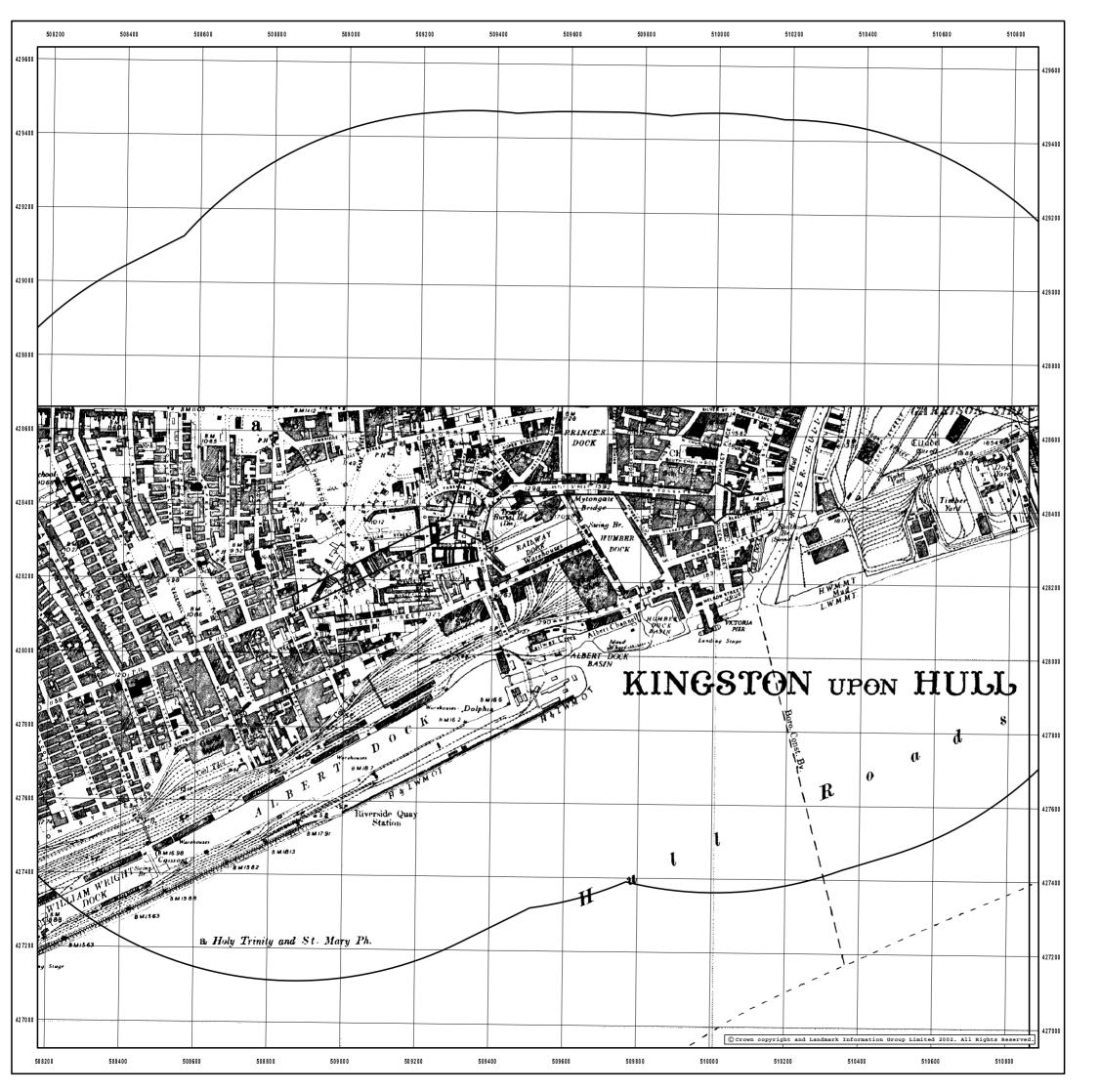


Sketched Contour

YORKSHIRE

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840 is. In 1854 het 1:2, 500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given on the right therefore is often some years later than the surveyed date. Before 1933, all OS maps were based on the Cassini Projection, with independent surveyers of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished -with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new edition appearing every 10 years or so for urban areas.



ource map scale · 1:10,560

Date(s) of Publication

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street

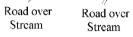
WAKEFIELD West Yorkshire WF1 1LY

SITE DETAILS

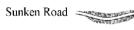
Grid Reference 509520 428290

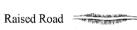
Castle Street

Quarry



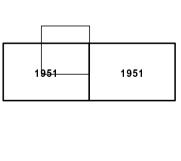
=





Instrumental Contour

Arrow denotes flow of Water


Sketched Contour

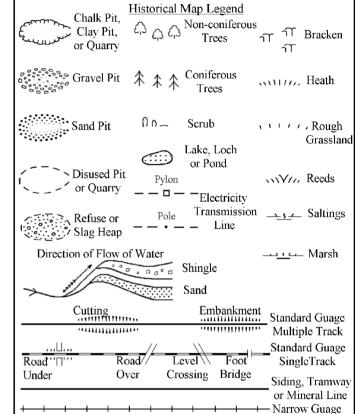
LINCOLNSHIRE

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 he 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given on the right therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

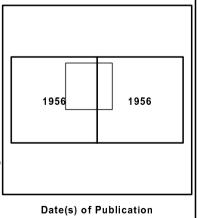
In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished -with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new edition appearing every 10 years or so for urban areas.

ource map scale · 1:10,560

Date(s) of Publication



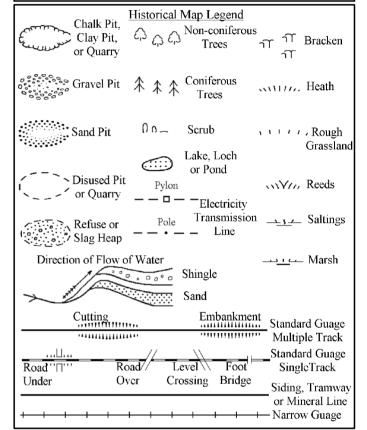
CLIENT DETAILS Envirocheck Order No. EC166624 1 1 Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC Pell Frischmann George House George Street WAKEFIELD West Yorkshire WF1 1LY


SITE DETAILS Grid Reference 509520 428290 Castle Street

ORDNANCE SURVEY PLAN

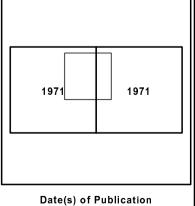
The historical maps shown were reproduced from The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10.560 maps. The published date given on the right therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single country or group of counties, giving rise to significant inaccuracies in outlying areas.

In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initial overprinted with the National Grid. In 1970 the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editio appearing every 10 years or so for urban areas.



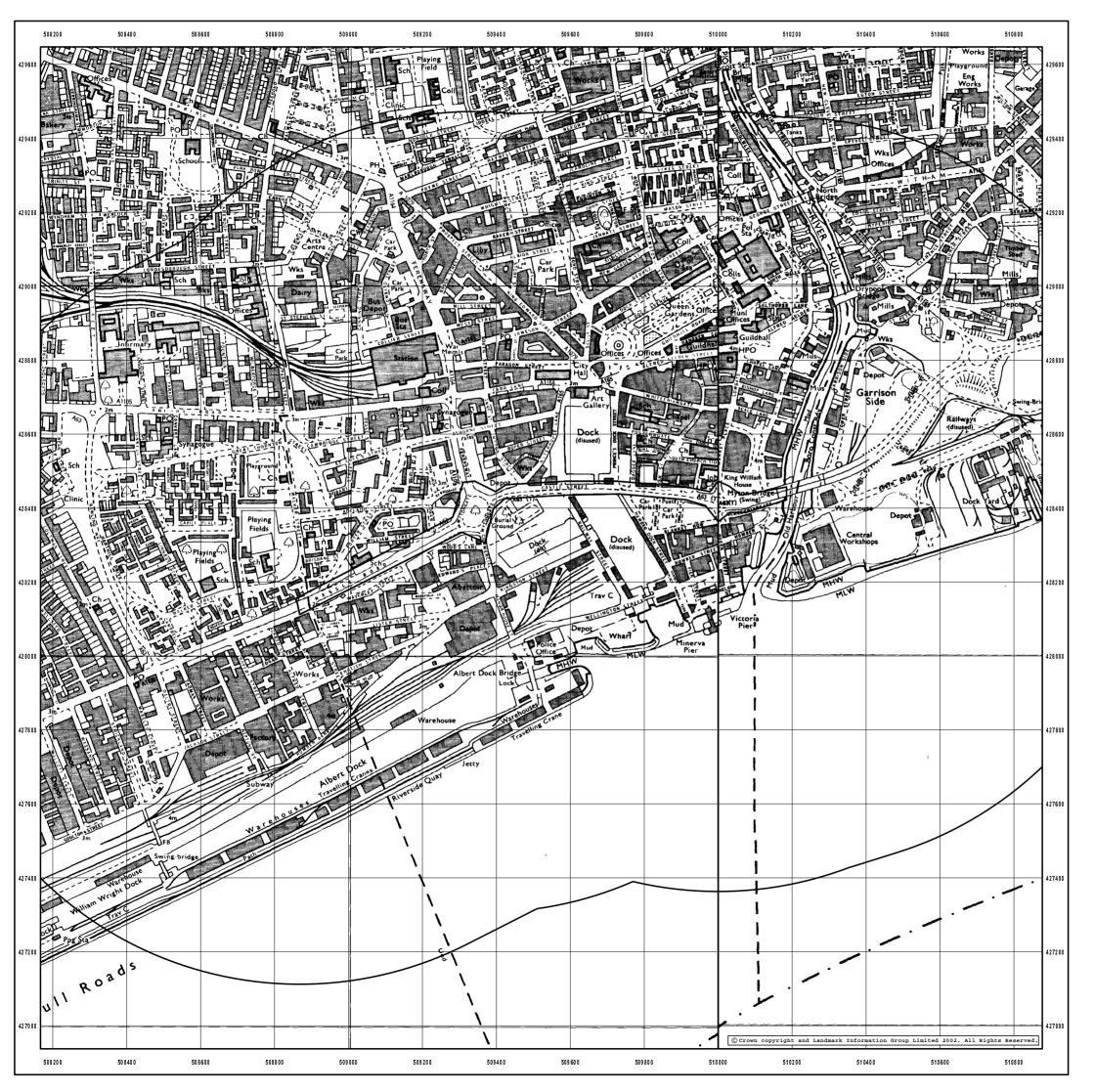
CLIENT DETAILS Envirocheck Order No. EC166624 1 1 Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC Pell Frischmann George House George Street WAKEFIELD West Yorkshire WF1 1LY

SITE DETAILS Grid Reference 509520 428290 Castle Street



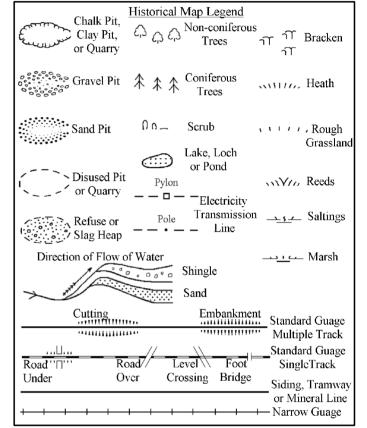
ORDNANCE SURVEY PLAN

The historical maps shown were reproduced from The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10.560 maps. The published date given on the right therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single country or group of counties, giving rise to significant inaccuracies in outlying areas.


In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished -with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 19th the lirist 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new edition appearing every 10 years or so for urban areas.

ource map scale - 1:10,000

Ordnance Survey®

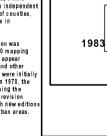


CLIENT DETAILS
Envirocheck Order No. EC166624_1_1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC
Pell Frischmann
George House George Street
WAKEFIELD
West Yorkshire WF1 1LY

SITE DETAILS Grid Reference 509520 428290

Castle Street



ORDNANCE SURVEY PLAN

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England. Wales and Scotland in the 1840 s. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given on the right therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single country or group of counties, giving rise to significant inaccuracies in outlying areas.

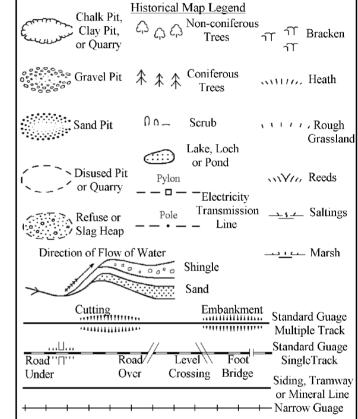
In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

ource map scale - 1:10,000

Date(s) of Publication

1984

Ordnance Survey®

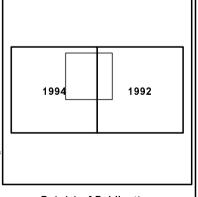


CLIENT DETAILS
Envirocheck Order No. EC166624_1_1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC
Pell Frischmann
George House George Street
WAKEFIELD
West Yorkshire WF1 1LY

SITE DETAILS Grid Reference 509520 428290

Castle Street



ORDNANCE SURVEY PLAN

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840: In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given on the right therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single country or group of counties, giving rise to significant inaccuracies in outlying areas.

In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprint bed with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.


ource map scale - 1:10,000

Date(s) of Publication

Envirocheck Order No. EC166624 1 1

Customer Ref: MS C MCINTOSH,W10021/A02/T01_EC

Pell Frischmann

George House George Street WAKEFIELD

West Yorkshire WF1 1LY

SITE DETAILS

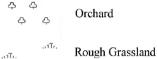
Grid Reference 509520 428290

Castle Street

00

Historical Map Legend

Non-coniferous


 \boxtimes Pylon

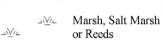
Coniferous Trees → - - - -

Telephone Line (where shown)

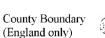
Electricity

Transmission Line (with poles)

Gravel Pit


Shingle

Boundary



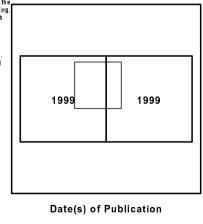
Scrub

Sand Pit

(England only) Civil Parish or Community

* * * * * * * * * Slopes

Boundary Constituency District, Unitary, Metropolitan,

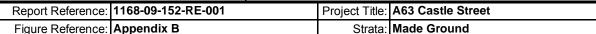

London Borough Boundary

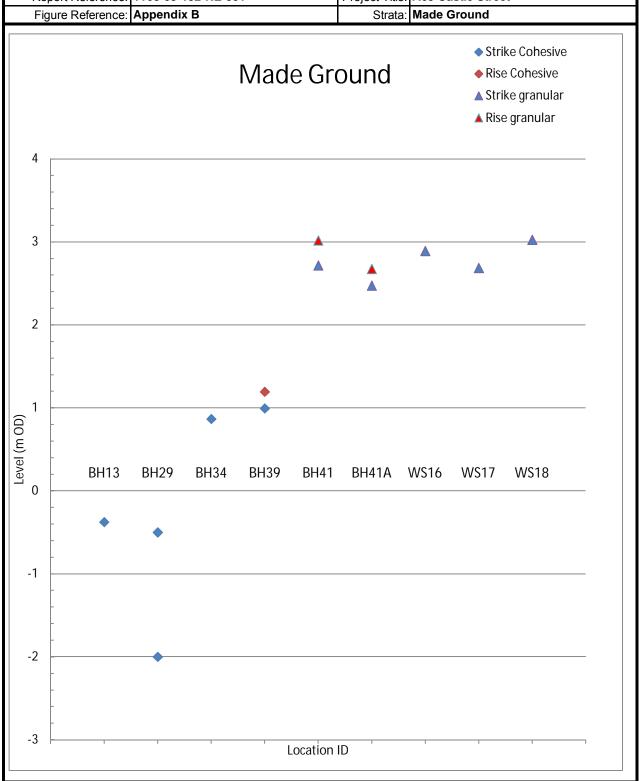
ORDNANCE SURVEY PLAN

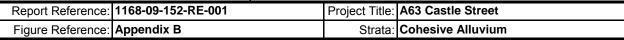
The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan ® which replaced the old 1:10,000 maps originally published in 1970.

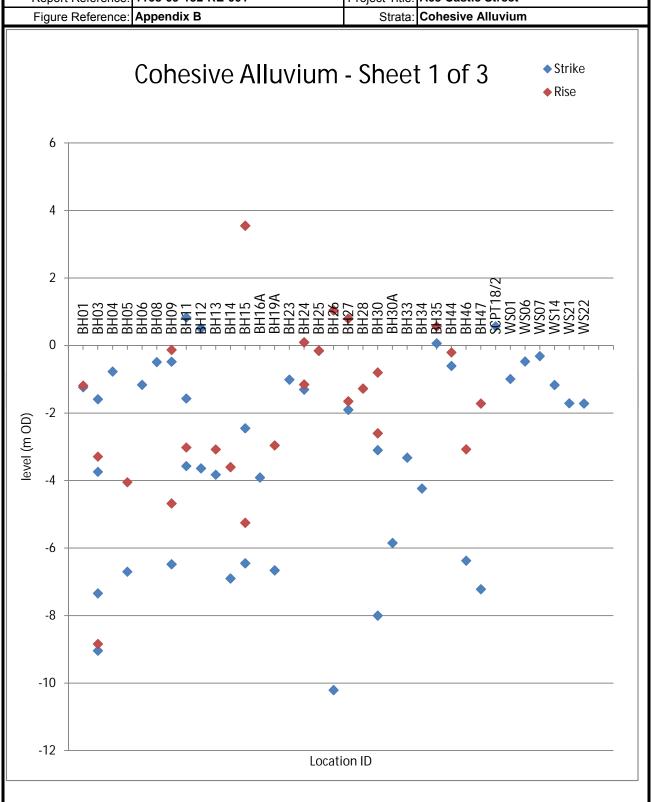

The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district civil parish and constituency.

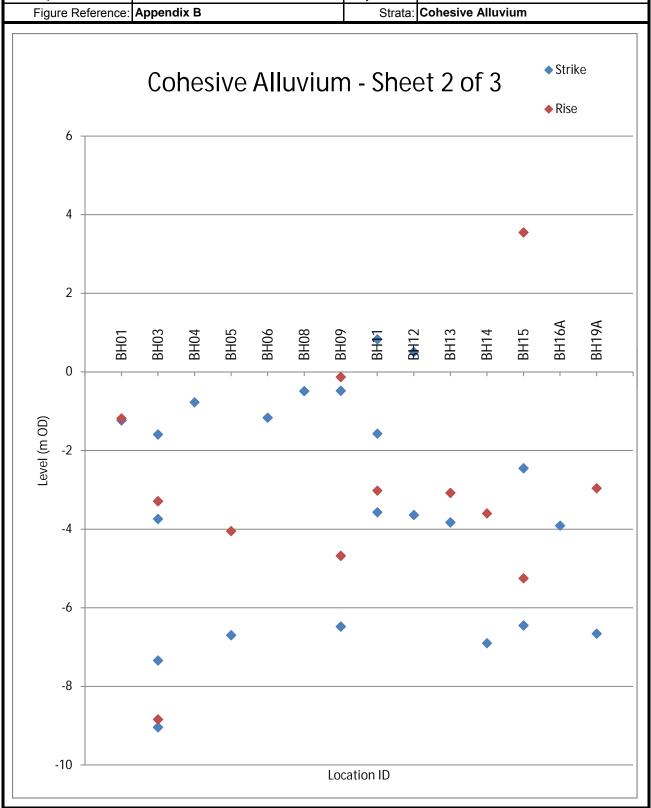
Source map scale - 1:10,000

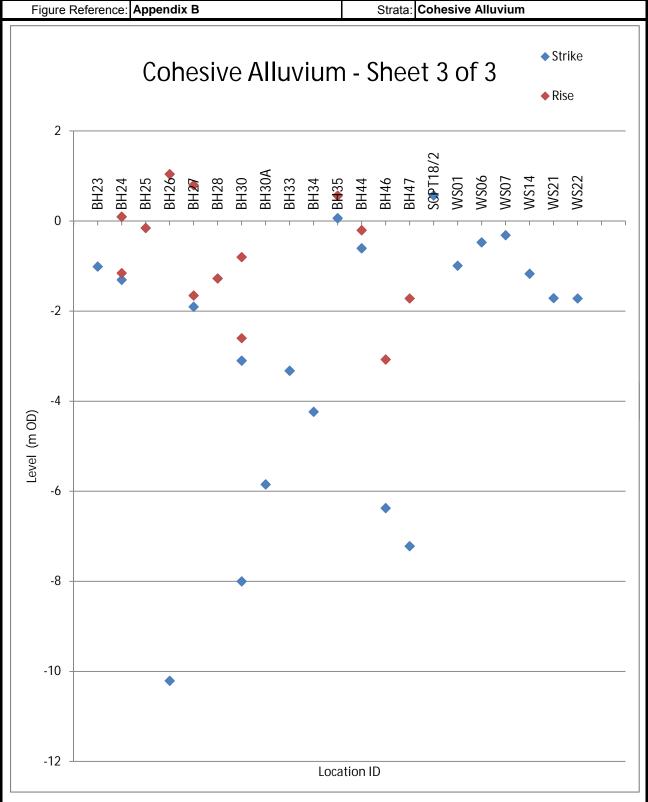



Ordnance Survey®

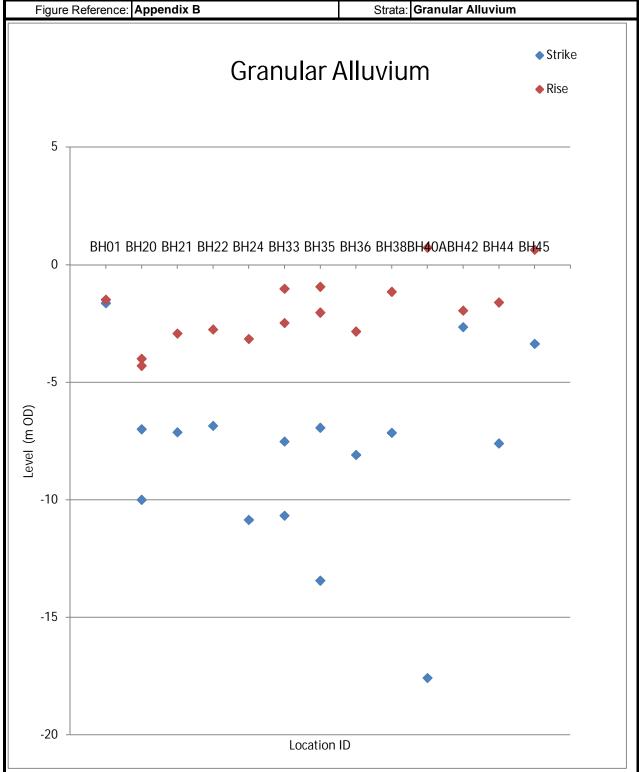








Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street Figure Reference: Appendix B Strata: Cohesive Alluvium


Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Appendix B Strata: Cohesive Alluvium

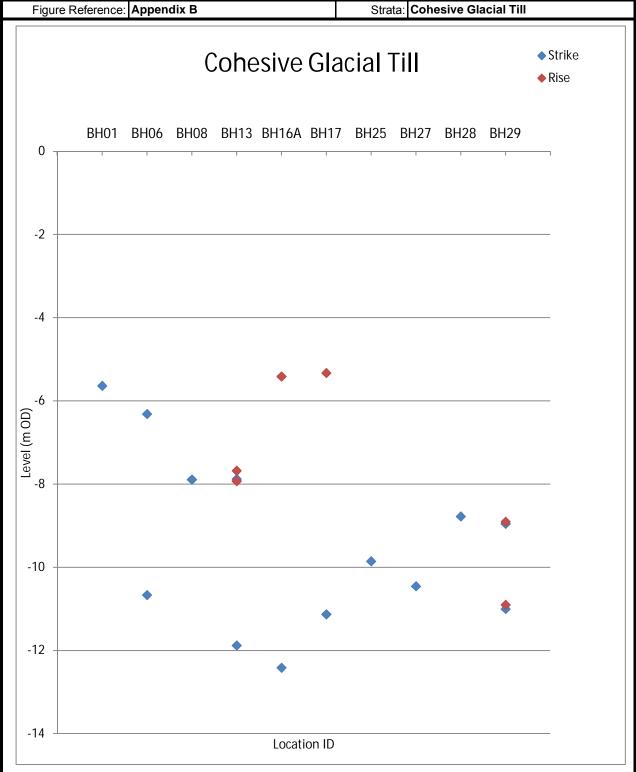
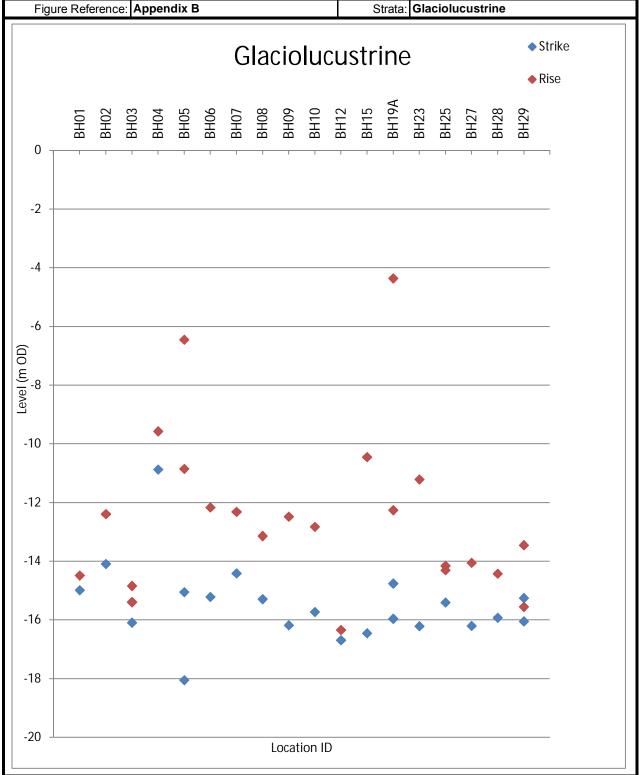

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street

Figure Reference: Appendix B Strata: Granular Alluvium


Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street
Figure Reference: Appendix B Strata: Cohesive Glacial Till

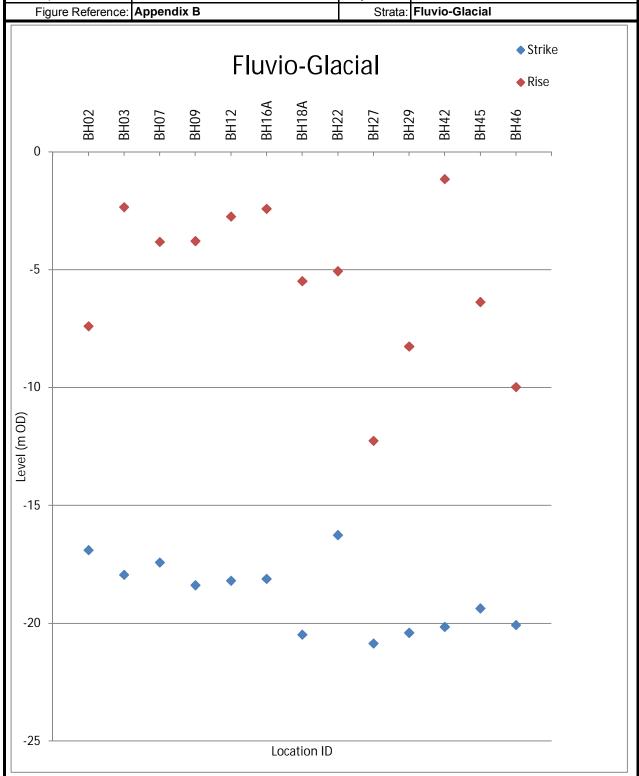
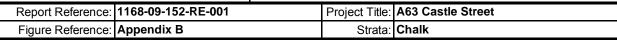
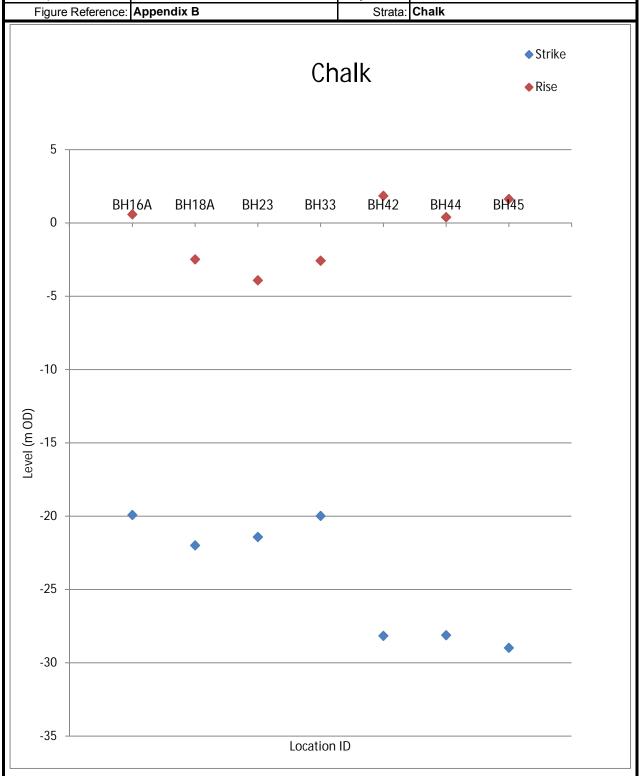

Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street

Figure Reference: Appendix B





Report Reference: 1168-09-152-RE-001 Project Title: A63 Castle Street

Annex B: ESG (2016) A63 Garrison Road, Castle Street Improvement, Hull, Factual Report on Ground Investigation. Report No A5066-15A. For Balfour Beatty Limited and Ove Arup & Partners

A63 CASTLE STREET IMPROVEMENTS MAIN SITE GI

FACTUAL REPORT ON GROUND INVESTIGATION

Report No A5085-15

April 2016

Carried out for:
Balfour Beatty Limited
Admiral House
Rose Wharf
78 East Street
Leeds
LS9 8EE

Engineer:
Ove Arup & Partners
Admiral House
Rose Wharf
78 East Street
Leeds
LS9 8EE

Askern Road, Carcroft,
Doncaster, South Yorkshire DN6 8DG
Tel: +44 (0) 1302 723456
email: geo.doncaster@esg.co.uk

Report No A5085-15

April 2016

Issue No Date	Status	Prepared by	Checked by	Approved by
		NAME and QUALIFICATIONS	NAME and QUALIFICATIONS	NAME and QUALIFICATIONS
1	Draft	T Clifford BEng	P Hepton BSc PhD	T Clifford BEng
Mar 2016	report	SIGNATURE	SIGNATURE	SIGNATURE
		NAME and QUALIFICATIONS	NAME and QUALIFICATIONS	NAME and QUALIFICATIONS
2	Final	T Clifford BEng	P Hepton BSc PhD	P Hepton BSc PhD
Apr 2016	report	SIGNATURE	SIGNATURE	SIGNATURE
		NAME and QUALIFICATIONS	NAME and QUALIFICATIONS	NAME and QUALIFICATIONS
		SIGNATURE	SIGNATURE	SIGNATURE

This Report has been prepared by ESG Limited ("ESGL") with all reasonable skill and care, within the terms and conditions of the contract between ESGL and the Client ("Contract") and within the limitations of the resources devoted to it by agreement with the Client. Any reliance upon the Report is subject to the Contract terms and conditions.

This Report is confidential between the Client and ESGL. ESGL accepts no responsibility whatsoever to third parties to whom this document, or any part thereof, is made known. Any such party relies upon the Report at their own risk. The Contracts (Rights of Third Parties) Act 1999 does not apply to this Report nor the Contract and the provisions of the said Act are hereby excluded.

This Report shall not be used for engineering or contractual purposes unless signed above by the author, checker and the approver for and on behalf of ESGL and unless the Report status is 'Final'.

Unless specifically assigned or transferred within the terms and conditions of the Contract, ESGL asserts and retains all Copyright and other Intellectual Property Rights in and over the Report and its contents. The Report may not be copied or reproduced, in whole or in part, without the written authorisation from ESGL. ESGL shall not be liable for any use of the Report for any purpose other than that for which it was originally prepared.

Whilst every effort has been made to ensure the accuracy of the data supplied and any analysis interpretation derived from it, the possibility exists of variations in the ground and groundwater conditions around and between the exploratory positions. No liability can be accepted for any such variations in these conditions. Furthermore, any recommendations are specific to the development as detailed in this Report and no liability will be accepted should they be used for the design of alternative schemes without prior consultant with ESGL

CONTENTS

			Page
1	INTE	RODUCTION	1
2	SITE	E SETTING	1
	2.1 2.2	Location and DescriptionPublished Geology	
3	FIEL	LDWORK	2
	3.1 3.2 3.3		2
4	CON	NE PENETRATION TESTING	3
	4.1 4.2	GeneralData Processing	
5	DYN	NAMIC CONE PENETRATION TESTS	5
6	LAB	BORATORY TESTING	5
	6.1 6.2	Geotechnical TestingGeoenvironmental Testing	
DEE	EDENIC	rec	7

APPENDIX A FIGURES AND DRAWINGS

APPENDIX B EXPLORATORY HOLE RECORDS

APPENDIX C INSTRUMENTATION AND MONITORING

APPENDIX D CONE PENETRATION TESTING

APPENDIX E DYNAMIC CONE PENETROMETER TESTING

APPENDIX F GEOTECHNICAL LABORATORY TEST RESULTS

APPENDIX G GEOENVIRONMENTAL LABORATORY TEST RESULTS

APPENDIX H PHOTOGRAPHS

1 INTRODUCTION

In April 2015 ESG was commissioned by Ove Arup & Partners, on behalf of Balfour Beatty Limited, to carry out a ground investigation for the A63 Castle Street Improvement project in Hull. The investigation was required to obtain supplementary geotechnical and geoenvironmental information to assist in the design and construction of the A63 Castle Street Improvement works.

The scope of the investigation was specified by Ove Arup & Partners and comprised boreholes by cable percussion and rotary drilling, dynamic sampling, pavement coring, cone penetration testing (CPT), dynamic cone penetration testing (DCP), laboratory testing and monitoring. The investigation was performed in accordance with the contract specification, and the general requirements of BS 5930 (2015), BS EN 1997-2 (2007), BS EN ISO 22475-1 (2006) and other relevant related standards identified below. The fieldwork took place between 30 November 2015 and 25 January 2016.

This report presents the factual records of the fieldwork and laboratory testing. The information is also presented as digital data as defined in AGS (2010).

2 SITE SETTING

2.1 Location and Description

The A63 runs in an east-west direction through the southern part of Hull, on the north side of the Humber estuary. The Castle Street Improvement section runs between Porter Street, at National Grid Reference TA 089 281, and Hull Magistrates Court, at TA 101 284, see Site Location Plan in Appendix A.

2.2 Published Geology

The published geological map for the area, BGS Sheet 80 (1983), and the BGS Geology of Britain Viewer (2016) show the site located on superficial deposits comprising Tidal Flat Deposits overlying bedrock of the Burnham Chalk Formation, part of the White Chalk Subgroup of Cretaceous age.

Granular and cohesive Glacial Deposits are shown at distance from the Humber and would be expected to be present beneath the Tidal Flat Deposits. Ove Arup & Partners indicate the likely

presence of Glacial Till, Glacial Lacustrine Silt and Clay and Fluvioglacial Sand and Gravel/Aeolian Sand. A covering of Made Ground associated with historical use of the site is also indicated.

3 FIELDWORK

3.1 General

The fieldwork was carried out in general accordance with BS 5930 (2015), BS EN 1997-2 (2007) and BS EN ISO 22475-1 (2006).

The exploratory hole and in situ test locations were selected by Ove Arup & Partners. The locations were set out from local features. The co-ordinates and reduced levels were surveyed by ESG to National Grid and Ordnance Datum. The exploratory hole and in situ test locations are shown on the Site Plan in Appendix A.

3.2 Exploratory Holes

The exploratory holes are listed in the following table.

TABLE 1: SUMMARY OF EXPLORATORY HOLES

ТҮРЕ	QUANTITY	MAXIMUM DEPTH (m)	REMARKS
Cable Percussion Boring	7	28.50	BH403, 404, 405, 406, 407, 408 and 417
Cable Percussion Boring extended by Rotary Core Drilling	1	39.90	BH402
Dynamic Sampling	4	5.00	WS401, 402, 403, 404
Road Pavement Coring	10	0.56	CR2, CR3, CR4, CR5, EB3, EB4, WB1, WB2, WB3, WB4

The exploratory hole logs are presented in Appendix B. These provide information including the equipment and methods used, samples taken, tests carried out, water observations and descriptions of the strata encountered. Explanation of the terms and abbreviations used on the logs is given in the Key to Exploratory Hole Records in Appendix B, together with other explanatory information. The logging of soil and rock materials is in accordance with BS EN ISO 14688-1+A1 (2013) for soils and BS EN ISO 14689-1 (2003) for rocks, as amplified by BS 5930 (2015).

Selected undisturbed samples were extruded and split for detailed description. The records, including a representative photograph, are also included in Appendix B. Full photographs of the samples are presented on in Appendix H.

Standard penetration tests (SPT) in the boreholes were carried out in accordance with BS EN ISO 22476-3+A1 (2011) and the SPT hammer energy ratio certificate is included in Appendix B. The SPT results are presented on the logs as uncorrected N values.

Photographs of the rotary drilled core are presented in Appendix H.

The dynamic sampling boreholes were undertaken under instruction from Balfour Beatty. These were to allow for the installation of groundwater monitoring standpipe piezometers and to obtain geoenvironmental samples.

On completion of the fieldwork geotechnical samples were transported to ESG's Doncaster office for temporary retention, with those required for testing being transferred to ESG's geotechnical laboratory at Doncaster. Geoenvironmental samples were transported from site directly to ESG's Environmental Chemistry laboratory at Burton-on-Trent.

3.3 Groundwater Monitoring

Instrumentation installed in the exploratory holes for groundwater monitoring are shown on the logs and summarised in Appendix C. Records of monitoring carried out by ESG following the fieldwork period are presented in Appendix C.

4 CONE PENETRATION TESTING

4.1 General

Cone magnetometer penetration tests were carried out in advance of other intrusive works at exploratory hole locations to confirm the absence of detectable unexploded ordnance (UXO). The testing used a combined piezocone/magnetometer unit operated from a 20 tonne CPT truck. Testing was performed at six borehole locations (BH404, 405, 406, 407, 408 and 417) to a maximum depth of 17.4 m, and two dynamic sampling locations (WS02 and 04) to a maximum depth of 5.8 m. At some locations more than one attempt was necessary to achieve penetration where shallow obstructions were encountered. Testing also occurred at eight specific CPT

locations to a maximum depth of 22.9 m. The programme of testing is shown in Table 1 in Appendix D, together with the corresponding Cone Magnetometer plots.

Ten conventional CPTs were carried out to a maximum depth of 23 m using electric piezocones operated from a 20 tonne CPT truck. These piezocones were fitted with porepressure sensor filters located on the cone face, in the so-called u_1 location. Twenty two dissipation tests were carried out in conjunction with the CPTs. The programme of testing is summarised in Table 2 and the test plots are presented in Appendix D.

CPT was carried out in accordance with Part 9 of BS 1377 (1990). The serial numbers of the cones used are indicated on the test plots. The calibration certificates are included in Appendix D and provide details of the manufacturer, cone dimensions, capacity and geometry.

Any opinions and interpretations presented are outside the scope of the UKAS accreditation for cone penetration testing.

4.2 Data Processing

Test control and data acquisition during CPT was carried out using GeoExplorer, a proprietary software supplied by Gouda Geo-Equipment BV of Holland. The measured cone end resistance, sleeve friction, dynamic porewater pressure and inclination were recorded at 1 cm intervals of penetration.

Interpretation of the data was carried out using CPTask, a software proprietary software supplied by Geomil Equipment BV of Holland. The interpretation follows the recommendations of Lunne et al (1997) to derive (where appropriate): friction ratio, pore pressure ratio, undrained shear strength (minimum and maximum range presented using typical cone factors of 20 and 12 respectively), relative density, angle of friction and soil type. The soil classification uses the soil behaviour type chart of Robertson (1990). Groundwater levels based on inspection of the data have been used in the interpretation, as shown on the test plots.

Explanation of the terms used and derivations of the cone and soil parameters are given in the Key in Appendix D. The data are presented as plots relative to depth below ground level on the CPT logs in Appendix D. The records of dissipation tests as pore pressure against time are also included in Appendix D.

Note to records for CPT409 and 414

The porewater pressure data obtained during CPTs at locations CPT409 and 414 appear to have been attenuated somewhat in comparison with other tests measuring porewater pressure with a u_1 filter position. The reason for this is uncertain but it is probable that the filter has become desaturated during penetration through unsaturated material in the upper part of the test, particularly where this may be Made Ground.

5 DYNAMIC CONE PENETRATION TESTS

Dynamic cone penetrometer tests (DCP) were carried out at locations CR2, CR3, CR4, CR5, EB4, WB1, WB2, WB4, and series D positions 01 to 12, 12a, 13, 16 and 17. Tests proposed at locations D14 and D15 were not completed due to concrete obstructions beneath the surface paving.

The results are presented in Appendix E.

6 LABORATORY TESTING

6.1 Geotechnical Testing

Geotechnical laboratory testing was scheduled by Ove Arup & Partners and was carried out in accordance with BS 1377 (1990) unless otherwise stated. The testing is summarised below and the results are presented in Appendix F.

- Water Content Determination
- Atterberg Limits Determination
- Particle Size Distribution Analysis
- Unconsolidated Undrained Triaxial Compression Testing
- Consolidated Undrained Triaxial Compression Testing
- One Dimensional (Oedometer) Consolidation Testing
- Dry Density / Moisture Content Relationship (Light Compaction 2.5kg rammer)
- Acid Soluble Sulphate Content, Water Soluble Sulphate Content, Total Sulphur Content and pH Value of Soils.
- Organic Matter Content

6.2 Geoenvironmental Testing

Geoenvironmental laboratory testing was scheduled by Ove Arup & Partners on soil samples recovered during the fieldwork. The testing was carried out by the laboratory at Burton-on-Trent. The results are presented in Appendix G.

Additional to the sampling carried out by ESG, four samples were recovered by Balfour Beatty for WAC analysis. These were from shallow depths in two trenches, designated S4 and S7, the results are included in Appendix G.

REFERENCES

AGS: 2010: Electronic transfer of geotechnical and geoenvironmental data (Edition 4 including Addendum 3. October 2011). Association of Geotechnical and Geoenvironmental Specialists.

BGS England and Wales Sheet 80 : 1983 : Kingston upon Hull. 1:50000 geological map (solid). British Geological Survey.

BGS England and Wales Sheet 80 : 1983 : Kingston upon Hull. 1:50000 geological map (drift). British Geological Survey.

BGS Geology of Britain Viewer: 2016. www.bgs.ac.uk. March 2016. British Geological Survey.

BRE Special Digest 1 : 2005 : Concrete in aggressive ground. Building Research Establishment.

BS 1377 : 1990 : Methods of test for soils for civil engineering purposes. British Standards Institution.

BS 5930 : 2015 : Code of practice for ground investigations. British Standards Institution.

BS EN 1997-2 : 2007 : Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. British Standards Institution.

BS EN ISO 14688-1:2002+A1 : 2013 : Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description. British Standards Institution.

BS EN ISO 14688-2:2004+A1 : 2013 : Geotechnical investigation and testing - Identification and classification of soil - Part 2 Principles for a classification. British Standards Institution.

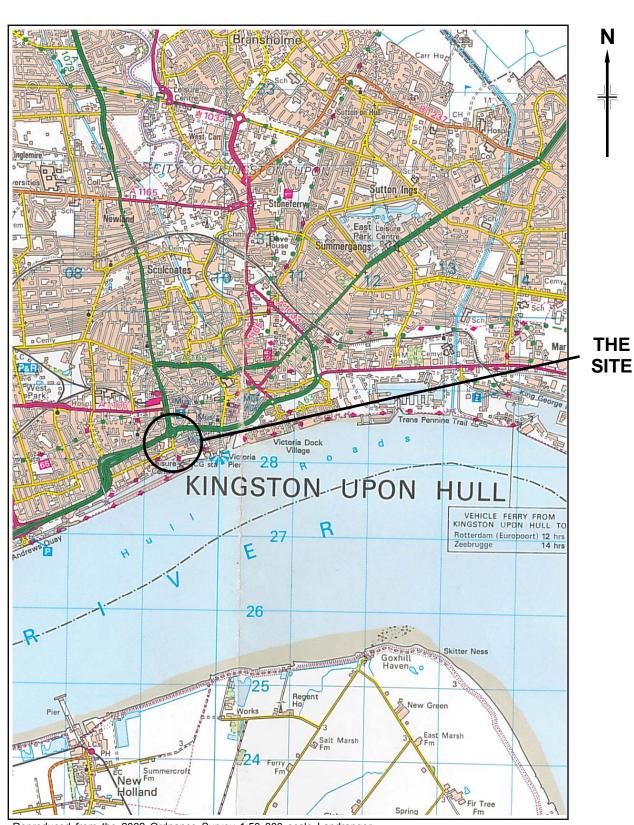
BS EN ISO 14689-1: 2003: Geotechnical investigation and testing - Identification and classification of rock - Part 1 Identification and description. British Standards Institution.

BS EN ISO 22475-1 : 2006 : Geotechnical investigation and testing – Sampling methods and groundwater measurements - Part 1 Technical principles for execution. British Standards Institution.

BS EN ISO 22476-3:2005+A1 : 2011 : Geotechnical investigation and testing - Field testing - Part 3 Standard penetration test. British Standards Institution.

Lunne T, Robertson PK and Powell JJM : 1997 : Cone Penetration Testing in Geotechnical Practice. Blackie Academic & Professional.

Robertson P K : 1990 : Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 151-8



APPENDIX A FIGURES AND DRAWINGS

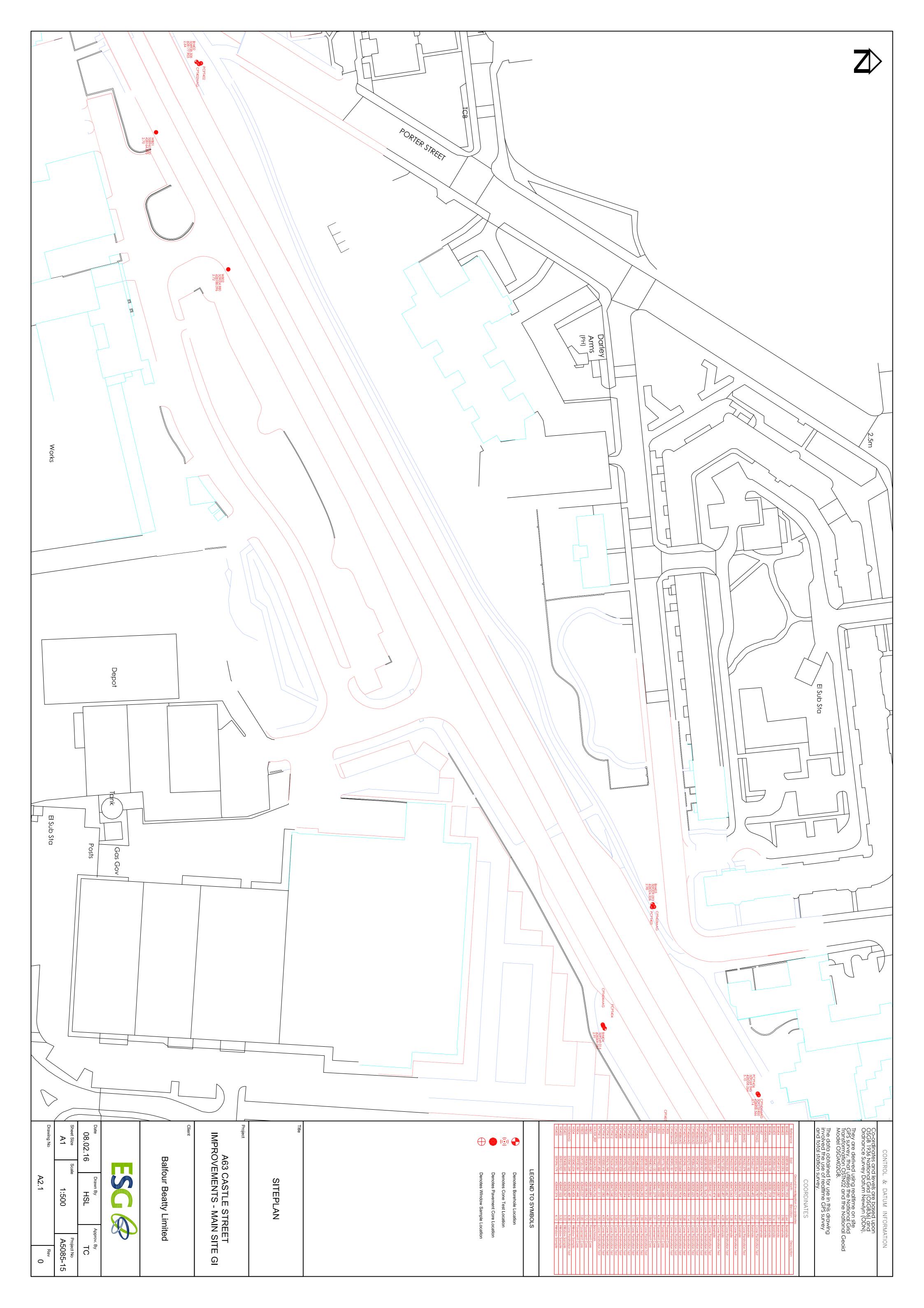
Site Location Plan A1
Site Plan A2.1 to A2.4

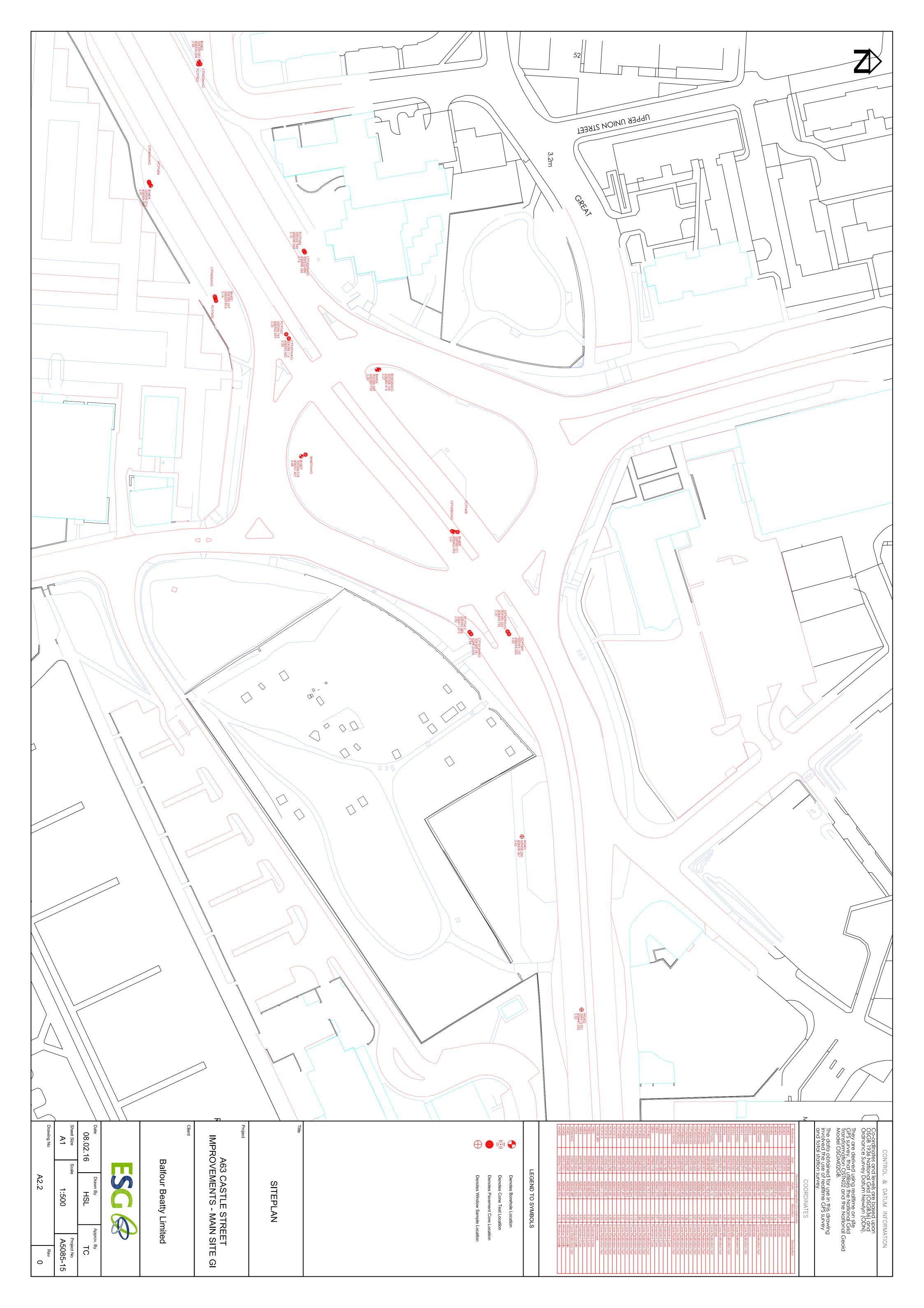
Site Location Plan

Reproduced from the 2002 Ordnance Survey 1:50 000 scale Landranger map No 107 by permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office, © Crown copyright, Environmental Services Group Limited. All rights reserved. Licence Number 100006060

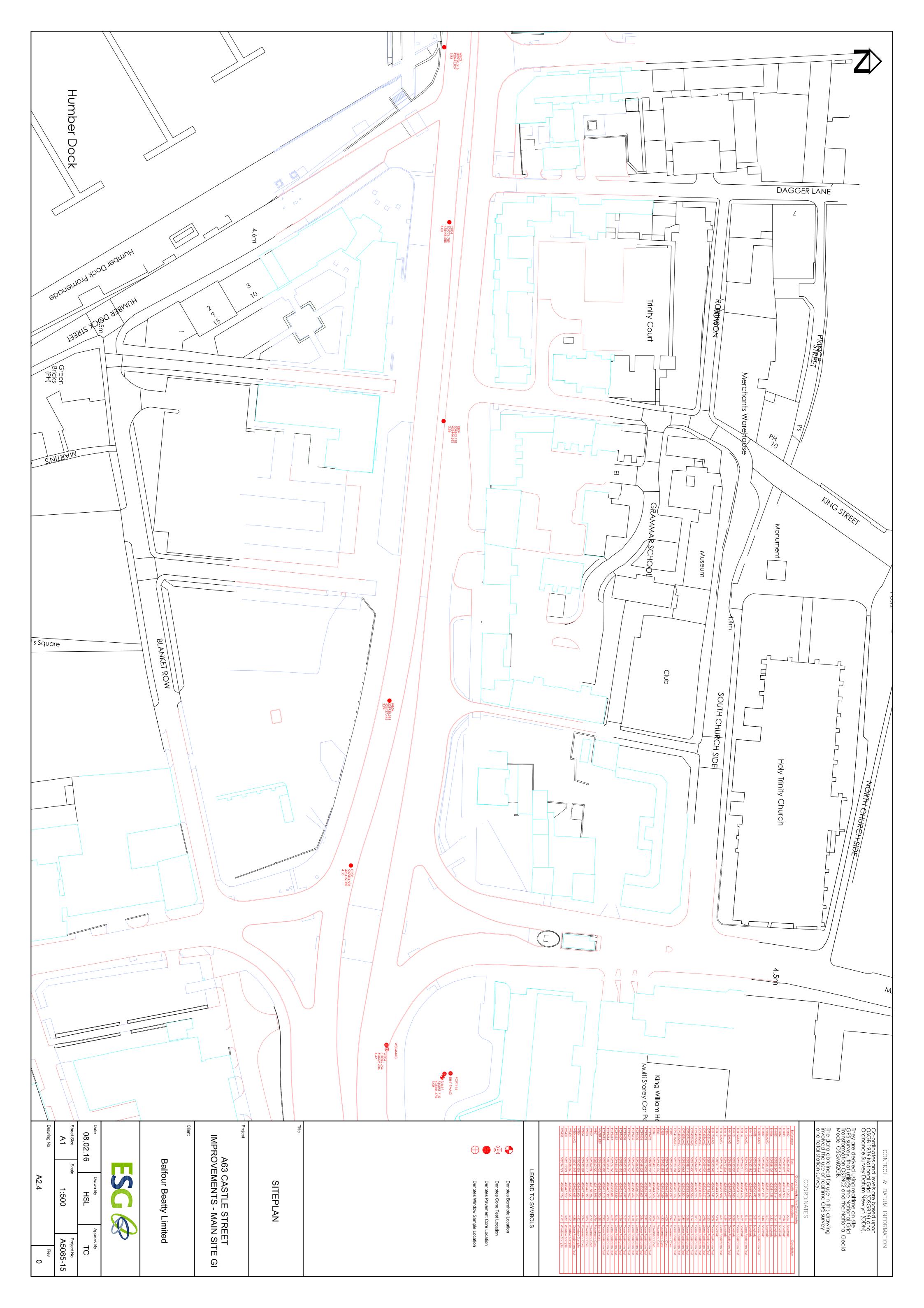
Notes: Scale 1:50 000

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI Project


Carried out for


Balfour Beatty Limited


Project No.


Figure

A1

APPENDIX B EXPLORATORY HOLE RECORDS

Key to Exploratory Hole Records Key

SPT Hammer Energy Ratio Report SPT Hammer References – TS2 024

SM37

BH402

Cable Percussion Boring BH403, 404, 405, 406, 407, 408 and 417

Cable Percussion Boring extended by Rotary

Core Drilling/Open Hole Drilling

Split Tube Sample Descriptions BH402 (22), 403 (21), 404 (22), 405 (18),

406 (24), 407 (33), 408 (27) and 417 (6)

Dynamic Sampling WS401, 402, 403, 404

Road Pavement Coring CR2, CR3, CR4, CR5, EB3, EB4, WB1,

WB2, WB3, WB4

Key to Exploratory Hole Records

SAMPLES

Undisturbed

Driven tube sample

UT Driven thin wall tube sample nominally 100 mm diameter and full recovery unless otherwise stated

TW Pushed thin wall tube sample Pushed piston sample

Liner sample (from Windowless or similar sampler), full recovery unless otherwise stated

CBR CBR mould sample **BLK** Block sample

CS Core sample (from rotary core) taken for laboratory testing

AMAL Amalgamated sample

Disturbed

Small sample В Bulk sample

Other

Water sample W G Gas sample

Environmental chemistry samples (in more than one container where appropriate)

ES Soil sample FW Water sample

Sample reference numbers are assigned to every sample taken. A sample reference of 'NR' indicates that attempt was Comments

made to take a tube sample, however, there was no recovery.

Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs.

TESTS

SPT S or SPT C Standard Penetration Test, open shoe (S) or solid cone (C)

> The Standard Penetration Test is defined in BS EN ISO 22476-3:2005+A1:2011. The incremental blow counts are given in the Field Records column; each increment is 75 mm unless stated otherwise and any penetration under self weight in mm (SW) is noted. Where the full 300 mm test drive is achieved the total number of blows for the test drive is presented as N = ** in the Test column. Where the test drive blows reach 50 the total blow count beyond the seating

drive is given (without the N = prefix).

in situ Vane shear strength, peak (p) and remoulded (r) HV Hand vane shear strength, peak (p) and remoulded (r) Pocket penetrometer test, converted to shear strength

KFH, KRH, KPI Permeability tests (KFH = falling head, KRH = rising head; KPI = packer inflow); results provided in Field Records

column (one value per stage for packer tests)

DRILLING RECORDS

The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930:2015

TCR Total Core Recovery, % SCR Solid Core Recovery, % RQD Rock Quality Designation, %

Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term

non-intact (NI) is used where the core is fragmented.

Flush returns, estimated percentage with colour where relevant, are given in the Records column

CRF Core recovered (length in m) in the following run Assessed zone of core loss

AZCL Not recovered

GROUNDWATER

Groundwater strike

Groundwater level after standing period

See report text for full references of standards

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI Project

Carried out for **Balfour Beatty**

Sheet 1 of 2

Key to Exploratory Hole Records

INSTALLATION

Standpipe/ piezometer Details of standpipe/piezometer installations are given on the Record. Legend column shows installed instrument depths including slotted pipe section or tip depth, response zone filter material type and layers of backfill.

The type of instrument installed is indicated by a code in the Legend column at the depth of the response zone:

SP SPIE PPIE Standpipe
Standpipe piezometer
Pneumatic piezometer
Electronic piezometer

Inclinometer or Slip Indicator

The installation of vertical profiling instruments is indicated on the Record. The base of tubing is shown in the Legend

ICE ICM SLIP

FSFT

FPIF

The type of instrument installed is indicated by a code in the Legend column at the base of the tubing:

Biaxial inclinometer

Inclinometer tubing for use with probe

Slip indicator

Settlement Points or Pressure Cells The installation of single point instruments is indicated on the Record. The location of the measuring device is shown in the Legend column.

The type of instrument installed is indicated by a code in the Legend column: Electronic settlement cell/gauge Magnetic extensometer settlement point

Electronic embedment pressure cell Electronic push in pressure cell

ETM EPCE PPCE

INSTALLATION LEGENDS

A legend describing the installation is shown in the rightmost column. Legends used to describe the backfill materials as indicated below.

NOTES

2

5

6

Soils and rocks are described in accordance with BS EN ISO 14688-1:2002+A1:2013 and 14689-1:2003 respectively as amplified by BS 5930:2015.

For fine soils, consistency determined during description is reported for those strata where undisturbed samples are available. Where the logger considers that the sample may not be representative of the condition in situ, for whatever reason, the reported consistency is given in brackets. The reliability of the sample is indicated by Probably or Possibly as appropriate. Hence (Probably firm) indicates the logger is reasonably confident of the assessment, but (Possibly firm) means less certainty. Where the samples available are too disturbed to allow a reasonable assessment of the in situ condition, no consistency is given.

Evidence of the occurrence of very coarse particles (cobbles and boulders) is presented on the logs, however, because of their size in relation to the exploratory hole these records may not be fully representative of their size and frequency in the ground mass.

The declination of bedding and joints is given with respect to the normal to the core axis. Thus in a vertical borehole this will be the dip.

The assessment of SCR, RQD and Fracture Spacing excludes artificial fractures

Water level observations of discernible entries during the advancing of the exploratory hole are given at the foot of the log and in the Legend column. The term "none observed" is used where no discrete entries are identified although this does not necessarily indicate that the hole has not been advanced below groundwater level. Under certain conditions groundwater cannot be observed, for instance, drilling with water flush or overwater, or boring at a rate much faster than water can make its way into the borehole In addition, where appropriate, water levels in the hole at the time of recovering individual samples or carrying out in situ tests and at shift changes are given in the Records column.

The borehole logs present the results of Standard Penetration Tests recorded in the field without correction or interpretation. However, in certain ground conditions (eg high hydraulic head or where very coarse particles are present) some judgement may be necessary in considering whether the results are representative of in situ mass conditions.

Notes: See report text for full references of standards Project A63 CASTLE STREET IMPROVEMENTS – MAIN SITE GI

Project No. A 5085-15
Carried out for Balfour Beatty

Hammer Energy Report

Date of test:

17/04/2015

Hammer ID:

Fall height (h)

Manufacturer:

Hammer mass (m)

TS2

Instrumented rod:

NWY

63.5 kg 0.76 m

Cross-sectional area (A a)

11.30 cm²

SPT

Young's modulus (Ea)

207000 MPa

Archway

Length

0.60 m

, ...

0.60

Model:

Test type:

Automatic Trip Hammer

Test rod type:

NWY

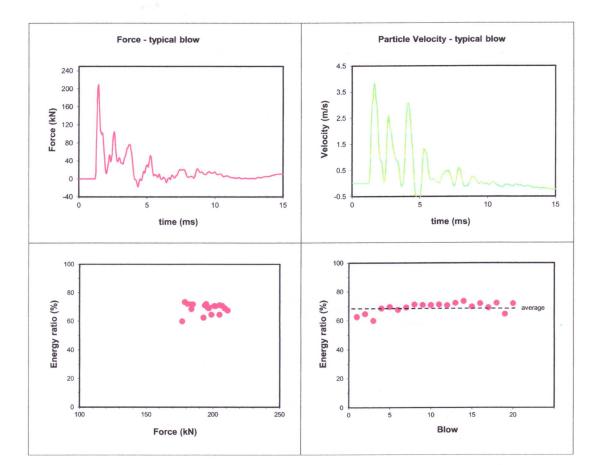
Rig:

Beretta T44

Rig ID:

R60

Type:


Cable Percussion

Foreman:

N Turnbull

Remarks:

Data obtained from test carried out in BH1, located in ESG Doncaster yard. Test carried out at depth of 5.52 mbgl, with a total blow count of 20. Energy determined from every blow.

Theoretical energy (E_{theor}) = $m \times g \times h$ =

0.473 kN-m (473 J)

Measured energy (E_{meas}) average of 20 blows =

0.326 kN-m

Energy ratio =

E meas

69 %

Test carried out by: Malcolm Carr

Signed for issue:

Test carried out in accordance with BS EN ISO 22476-3:2005

Equipment used: SPT Analyzer Serial No. 4032T

in accordance with BSEN ISO 22476-3:2005

Unit 8.

Victory park way.

Victory road.

Derby.

DE24 87F

Hammer Ref:

024

Test Date:

09/03/2015

Report Date:

File Name:

024.spt

Test Operator:

TP

Instrumented Rod Data

Diameter d_r (mm):

54

Wall Thickness t_r (mm):

6.9

Assumed Modulus Ea (GPa): 208

6455

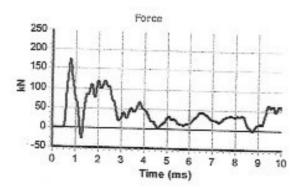
Accelerometer No.1: Accelerometer No.2:

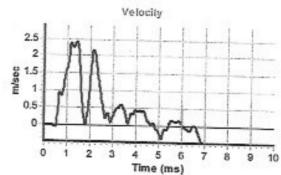
6457

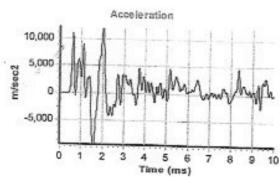
Hammer Information

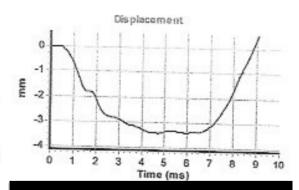
Hammer Mass m (kg):

Falling Height h (mm):


750


String Length L (m):


15.0


Comments / Location

Tested at Dynamic sampling yard.

Calculations

Area of Rod A (mm2):

1021

Theoretical Energy E_{theor} (J):

467

Measured Energy E_{meas} (J):

341

Energy Ratio E_r (%):

73

Signed: T.parker

Title:

operations manager

The recommended calibration interval is 12 months

Hammer Energy Report

Date of test: 07/01/2015 **Hammer ID:** SM37

Instrumented rod:

Type BW

Cross-sectional area (Aa) 11.30 cm² Young's modulus (Ea) 206840 MPa

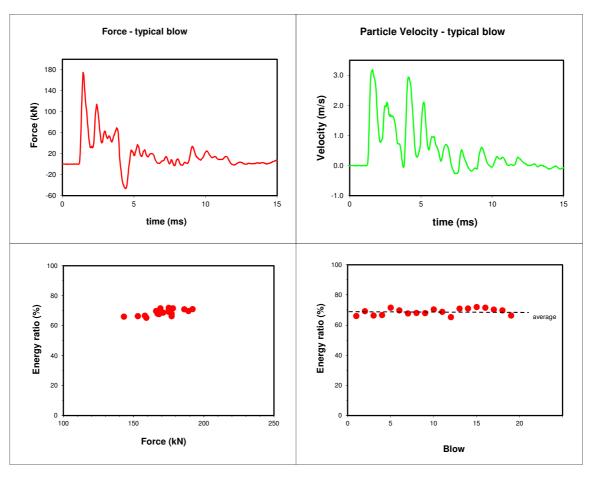
Length 0.60 m

Test rod type: NWY

Hammer mass (m)63.5 kgFall height (h)0.76 mTest type:SPTManufacturer:Archway

Model: Automatic Trip Hammer

Rig: Dando 3000


Rig ID: CT62

Type: Cable Percussion

Foreman: A Dodd

Remarks:

Data obtained from test carried out in BH1, located in SM Doncaster yard. Test carried out at depth of 5.33mbgl, with a total blow count of 20. Energy determined from every blow.

Theoretical energy (E_{theor}) = $m \times g \times h$ =

0.473 kN-m (473 J)

Measured energy (E_{meas}) average of 20 blows =

0.326 kN-m

69 %

Energy ratio = $\frac{E_{meas}}{F_{meas}}$ =

Test carried out by: Malcolm Carr

Test carried out in accordance with BS EN ISO 22476-3:2005

Signed for issue:

Equipment used: SPT Analyzer Serial No. 4032T

led SS/DS									
		Equipment, Methods and Rei Dando 175/R63 Geotech 6.	narks		Depth from to (m) (n	n) (mm) (m)			2.64 n
ged GS/RM/		Cable percussion boring/follow				00 200 23.00	Coordinates (n	1)	E 50893
		SPT Hammer ID: 024, Rod typ	e: 1 1/2 vvnitwo	rtn.,	24.00 39.	30 146 26.10	National Grid		N 42817
	25/01/2016				Otrosto Bonoviretto e				
mples and	lests		Date	Time	Strata Description	1	Depth, Leve	I Legend	Bac
Depth	Type & No		Casing	Water	Main	Detail	(Thickness)	Legend	Бас
0.20 - 1.20	B 1	0.00-1.20 Hand excavate inspection pit.			TOPSOIL. Soft to firm light brownish grey slightly grave	ally	0.15 (0.15)	49	۵۵
0.20 1.20					sandy CLAY. Gravel is angular to subangul		0.40 +2.	24	~
					to coarse brick, concrete and occasional sandstone.	Λ	(0.30)		
					(MADE GROUND)]	0.70 +1.	94	
					BRICK courses. (MADE GROUND)	/			
					Firm, locally indistinctly thinly and thickly		目		
1.20 - 1.65 1.20 - 1.65	SPTS D 2	N=8 (2,2/2,2,2,2)		dry	laminated, brown, locally mottled grey, sligh sandy slightly gravelly CLAY. Gravel is suba		(1.20)		
1.20 - 2.00	B 3				to subrounded fine to medium of chalk, brid sandstone.	k and	4		
					(MADE GROUND)		(1.20)		
					Soft indistinctly thinly and thickly laminated	brown	1.90 +0.	74	(
2.00 - 2.45 2.00 - 2.45	SPTS B 5	N=2 (1,0/1,0,1,0)	1.50	dry	locally mottled grey and orangish brown, sli	ghtly	=		[\
2.00 - 2.45	D 4		13/01/16 1.50	1800 dry	sandy CLAY, with occasional dustings of silf laminae surfaces.	on	(0.55)		/
2.45 - 2.90	UT 6	14 blows 100% rec	1.50	dry	Soft, locally firm, indistinctly thinly and thick	lv	2.45 +0.	19	
			14/01/16 1.50	0800 dry	laminated, indistinctly fissured brown CLAY.	With	=	F_=_=	(
2.90 - 3.10	D 7				dustings of light brown silt on laminae surfar Fissures closely spaced randomly orientate	d.	(0.65)		
3.10 - 3.75	UT NR	16 blows No Recovery	3.00	damp	Occasional lenses up to 3mm of light brown sand.	fine	3.10 -0.4	46	R /
3.10 - 3.55	B 8				Sund.	/		×××× ××××	
					Soft to firm indistinctly thinly and thickly lam	inated	3	× × × × × × × ×	
0.75 4.75	D.0	000/ 70D-:	0.70		brownish grey sandy clayey SILT with occas			$\times \times \times \times$	
3.75 - 4.75	P 9	80% rec 76Psi	3.70	damp	pockets of fine orangish brown sand.	3.90 becoming w	ith =	X X X X	
						dustings and ti laminae (<5mm)	nin 🖳	$\times \times \times \times \times$	
						dark orangish bro	wn =	X	
						fine to medit		× × × × × × × ×	
							3	$\times \times \times \times$	1
4.75 - 5.75	P 10	95% rec 74Psi	4.70	3.10		4.75 becomi locally fir		X X X X	1 4
						locally III		$\times \times \times \times \times$	_ /
							(3.93)	X	ĺ,
							╡	X X X X	
							=	$\times \times \times \times$	6
5.75 - 6.20	UT 11	21 blows 100% rec	5.70	2.00			3	X X X X	
		5.75-6.20 S&D record unavailable						(0
6.20 - 6.40	D 12					6.20-6.40 Greyi	sh =	$\times \times \times \times$	
6.40 - 7.40	P 13	77% rec 82Psi	6.40	2.00		brown sligh clayey SAN	itly =	X	0
						ciayey crav	· =	$\times \times \times \times$	0
							<u> </u>	× × × × × × × ×	0
							7.03 -4.	(lo
					Dark orangish brown and greyish brown sar SILT with occasional thin laminae of greyish		_	$\times \times \times \times$	
7.40 - 8.40	P 14	85% rec 80Psi	7.40	1.80	brown clay.	'	(0.40)	× × × × ×	0
7.40 0.40		007010000131	7.40	1.00	Firm indistinctly thinly laminated dark brown organic CLAY, locally tending to peat. With	very	7.43 -4.	79	lŏ
					frequent plant remains up to 20mm.		∄	7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lo
							(0.97)	2016 - 2016	
8.20 - 8.40	D 15		14/01/16	1800			(0.97)	aleale_	0
8.40 - 8.85	UT 16	40 blows 100% rec	7.40	1.80			8.40 -5.	_ slik sh	(
5.40 - 0.00	0110	-0 DIOWS 100/0 IEC	15/01/16	0715	Brownish grey and brown sandy to very sar SILT.	·	=	$\times \times \times \times$	0
			7.40	5.60		8.63-8.78 sligh organ	iuy — · ·	14	
					Light brownish grey slightly clayey SAND w gravel.	itn rare			0
9.05 - 9.25	D 17				-		(0.70)		
9.25 - 9.70 9.25 - 9.65	SPTS D 18	N=8 (2,2/2,1,2,3)	9.25	5.10			₫		
9.25 - 9.65	B 19				Firm greyish brown, locally mottled dark yel	lowish 9.48-9.65 mottl		34	-11/
9.65 - 10.10	UT 20	50 blows 100% rec	9.65	8.10	brown and grey, slightly gravelly sandy CLA Gravel is subangular to subrounded fine to	Y. orang	ge. =		
					of chalk, sandstone and igneous lithologies.		(0.82)		$\perp \mid \cdot \mid$
					Hole continues on next sheet				
ndwater Entries					Depth Related Remarks		Hard Boring		
Depth Strike (m		m after 20 minutes.	Depth Seal	led (m)	Depths (m) Remarks 4.70 - 8.40 Water added to assist boring.		Depths (m)	Duration (mi	ns) Tools
4.70					and the second s				
4.70									
	of symbols and	abbreviations Project	et .	A63	CASTLE STREET IMPROVEMENTS - MAIN SITE (3I	Borehole		
4.70 : For explanation of ey to Exploratory led levels in metres ets in depth column	Hole Records. A s. Stratum thick	II depths and			CASTLE STREET IMPROVEMENTS - MAIN SITE O	GI	Borehole	BH402	

1	Drilled	SS/DS	Start	Equipment, Methods and Remarks	Depth from	to	Diameter	Casing Depth	Ground Level	2.64 mOD
I	Logged	GS/RM/		Dando 175/R63 Geotech 6. Cable percussion boring/followed by rotary core drilling (SWF size) using water flush.	(m) 0.00 10.00	(m) 10.00 24.00	(mm) 250 200	(m) 10.00 23.00	Coordinates (m)	E 508938.31
	Checked	TC		SPT Hammer ID: 024, Rod type: 1 1/2 Whitworth.,	24.00	39.30	146		National Grid	N 428177.90
I	Approved	TC	25/01/2016							

mples and	iests		Date	Time	Strata Description		D	1. :	
Depth	Type & No	Records	Casing	Water	Main	Detail	Depth, Level (Thickness)	Legend	Back
10.10 - 10.30	D 21								$\Box \Box Z$
10.30 - 10.75	UT 22	83 blows 100% rec	9.65	dry	Very stiff brown, locally grey, slightly sandy slightly	10.30-10.75	10.30 -7.6	3	-1 ľ z
					gravelly CLAY. Gravel is subrounded fine to	occasional relict - rootlet traces.			
10.75 10.05	D 22				coarse of chalk, sandstone, flint and rare igneous lithologies.	=			
10.75 - 10.95	D 23				innologies.				
10.95 - 11.40	UT 24	81 blows 88% rec	9.65	dry					-11
11.40 - 11.60	D 25					11.40-11.60 gravelly.			
11.60 - 12.05	UT 26	79 blows 88% rec	9.65	dry		1	11.60 -8.9		
11.00 12.00	0120	75 blows 6576 fcc	0.00	ury	Very stiff indistinctly thinly and thickly laminated greyish brown slightly sandy CLAY. With rare	laminae (<4mm) of	11.00 0.51		
					subangular to subrounded fine to coarse gravel of	orangish brown fine to medium sand.	(0.45)		¥ \
12.05 - 12.25	D 27				sandstone, chalk and igneous lithologies.	1 =	12.05 -9.4	1	
12.25 - 12.70	UT 28	77 blows 100% rec	9.45	8.80	Firm to stiff indistinctly thinly and thickly laminated light greyish brown slightly sandy slightly gravelly		(0.43)		
					CLAY, with low cobble content. Gravel is]	12.48 -9.8		
					subangular to subrounded fine to coarse sandstone, igneous lithologies and occasionally	Λ Ξ	12.10		2 📜
12.70 - 12.90	D 29				chalk.	1			
					Very stiff greyish brown, locally mottled grey, slightly sandy slightly gravelly CLAY. Gravel is				
			15/01/16	1530	subangular to subrounded fine to coarse of		4.47		-11
13.30 - 13.75	UT 30	51 blows 100% rec	12.90 13.30	8.70 5.10	quartzite, sandstone and chalk.	13.30-13.45	(1.47)		- N
			18/01/16 12.90	0800 5.10		13.30-13.45 occasional steeply inclined fissures, locally polished. 13.30-13.95 stiff.	1		
40 85 /			-2.55	5.10		locally polished. 13.30-13.95 stiff.	1		-
13.75 - 13.95	D 31					=			
13.95 - 14.40	UT 32	54 blows 84% rec	13.30	dry	Stiff thinly to thickly laminated brown and greyish	13.95-14.33 locally	13.95 -11.3	1	
					brown CLAY. With dustings of silt on laminae	lissured.			
14.40 - 14.60	D 33				surfaces and extremely closely to very closely spaced thin laminae (<2mm) of light brown silt.	14.40-14.60 very			
					Spaced till lattings (521111) of light brown site	14.40-14.60 very stiff. 15.25-15.70 locally very stiff. 15.47 subvertical polished fissure. 15.63 with rare fine gravel of chalk. 15.90-16.35 indistinctly fissured.			
14.60 - 15.05	UT 34	49 blows 100% rec	14.50	dry		1			
15.05 - 15.25	D 35					-			
15.25 - 15.70	UT 36	61 blows 100% rec	14.50	dry		15.25-15.70 locally -	(2.60)		
15.25 - 15.70	0130	01 blows 100 /6 fec	14.50	ury		very stiff.	(2.00)		
						15.47 subvertical polished fissure		<u> </u>	-11
15.70 - 15.90	D 37					15.63 with rare fine			
15.90 - 16.35	UT 38	62 blows 100% rec	14.50	dry		gravel of chalk. = 15.90-16.35 =		<u> </u>	
				1		indistinctly fissured.			
16.35 - 16.55	D 39								
16.55 - 17.00	UT 40	48 blows 100% rec	14.50	dry	Stiff, locally thinly and thickly laminated, locally	1 3	16.55 -13.9	1 =	$-\Box$
					indistinctly fissured, greyish brown CLAY. With				
47.00 47.00	5.44				very closely spaced thin laminae (<4mm) of orangish brown fine to medium sand. Fissures are	16.87-16.93 with	(0.65)		
17.00 - 17.20	D 41				extremely closely spaced, randomly orientated.	gravel of chalk.			
17.20 - 17.65	UT 42	63 blows 100% rec	14.50	damp	Stiff indistinctly thinly to thickly laminated	1 =	17.20 -14.5	6	
					indistinctly fissured greyish brown CLAY with			H	3 ★
17.65 - 17.85	D 43				occasional thin laminae (<1mm) of orangish brown fine to medium silty sand. Fissures are	17.65-18.01 with frequent thin laminae of silt and fine sand. 17.88 with rare gravel. 18.01-18.18 with thin and thick laminae of orangish brown fine to medium sand. 18.78-18.85 occasional thin laminae are <2mm.	1		
		61 blown 100%	17.80	14.05	extremely closely spaced and randomly	frequent thin	1	[-]	\ \ \
17.85 - 18.30	UT 44	61 blows 100% rec	17.80	11.05	orientated.	fine sand.	1		
						17.88 with rare	(2.00)		
18.30 - 18.50	D 45					18.01-18.18 with	(2.00)	HH	
18.50 - 18.95	UT 46	59 blows 78% rec	18.50	9.80		thin and thick laminae of orangish	1	[-]	
				2.00		brown fine to	1	HH	
						18.78-18.85	1		
18.95 - 19.10	D 47					occasional thin laminae are <2mm.		<u> </u>	
19.10 - 19.55	UT 48	61 blows 100% rec	19.10	8.10		19.20-19.33		<u></u>	\ \ \ \
					Stiff thinly to thickly laminated greyish brown CLAY with frequent dustings and thin laminae	indistinctly	10.20 -10.3	= 1	\
19.55 - 19.75	D 49		18/01/16	1630	(<1mm) of light brown silt With occasional thin			H	
		54 blow 2007	19.75	8.10	laminae (<4mm) of orangish brown fine to medium		(1.00)	[]	- k \
19.75 - 20.20	UT 50	54 blows 88% rec	19.75 19/01/16	4.70 0800	sand.] =],	HH	- 1 >
			19.75	4.70	Hole continues on next sheet	19.98-20.13 with		\vdash \vdash \dashv	
						rare gravel of chalk.			
dwater Entries	n) Pomarko	-	Donth Sant	lod (m)	Depth Related Remarks		Hard Boring	_	
Depth Strike (n 12.55	Rose to 8.70 m	after 20 minutes. Medium	Depth Seal	ieu (M)	Depths (m) Remarks		Depths (m)	Duration (m	ins) Tools u
17.40	inflow.	after 20 minutes.							
	of symbols and ab		ect	A63	CASTLE STREET IMPROVEMENTS - MAIN SITE GI		Borehole		
ey to Exploratory	Hole Records. All on Stratum thickness	lepths and						D	_
ts in depth colum	n	Proje	ect No.	A50	85-15			BH402	2
		ww.esg.co.uk AGS Carri			our Beatty Limited				

Depth from (m) 0.00 10.00 24.00 Diameter (mm) 250 200 146 to (m) 10.00 24.00 39.30 Drilled SS/DS Start Equipment, Methods and Remarks Casing Depth Ground Level Dando 175/R63 Geotech 6.
Cable percussion boring/followed by rotary core drilling (SWF size) using water flush.
SPT Hammer ID: 024, Rod type: 1 1/2 Whitworth., Logged GS/RM/ E 508938.31 13/01/2016 Coordinates (m) Checked TC End National Grid N 428177.90 Approved TC 25/01/2016

pproved TC	25/01/20					Strata Decembrian		ł		
Samples and		e & No	Records	Date	Time	Strata Description Main	Detail	Depth, Level	Legend	Backfill
Берип	туре	e & NO	Records	Casing	Water	wairi		(Thickness)		
20.20 - 20.65 20.20 - 20.65	SF	PTS 51	N=30 (4,4/7,7,7,9)	20.20	4.50	Dense greyish brown and cream sandy silty	20.05 thick lamination (8mm) of fine to medium sand. 20.11-20.13 thick lamination (20mm) of fine to medium sand. 20.13-20.20 slightly gravelly.	20.20 -17.5	6	
20.20 - 21.00		52				subangular fine to coarse GRAVEL of chalk and occasional flint.	sand. 20.11-20.13 thick		×· ×·	
							lamination (20mm) =		× × ×	
21.00 - 21.45	SF	PTS	N=39 (5,6/9,10,10,10)	21.00	5.10		sand 20.13-20.20 slightly -		× × ×	
21.00 - 21.45 21.00 - 22.00	D	53 54	(2,0.0,1.0,1.0,1.0,				gravelly.		× × ×	
								(2.20)	× × ×	
							1		××××	
									××÷×	
22.00 - 22.45 22.00 - 22.45	D	PTS 55	N=53 (6,10/11,14,13,15)	22.00	5.90		22.00-22.40 very dense.		××°×	
22.00 - 23.00	В	56						22.40 -19.7	* × ×	
						Structureless CHALK composed of sandy silty subangular to subrounded fine to coarse]	22.40 -19.7		
						GRAVEL. Gravel is extremely weak to weak ,low density.			 	
23.00 - 23.45		PTS	N=68 (7,11/13,17,17,21)	23.00	5.90	(Grade Dc)	-		<u>' </u>	
23.00 - 23.45 23.00 - 23.60		57 58						(1.60)		
							-			
23.60 - 23.80	SF	PTC	50 (14,16 for 70mm/50 for 50mm)	23.00	5.90					
				19/01/16 24.00	1630 5.90		_	24.00 -21.3	6	
			Flush: 24.00 - 25.30 Water 50%	22/01/16	0800	Structureless CHALK composed of slightly sandy silty subangular to subrounded GRAVEL and	24.00-24.20 AZCL.	27.00 -21.3		
				24.00	6.90	COBBLES. Clasts are weak, low to medium density, white with local greyish brown speckling,	24.40-24.60 brown		<u>' </u>	
24.00 - 25.30	85 0		B 67			matrix is greyish brown. With some gravel of flint. (Grade Dc)	24.40-24.60 brown clayey matrix.	(1.30)		
24.65 - 25.00	0	NI				(Grade Be)				
		NI NI					-			
		-	Flush: 25.30 - 26.30 Water			Partial recovery. Core loss presumed to be more	25.30-25.65 AZCL.		6	
			80%			weathered material. Structureless CHALK composed of greyish brown	-			//
25.30 - 26.30	55 0					speckled white sandy slightly clayey silty		(0.70)		
	0		4			subangular to subrounded fine to medium GRAVEL.] _	26.00 -23.3	6	
			Flush: 26.30 - 27.70 Water			\(\(\text{(Grade Dc)}\) \text{Weak. medium to high density, white, locally}				
			90%			cream, CHALK. Predominantly NI. (Grade Dc)]			
26.30 - 27.70	100 7	NI NI						(2.00)		
20.50 - 27.70	ő	25								
			Flush: 27.70 - 30.80 Water				1			
			90%							
			1			Weak. medium to high density, white, locally	1 -	28.00 -25.3	6	
	100					cream, CHALK. Discontinuities are subhorizontal to 45 deg, very	28.25-28.30 with gravel of flint.		 	
27.70 - 29.20	17 8					closely to closely spaced, planar, rough, occasionally with cream clay infill.				
		NI NI				(Grade B4)				
		70 120		22/01/16	1600		-	(1.90)		
		1		26.10 25/01/16	3.90		28.25-28.30 with gravel of flint.			
				26.10	0.82] =			1
							29.60-29.90 NI. = 29.75-29.90 with =			
29.20 - 30.80			1			Union Community Community	gravel of flint.		6	
Depth	TCR SCR RQD	If	Records	Date Casing	Time Water	Hole continues on next sheet				
oundwater Entries O. Depth Strike (r	m) Remai	rks		Depth Sea	led (m)	Depth Related Remarks Depths (m) Remarks		Hard Boring Depths (m)	Duration (min	s) Tools used
tes: For explanation	of symbol	ls and ahl	previations Project		A63	CASTLE STREET IMPROVEMENTS - MAIN SITE GI		Borehole		
e Key to Exploratory luced levels in metre	Hole Rec es. Stratun	ords. All d	lepths and s given in						BH402	
ckets in depth colun	nn.		AGS Project			85-15			_	
ale 1:50		14/04/20	016 18:24:01 Carried	out tor	Balt	our Beatty Limited			Sheet 3 of 4	

Dorci			<u>-</u>									000
Drilled SS/DS	Start		uipment, Methods and Rema	ırks			Depth from (m)	to (m)	Diameter Casing Depth (mm) (m)	Ground Level		2.64 mOD
ogged GS/RM/	13/01/2016	Cat	ndo 175/R63 Geotech 6. ble percussion boring/followed	by rotary cor	re drillina	(SWF size) using water flush.	0.00 10.00	(m) 10.00 24.00	250 10.00 200 23.00	Coordinates (m)		E 508938.31
hecked TC	End	SP	T Hammer ID: 024, Rod type:	1 1/2 Whitwo	rth.,	(* 5 5,55 5	24.00	39.30	146 26.10	National Grid		N 428177.9
pproved TC	25/01/2016	6								Į.		
Samples and			1	Date	Time	Strata Description	n			Don'th Louis	1	D1-61
Depth	TCR SCR RQD	If	Records/Samples	Casing	Water	М	ain		Detail	Depth, Level (Thickness)	Legend	Backfil
				"		Weak, medium to high de cream, CHALK.	ensity, white, I	ocally				
	94 36					Discontinuities are 1) ver	y closely to cl	osely				
-	6					spaced, locally medium s planar, rough, locally stai	ned yellow br	own, with				
			Flush: 30.80 - 39.90 Water			occasional cream sandy 2) subvertical, occasiona						
=			95%			clean.	.,	,				
						(Grade B4)			31.27-31.42 dark			
	100								grey flint.			
30.80 - 32.30	45 0								31.53-31.63 NI =			
											H	
_									1 =			/ /
-]			
	100								32.80-32.89 dark = grey flint. =			
32.30 - 33.80	39 13											
												//
=									1 =			
_									1 -			
									34.10-34.20 NI		\square	/ /
	400											
33.80 - 35.40	100 34											
	6	NI							34.80-34.96 highly =	(10.00)		
-		180 280							subvertical fracture through flint horizon.	(10.00)		
									35.05-35.40 NI			//
-									1 =			
									35.65-35.90 highly fractured with			
									intersecting =			
- 35.40 - 36.90	93 57								fractures. = 36.00-36.08 dark =			
	40								grey gravel of flint.		H	//
									=======================================			
_												
									37.22-37.65			
									subvertical fracture = intersected with =		H	
36.90 - 38.40	100 55								subhorizontal - fractures -			
	7								37.52-37.65 NI = 37.74-37.82 dark =			
_									grey flint			
									1 -			
_									30 00 30 40 404			//
– 38.40 - 39.90	100 60								39.00-39.10 dark— grey flint. =			
	48								39.20-39.40 dark = grey flint. =			
									39.40-39.75 fossil inclusions in chalk			
				25/01/16 26.10	1730 3.85				39.80-39.90			
						END OF EXPLO	DRATORY HO	DLE	fractures infilled with dark grey silty clay	39.90 -37.26		
									(<5mm).			
roundwater Entries No. Depth Strike (n	n) Remarks	s	-	Depth Seal	led (m)	Depth Related Remarks				Hard Boring	Duration (m)	ne) Toole
>p 3um0 (II	,	-			- ()	Depths (m) Remarks				Depths (m)	Duration (mir	is) IUOIS USEC
otes: For evaluation	of symbols	and ohb	reviations Desice4		Aco	CASTLE STREET IMPROVEN	IENTS - MAIN'	SITE GI		Roreholo		
otes: For explanation of the Key to Exploratory of the Exploratory of the Exploratory of the Exploration of	Hole Records. Stratum t	ds. All d	epths and	No		CASTLE STREET IMPROVEN 85-15	IEN IS - MAIN S	oile GI		Borehole	BH402	<u>!</u>
ackets in depth colum	(c)	ESG ww	w.esg.co.uk AGS			ชอ-15 our Beatty Limited				· '		•
cale 1:50	,	14/04/20	016 18:24:02	- at 101	Dall	ou. Douty Ellinted				ļ	Sheet 4 of 4	

Drilled SS	3	Start	Equipment, Methods and Rema	arks			ameter Casing Depth	Ground Level		2.98 mOD
Logged GS	S/RM		Dando 175. Cable percussion boring.			0.00 15.00	(mm) (m) 200 15.00	Coordinates (m)		E 509209.09
Checked TO			SPT Hammer ID: 024, Rod type:	1 1/2" Whitworth.		15.00 24.77	150 24.55	National Grid		N 428324.51
Approved TC		08/01/2016								
Samples	and	Tests			Strata Descriptio	n		1		
				Date Time				Depth, Level	Legend	Backfill
Dept	th	Type & No		Casing Water	η	ain	Detail	(Thickness)		
_			0.00-1.20 Hand excavated inspection pit.		Tarmacadam.	CAND	-	0.15 +2.83		°. 4 0
					Yellowish brown fine to compare (MADE GROUND)	,] =	0.15 (0.15) +2.83 -0.30 +2.68		۵ ۵
_					Soft to firm light brownish	grey slightly gravelly	_	(0.30)		<u></u> ⊢⊪-
_					to coarse brick, concrete	ngular to subangular fine and occasional	<u> </u>	0.60 +2.38		
_					sandstone.		/	0.80 +2.18		
_					(MADE GROUND) BRICK courses.		-	(0.40)		
- 1.20 - 1 - 1.20		SPTS D 1	N=9 (2,2/2,3,2,2)		(MADE GROUND)		-	1.20 +1.78	××××××××××××××××××××××××××××××××××××××	
1.20 - 1	1.65	D 2			Firm to stiff indistinctly fis slightly sandy slightly gra	sured orangish brown velly CLAY. Gravel is fine				
1.20 - 1 1.65 - 2		B 3 UT 4	20 blows 50% rec	1.50	to coarse of brick and co	ncrete.	1.65-1.81 with		××	
_ 1.00 _			25 516116 6676 166		(MADE GROUND) Firm indistinctly thinly an	d thickly laminated.	frequent relict rootlet _	(1.10)	×—×	
_					indistinctly fissured, oran	gish brown, locally	tracks infilled grey	1	×_ ×	
– 2.10 - 2 –	2.30	D 5			mottled greyish brown, s With occasional dustings	ightly sandy silty CLAY. of light brown and grev			$\overline{\mathbf{x}} = \hat{\mathbf{x}}$	
2.30 - 2	2.75	UT 6	14 blows 87% rec	1.50	silt and fine sand on lam	nae surfaces.	2.40-2.85 locally -	2.30 +0.68	^x	
_					Firm indistinctly thinly to orangish brown and brow		2.40-2.65 locally = soft —	_	<u>×———</u>	
_ 	2.95	D 7			silty CLAY with frequent	dustings of grey silt and] =	(0.95)	××	
2.95 - 3		UT 8	11 blows	1.50	orangish brown fine sand	on laminae surfaces.		(0.30)	\mathbb{Z}^{\times}	[] /
2.95 - 3 2.95 - 3		B 9					-			
_					Soft, locally firm, indisting	ctly thinly and thickly	1 :	3.25 -0.27	X— —X	
_					laminated dark grey sligh	itly organic slightly sandy		1	× × ×	
3.60 - 4	4.60	P 10	88% rec 75Psi	3.00	silty CLAY.		-	1	× × × × × × × × × × × × × × × × × × ×	
							3.80-7.00 greyish -		316 × 316	\mathbf{z}
4.00 - 5	5.00	L					brown, locally - oxidised brown.		zyre ×	
_							_		316 ×	
_							_	1	X SHE	
 - 4.60 - 5	5.00	B 11					_		316, × 316	, L. \ \ \ \ \ \
							=		ala 💢 🚽	· /
	2.00	D 40	750/ ros 770s:	4.50			5.00.7.00	_	210° ×	
5.00 - 6 _	0.00	P 12	75% rec 77Psi	4.50			5.00-7.00 with- dustings of silt on -	(3.75)	× SMe	
_							laminae surfaces - and very closely -	1	316 × 316	
							spaced thin laminae (<2mm) of light		ala 💢 🚽	- /
_							brown fine sand.		211° × × 717°	
_							-	-	×	
	7.00	P 13	74Psi	6.00			_	1	316. × 316	
_			6.00-7.00 S&D record unavailable				_		316 × 316	
_									210. ×	-
_							_		×	· · · · ·
_				05/01/16 1800			_		× 3/10	
_ 7.00 - 8	2.00	P 14	80% rec 75Psi	7.00			7.00-7.10 strong	7.00 -4.02	ale ×	
7.00 - 8		D 16	00 % Tec 75FSI	06/01/16 0800			organic odour.	7.00 -4.02		
_				7.00 3.20	medium SAND.	angion prown into to] =	_		1//
- -							_	-		
_							=			
_							_	1		1//
8.00 - 8 	3.45	UT 17	28 blows 8.00-8.45 S&D record	8.00			-	(2.00)		KK
E			unavailable				-	1		
_] =	-		
 	9.10	UT 18	29 blows 78% rec				8.65-8.79 locally			
_ 0.00-9		01 10	20 DIOWS 10 /0 IEC				greyish brown _			
_					Firm de 1.1	a ta blash.	clayey silty fine to _ medium sand	9.00 (0.40) -6.02		
<u> </u>					Firm dark brown oxidisin PEAT with wood fragmen	g to black pseudo fibrous ots up to 20mm.	∤ -	9.00 (0.10) -6.02 9.10 (0.20) -6.12	112 112 11 11 11 11 11 11 11 11 11 11 11	(/)
9.30 - 9		UT 20 W 19	29 blows 9.30-9.75 S&D record	9.00	Soft to firm dark grey sar	ndy gravelly silty CLAY.	<u> </u>	9.30 -6.32		
- 9.30 	,	VV 19	unavailable		Gravel is subangular to so of flint and igneous lithole	ubrounded fine to coarse ogies.	/	(0.45)		
- - 9.75 - 9	9.95	D 21			Description from arisings	only.		9.75 -6.77		
9.75 - 9 9.95 - 10		UT 22	52 blows 100% rec	9.00	Soft brown slightly grave subangular fine to coarse	lly sandy CLAY. Gravel is		1		
J CB.B	U.7U	0122	JZ DIOWS TOU76 TEC	0.00		s on next sheet				
Groundwater E No. Depth		n) Remarks		Depth Sealed (m)	Depth Related Remarks Depths (m) Remarks			Hard Boring Depths (m)	Duration (mir	ns) Tools used
	4.60		m after 20 minutes.			lic oil leak noted during recover	y of piston sample.	Dopailo (III)	Surguon (IIIII	, 10013 ušeu
see Key to Exp	ploratory	of symbols and Hole Records. A	all depths and	A6	3 CASTLE STREET IMPROVEN	MENTS - MAIN SITE GI		Borehole		
	in metre	s. Stratum thick	ness given in	No. A5	085-15				BH403	}
Scale 1:50		(c) ESG	www.esg.co.uk 4/2016 18:24:03	out for Ba	Ifour Beatty Limited				Sheet 1 of 3	

Depth from (m) 0.00 15.00 Diameter (mm) 200 150 Casing Depth (m) 15.00 24.55 Drilled SS Equipment, Methods and Remarks to (m) 15.00 24.77 Ground Level Dando 175. Cable percussion boring. SPT Hammer ID: 024, Rod type: 1 1/2" Whitworth. Logged GS/RM 05/01/2016 E 509209.09 Coordinates (m) Checked TC End National Grid N 428324.51 Approved TC 08/01/2016

Samples and	Tests				Strata Description				
Depth	Type & No	Records	Date Casing	Time Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
					\ and igneous lithologies.	9.95-10.40 with dark _		***	
					Stiff locally very stiff, locally indistinctly laminated, dark brown and greyish brown slightly sandy	reddish brown relict _ rootlet tracks _			
- 10.40 - 10.60 -	D 23				slightly gravelly CLAY. Gravel is subangular to	(<2mm) with grey _ mottling			
10.60 - 11.05	UT 24	61 blows 100% rec	10.50		subrounded fine to coarse of chalk, flint, sandstone and igneous lithologies.	10.60 becoming - brown and grey -			
-					3 · · · · · · · · · · · · · · · · · · ·	brown	(2.15)		
11.05 - 11.25	D 25					10.90 cobble of quartzite noted.			
11.25 - 11.70	UT NR	49 blows No Recovery	10.50			11.25 becoming			
11.25 - 11.90	B 26					sandy.			
-						_			
- -						-			//
11.90 - 12.35	UT 27	100% rec			Very stiff brown slightly sandy slightly gravelly	11.90 becoming - very stiff, locally stiff.—	11.90 -8.92	2	
					CLAY. Gravel is subangular to subrounded fine to coarse of chalk, sandstone and quartzite.				
12.35 - 12.55	D 28				coarse of chain, sandstone and quartere.	_			
12.55 - 13.00	UT 29	63 blows 100% rec	10.50			12.55 becoming			₽ \
						brownish grey and brown.			$\Gamma \setminus \mathcal{N}$
						-			.LI\\`
— 13.00 - 13.20 -	D 30					_			1 🗷 🔪
- 13.20 - 13.85 - 13.20 - 13.85	UT NR B 31	53 blows No Recovery	10.50			_		***	
- -			1				(3.15)		
			1			=	1		
13.85 - 14.20	UT 32	100% rec				13.85 reduction in			
_			1			proportion of gravel 13.85-14.20 locally	1		
14.20 - 14.40	D 33		06/01/16	1800		indistinctly _ laminated			
14.40 - 14.85	UT 34	58 blows 66% rec	10.50 10.50			14.40-14.70 locally -			//
-			07/01/16 10.50	0800 6.30		firm, occasional – softening (wet)			
	D.05					adjacent to gravel.			
14.85 - 15.05	D 35		45.00			-	45.05		
15.05 - 15.50	UT 36	63 blows 100% rec	15.00		Stiff thinly to thickly laminated, locally cross	15.05-15.30 locally _ firm to stiff	15.05 -12.0	^×	
					laminated, greyish brown silty CLAY with occasional dustings of light brown and grey silt	_		××	
- - 15.50 - 15.70	D 37				along laminae surfaces.	15.50-17.00 locally -		$\overline{\times}$	
- 15.70 - 16.15	UT 38	69 blows 100% rec	15.00			soft to firm		x	
- -						15.96 Thin		×——×	
 - 16.15 - 16.35	D 39					lamination (4mm) of _	(1.95)	×—×	
-		50.1.	45.00			orangish brown fine _ to medium sand		××	
_ 16.35 - 16.80 _	UT 40	59 blows 77% rec	15.00			16.35-16.46 rare - inclined fissures, -		$\overline{\times}$	
=						locally polished		^— <u>×</u>	
16.80 - 17.00	D 41					-	_	×——×	
17.00 - 17.45	UT 42	60 blows 100% rec	17.00		Stiff thinly laminated greyish brown silty CLAY with		17.00 -14.0	2 × ×	
-					occasional dustings of light brown silt on laminae	-		× ×	
- - 17.45 - 17.65	D 43				surfaces. With extremely closely to very closely spaced thin laminae (<3mm) of orangish brown	=	(0.65)		
_		54 hlava 4000/	47.00		fine to medium sand. Rare fine gravel of chalk.	_	47.05	, ××	
17.65 - 18.10	UT 44	51 blows 100% rec	17.00		Stiff indistinctly thinly and thickly laminated, locally	17.75 rare gravel of	17.65 -14.6	(<u> </u>	
- —			1		indistinctly fissured, greyish brown CLAY. With occasional thin laminae (<4mm) of orangish	chalk	1		1//
18.10 - 18.30	D 45				brown fine to medium sand. Fissures are	-	_		
18.30 - 18.75	UT 46	49 blows 88% rec	18.30		extremely closely spaced, randomly orientated.	18.35-18.47 thinly	(1.30)	F_{-}	
-						and thickly _ laminated.	7	[-]	
18.75 - 18.95	D 47		1			18.45 rare gravel of _	1		//
		40 blowe 999/ =	10.20			chalk	10.05	,	$ \setminus$ \setminus
18.95 - 19.40	UT 48	49 blows 88% rec	18.30		Stiff thinly and thickly laminated greyish brown	18.99-19.10— Indistinctly -	18.95 -15.9	, <u>×</u>	
- -					silty CLAY with occasional dustings of light brown silt on laminae surfaces. With extremely closely to	laminated 19.16 Thick -	1	××	//
19.40 - 19.60	D 49		1		very closely spaced thin laminae (<3mm) of	lamination (12mm) -	1	×——×	
- 19.60 - 20.05	UT 50	47 blows	19.60		orangish brown fine to medium sand.	of orangish brown — fine to medium —	+	××	
·		19.60-20.05 S&D record unavailable	1			sand.		<u> </u>	
_					Hole continues on next sheet			X	
			<u> </u>				<u></u>		
Groundwater Entries No. Depth Strike (n	n) Remarks		Depth Sea	led (m)	Depth Related Remarks Depths (m) Remarks		Hard Boring Depths (m)	Duration (m)	ns) Tools used
1 13.00		n after 20 minutes.		15.05	Sopolo (III) Itelliaino		Depuis (III)	Duración (MI	no, room used
Notes: For explanation			i	A63	CASTLE STREET IMPROVEMENTS - MAIN SITE GI		Borehole		
see Key to Exploratory I reduced levels in metre prackets in depth colum	s. Stratum thicknes	ss given in	No.	Δ50	85-15			BH403	3
Scale 1:50	(c) ESG w	ww.esg.co.uk AGS	l out for		our Beatty Limited			Sheet 2 of 3	-
- 1.00	14/04/2	016 18:24:03						O11061 2 UI 3	

Drilled SS Equipment, Methods and Remarks Depth from Diameter Casing Depth Ground Level (m) 15.00 24.77 (**m**) 0.00 15.00 (mm) 200 150 (m) 15.00 24.55 GS/RM E 509209.09 Loaaed 05/01/2016 Coordinates (m) Cable percussion boring. SPT Hammer ID: 024, Rod type: 1 1/2" Whitworth. Checked TC National Grid N 428324.51 End Approved TC Strata Description Samples and Tests Depth, Level (Thickness) Backfill Legend Depth Type & No Records Detail Casing Wate 20.05 - 20.25 D 51 20.25 - 20.70 SPTS N=15 (3,3/4,4,3,4) 20.25 16.10 20.65 - 21.10 UT 54 33 blows 100% rec 20.00 11.05 07/01/16 1800 21.10 - 21.30 D 55 21.10-21.30 with 08/01/16 20.25 21.00 0800 11.05 10.70 extremely closely spaced thin laminae 21.30 - 21.75 21.30 - 21.75 21.30 - 21.75 SPTS B 57 D 56 N=50 (5,7/10,14,17,9) of black fine sand. 21.50 Medium dense orangish brown very sandy clayey subangular to subrounded fine to coarse GRAVEL of chalk, flint and sandstone. SPTS B 59 D 58 21.75 - 22.20 21.75 - 22.10 21.75 - 22.10 N=20 (5,5/5,5,5,5) 21.75 10.50 SPTS D 60 B 61 N=23 (3,5/7,5,6,5) 22.10 4.00 (1.30) 22.10 - 22.55 N=50 (4,5/9,11,17,13) 22.55 2.00 22.55 - 23.00 22.55 - 23.00 D 62 B 63 -19.82 22.80 Structureless CHALK. Recovered as silty subangular to subrounded fine to coarse gravel. 50 (7,10/10,14,26 for 75mm) 23.00 2.00 23.00 - 23.30 23.00 - 24.00 D 64 B 65 (1.97) 24.00 - 24.22 24.00 - 24.22 24.00 - 24.55 SPTS 40 (11,16/40 for 75mm) 24.00 2.00 D 66 B 67 24.55 - 24.77 24.55 - 24.77 SPTC 50 (11.17/50 for 70mm) 24.55 2.00 08/01/16 1800 24.77 END OF EXPLORATORY HOLE **Depth Related Remarks** No. Depth Strike (m) Remarks Depth Sealed (m) Water added to assist boring 24.00 - 24.55 60 Chisel. Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI Project Borehole **BH403** (c) ESG_www.esg.co.uk 14/04/2016_18:24:03 Project No. A5085-15

Carried out for

Balfour Beatty Limited

Depth from (m) 0.00 18.00 Diameter (mm) 200 150 Casing Depth (m) 18.00 25.00 Drilled Equipment, Methods and Remarks Ground Level Dando 2000. Cable percussion boring. SPT Hammer ID: TS2, Rod type: 1 1/2" Whitworth. RM 14/01/2016 E 509249.01 Logged Coordinates (m) Checked TC National Grid N 428309.09 End Approved TC 21/01/2016 Samples and Tests Strata Description

samples and	rests		Date	Time	Strata Description	1			
Depth	Type & No	Records	Casing	Water	Main	Detail	Depth, Leve (Thickness)	el Legend	Back
		0.00-1.20 Hand excavated inspection pit.			TOPSOIL.	-	0.10 (0.10) +2	.81	٠.4
		паресноп рк.			Greyish brown sandy gravelly CLAY. Gravel is subangular to subrounded fine to medium of]	0.30 (0.10) +2 0.40 (0.10) +2	.61	0
					chalk.		0.40 (0.10) +2	.51	
					\((MADE GROUND) Red brick.	-			\sim
0.80	ES 1				(Possible Foundations) (MADE GROUND)	_	(0.80)		
=					Greyish brown slightly sandy slightly gravelly	_			
1.20	D 2				CLAY. Gravel is subangular to subrounded fine to	-	1.20 +1	.71	
					medium of chalk and brick. (MADE GROUND)	-			
1.50 - 1.95	UT 3	45 blows 84% rec	1.40	dry	Stiff indistinctly thinly to thickly laminated dark	_	(0.80)		
					orangish brown mottled grey CLAY with rare pockets of subangular to subrounded fine to	1.83 cobble of			
- 2.00	D 4				medium gravel of chalk and brick and relict	concrete.	2.00 +0	.91	
					rootlets up to 2mm. (MADE GROUND)	-			(1
					Firm indistinctly thinly and thickly laminated dark			××	-1
2.50 - 2.95	UT 5	25 blows 55% rec	2.50	dry	greyish brown, locally mottled grey, slightly sandy silty CLAY with rare thin laminae of orangish	2.50 becoming stiff	(1.00)	X———X	
		2.50-2.95 S&D record unavailable			brown fine sand.	-		×_×	
						-		$\overline{\mathbf{x}} = 1$	-1
- 3.00 3.00 - 4.00	D 6 P 7	88% rec 72Psi	2.90	dry	Firm indistinctly thinly and thickly laminated		3.00 -0.	09 ×	
					greyish green, becoming dark brownish grey, slightly sandy silty CLAY. With occasional dustings	-		XX	
					of brownish grey silt along laminae surfaces.	3.35-3.60 inclined _ (65 deg) colour _		X—X	L J
					Locally oxidised brown adjacent to laminae.	change 3.52-3.88 rare relict _		×_×	
						rootlet tracks.	+		$ \mathbb{N}$ \mathbb{I}
- 4.00 - 5.00	P 8	90Psi	2.90	dry				×x	
		4.00-5.00 S&D record unavailable				=	1	X———X	-1
]	1	×_×_×	
-						-	(3.00)	\mathbb{Z}^{\times}	1
						=	1	X	-1
- 5.00 - 6.00	P 9	95Psi	4.70	dny				×	
- 5.00 - 6.00	P9	5.00-6.00 S&D record	4.70	dry				X—X	$ \downarrow$ 1
		unavailable					1	\times	-1A
-							1		-N
]		<u> </u>	$ \setminus$ \mathbb{I}
			14/01/16 6.00	1800 3.50] -	1	××	
6.00 - 7.00	P 10	82% rec 90Psi	6.00 18/01/16	3.50 0800	Firm thinly and thickly laminated dark brownish	† <u> </u>	6.00 -3	09 × ×	-1
			6.00	3.50	grey and greyish brown sandy silty CLAY with occasional thin and thick laminae of greyish brown	-	(0.42)	$\overline{\times}$	
					silty fine to medium sand.	-	6.42 -3	.51	
-					Thinly and thickly interlaminated greyish brown and brown slightly clayey silty fine to medium	-		××	-1
					SAND and firm greyish brown CLAY.	-	(0.58)	××	
- - 7.00 - 8.00	P 11	65% rec 90Psi	6.00	3.90			7.00 -4.	09 × ×	1
7.00 - 8.00	B 12				Firm thinly and thickly laminated dark brownish grey slightly sandy silty CLAY. With extremely			$\overline{\mathbf{x}}$	-1
					closely to very closely spaced thin laminae of	_		^X	
=					orangish brown and greyish brown silt and fine to medium sand. Locally oxidised dark orangish	_		X—X	$ \downarrow$ 1
					brown adjacent to laminae.	-		×_×_×	- []
]		$\overline{\mathbf{x}} = \overline{\mathbf{x}}$	
- 8.00 - 9.00 8.00	P 14 D 13	78% rec 90Psi	7.40	4.50			(2.00)	X	
8.00 - 9.00	B 15					-		XX	[]
						8.35 thick lamination _ (15mm) of orangish _		××	
						brown fine to _ medium sand	1	×_×	$ \setminus$ 1
						-	-		1
9.00 - 10.00	P 17	30% rec 90Psi	8.90	5.50	Firm dark brown and black pseudo fibrous PEAT,	-		09 ×— —×	-1
9.00 9.00 - 10.00	D 16 B 18				with wood fragments up to 25mm.] =	9.20 (0.20)	29 316 316 3	$ \setminus$ $ $
					Firm to stiff dark greyish brown CLAY with frequent pockets of pseudo fibrous peat.		1	<u> </u>	11
					inequent pockets of pseudo librous peat.	-	(0.85)		-1A
							(0.00)	F	-N
							<u> </u>		
<u> </u>					Hole continues on next sheet				
Groundwater Entries]		1		Depth Related Remarks		Hard Boring		
No. Depth Strike (n	n) Remarks		Depth Sea	led (m)	Depths (m) Remarks		Depths (m)	Duration (mi	ns) Tools us
					3.00 - 6.00 Water added to assist boring.				
lotes: For explanation			t	A63	CASTLE STREET IMPROVEMENTS - MAIN SITE GI		Borehole		
ee Key to Exploratory educed levels in metre	Hole Records. All	depths and ss given in						В Ш404	1
rackets in depth colum	nn	Project	No.	A50	85-15			BH404	•
Scale 1:50	(c) ESG w 14/04/2	ww.esg.co.uk 2016 18:24:04	d out for	Balf	our Beatty Limited			Sheet 1 of 3	
		-							

Drilled Equipment, Methods and Remarks Depth from Diameter Casing Depth Ground Level (mm) 200 150 (m) 0.00 18.00 (m) 18.00 25.00 Dando 2000. Cable percussion boring. SPT Hammer ID: TS2, Rod type: 1 1/2" Whitworth. RM E 509249.01 Logged 14/01/2016 Coordinates (m) Checked TC National Grid N 428309.09 End Approved TC 21/01/2016

Samples and	Tests				Strata Description						
Depth	Type & No	Records	Date Casing	Time Water	Main	Detail	Depth, I		Legend	Bac	kfill
10.00 - 10.45 10.00	UT NR D 19	60 blows No Recovery	9.95	6.70	Firm dark greyish brown slightly sandy slightly	-	10.05	-7.14	××		
10.00 - 10.50	B 20				gravelly silty CLAY. Gravel is subangular to subrounded fine to coarse of chalk, quartzite and	-			× ×		
- - 10.50 - 10.95	UT NR	70 blows No Recovery	9.95	6.80	and the second s		(0.70)				ľ
- 10.50 - 10.50 - 11.00	D 21 B 22					_	10.75	-7.84	X		
-					Stiff, locally very stiff, greyish brown locally mottled grey slightly sandy slightly gravelly CLAY.	_	10.70	7.04			
— 11.00 - 11.45 - 11.00	UT NR D 23	75 blows No Recovery	10.70	7.30	Gravel is subangular to subrounded fine to coarse	_					
11.00 - 11.50	B 24				chalk, quartzite and igneous lithologies.						ľ
- - 11.50 - 11.95	UT 26	75 blows 71% rec	10.70	7.70							
- 11.50 -	D 25						1				
- -						-				(
— 12.00 - 12.45 - 12.00	UT 28 D 27	75 blows 100% rec	10.70	8.20						\rightarrow	⇉
											۵,
- - 12.50 - 12.95	UT 30	75 blows 84% rec	10.70	dry		12.50 becoming –	1			ľ	ď
12.50	D 29					sandy.	(3.75)				7
- -						12.77 with rare _ polished fissures	1				1
— 13.00 - 13.45 - 13.00	UT 32 D 31	80 blows 100% rec	10.70	dry		_					۲
- -						-					ď
- - 13.50 - 13.95	UT NR	80 blows No Recovery	10.70	dry		13.50-14.50 no -					1
- 13.50 - 13.50 - 14.00	D 33 B 34			,		mottling.					\forall
-	5 04					-					Π.
- 14.00 - 14.45 - 14.00	UT 36 D 35	85 blows 88% rec	10.70	dry		_	1				γ
-						-					/
- - 14.50 - 14.95	UT 38	75 blows 100% rec	10.70	dry			14.50	-11.59		/	
14.50	D 37	73 blows 100 /6 fec	10.70	ury	Stiff, locally very stiff, indistinctly thinly and thickly laminated, locally cross laminated, greyish brown	-		-11.55	××	_ / /	
-					silty CLAY with occasional dustings of light brown	14.75 with rare fine gravel of chalk.	(0.50)		××		/
— 15.00 - 15.45	UT 40 D 39	80 blows 100% rec	10.70	dry	silt on laminae surfaces. Rare thin laminae (<2mm) of light brown silty fine sand.] -	15.00	-12.09			
- 15.00 -	D 39				Stiff indistinctly thinly and thickly laminated	-]				1
- 45 50 45 05	UT 42	00 blavia 1000/ raa	10.70	do	fissured brown and greyish brown CLAY with occasional dustings of light grey silt on laminae	-	-				1
- 15.50 - 15.95 - 15.50	D 41	80 blows 100% rec	10.70	dry	surfaces. Fissures are randomly orientated and extremely closely spaced, occasionally polished.	-					/
- -					extremely closely spaced, occasionally polisticu.	=				/	'
— 16.00 - 16.45	UT 44	80 blows 100% rec	10.70	dry			(2.00)		F_=_		/
16.00	D 43					16.10-16.16 steeply inclined polished					/
- - - 16.50 - 16.95	UT NR	70 No. 10 December 1	10.70	de.		fissure. 16.28 becoming					1
16.50	D 45	78 blows No Recovery	10.70	dry		with thin laminae of — light brown silt.				/	'
16.50 - 17.00	B 46					16.50 with rare fine gravel of chalk, and					/
— 17.00 - 17.45	UT NR	80 blows No Recovery	10.70	dry	Stiff thinly and thickly laminated greyish brown	no fissuring.	17.00	-14.09	===	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/
- 17.00 - 17.00 - 17.50	D 47 B 48				CLAY with occasional dustings of silt on laminae	-			<u></u>		\
- -					surfaces.	-	(0.75)				'
- 17.50 - 17.95 - 17.50	UT 50 D 49	80 blows 100% rec	10.70	dry		-	1				1
-			18/01/16	1800		17.71-17.76 - Orangish brown	17.75	-14.84		(\setminus
- 18.00 - 18.45	UT NR	80 blows No Recovery	10.70 18.00	dry 3.20	indistinctly fissured, greyish brown slightly sandy CLAY. With occasional dustings and extremely	slightly gravelly silty sand.			X———X		`
- 18.00 - 18.00 - 18.50	D 51 B 52		19/01/16 10.70	0800 3.95	closely to very closely spaces thin laminae	-			××		' '
- -					(<3mm) of orangish brown silt and fine sand. Fissures are extremely closely spaced and		(1.25)		$\begin{bmatrix} \overline{x} & \overline{x} & \overline{z} \end{bmatrix}$		/
- 18.50 - 18.95 - 18.50	UT 54 D 53	75 blows 100% rec	18.00	3.50	randomly orientated.	18.65 with rare	1				1
- -						gravel of chalk.	1		^×		\
- 19.00 - 19.45	UT 56	75 blows 87% rec	18.90	4.10	Stiff thinly and thickly laminated greyish brown	19.00-19.17 with—	19.00	-16.09	×— —×		, \
- 19.00 -	D 55				CLAY. With frequent dustings of light brown silt	thin laminae (<6mm) - of orangish brown	1		[- <u>-</u>]		/
- -					along laminae surfaces and frequent thin laminae (<3mm) of silt and fine sand.	fine to medium sand.	1		L- <u>-</u>		/
- 19.50 - 19.95 - 19.50	UT 58 D 57	80 blows 88% rec	18.90	4.00	() 2. 2 2 3 3	19.33 with rare gravel of chalk.	1		H_=_7		\. \.
- -						19.50 firm to stiff	1				_ \
- - -					Hole continues on next sheet				<u> </u>		/
					noie continues on next sheet						
Groundwater Entries	> :		<u> </u>	India :	Depth Related Remarks		Hard Bor				
No. Depth Strike (r	m) Remarks		Depth Sea	iled (m)	Depths (m) Remarks		Depths (r	n)	Duration (m	ins) Tools u	sed
							1				
					Ī						

Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. (c) ESG_www.esg.co.uk 14/04/2016 18:24:04

Project

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Project No. Carried out for **Balfour Beatty Limited** Borehole

BH404

Drilled Equipment, Methods and Remarks Depth from to (m) 18.00 27.00 Diameter Casing Depth Ground Level (**m**) 0.00 18.00 (mm) 200 150 (m) 18.00 25.00 RM E 509249.01 oaaed 14/01/2016 Coordinates (m) Cable percussion boring. SPT Hammer ID: TS2, Rod type: 1 1/2" Whitworth. Checked TC National Grid N 428309.09 End Approved TC 21/01/2016 Strata Description Samples and Tests Depth, Level (Thickness) Backfill Legend Records Detail Casing Wate 20.20 D 59 20 45 - 20 65 D 61 20.65 - 21.10 20.65 - 21.10 20.65 - 21.10 SPTS D 62 B 63 N=29 (3,5/7,7,7,8) 20.50 5.50 (3.75)21.10-21.55 firm to stiff. 21.10 - 21.55 80 blows 100% rec 21.00 5.80 21.70 - 22.20 21.75 - 22.20 21.75 - 22.20 B 67 SPTS D 66 N=29 (4,6/6,6,8,9) 21.00 6.10 100 blows 58% rec 22.10 6.50 22.34-22.40 greyish brown slightly gravelly silty sand. 22.65 - 22.85 Orangish brown slightly gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to 22.75 22.85(0.10) -19.84 -19.94 22.85 - 23.30 22.85 - 23.30 N=27 (4,5/5,6,8,8) 22.10 6.90 medium of chalk.

Medium dense to dense dark brown very gravelly clayey fine to coarse SAND. Gravel is angular to subrounded fine to coarse of chalk, flint and sandstone. (1.60) SPTC B 71 N=32 (4,7/7,8,8,9) 23.80 7.00 23.80 - 24.25 23.80 - 24.25 24.25 - 24.80 B 72 24.45 -21.54 Structureless CHALK. Recovered as cream and white sandy silty subangular to subrounded fine to coarse gravel. Gravel is weak. low density. 24 80 - 25 25 SPTS N=35 (6.7/8.8.9.10) 24 80 7 90 (2.55)N=39 (7,8/8,9,10,12) 25.00 8.10 26.50 - 26.91 26.50 26.50 - 27.00 50 (8,11/11,13,16,10 for 38mm) 1800 8.50 END OF EXPLORATORY HOLE Depth Related Remarks Depth Sealed (m) No. Depth Strike (m) Remarks 26.30 - 26.50 26.75 - 27.00 30 30 Chisel Chisel Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI Project Borehole **BH404** (c) ESG_www.esg.co.uk 14/04/2016_18:24-04 Project No. A5085-15

Carried out for

Balfour Beatty Limited

		5							
rilled IT	Start	Equipment, Methods and Re	marks			ameter Casing Depth (mm) (m)	Ground Level		3.16 mOE
ogged GS/RM	05/01/2016	Dando 2000 MK2. Cable percussion boring.			0.00 17.50 17.50 27.12	200 17.50 150 25.10	Coordinates (m)		E 509285.25
necked TC	End	SPT Hammer ID: 024, Rod typ	e: 1 1/2" Whitwo	orth.		20.10	National Grid		N 428329.8
proved TC	12/01/2016								
amples and	Tests		Date	Time	Strata Description		Double Louis	1	D1-60
Depth	Type & No		Casing	Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfil
		0.00-1.20 Hand excavate inspection pit.	d		TOPSOIL. Greyish brown sandy gravelly CLAY. Gravel is		0.15 (0.15) +3.01		°. 4 '
					subangular to subrounded of chalk and rare brick. (MADE GROUND)] =	(0.25) 0.40 (0.10) +2.76 0.50 (0.10) +2.66		°
0.50	ES 1				Red BRICK.	ή =	0.50 (0.10) +2.66		
					\((MADE GROUND)\) Soft to firm, locally stiff, greyish brown and brown	[
					sandy gravelly CLAY low cobble content and rare roots and rootlets. Gravel is subangular to	_			
					subrounded fine to coarse of brick, chalk, concrete and fabric. Cobbles are subangular of	_			-1
1.50 - 1.95	SPTC	N=13 (2,3/3,4,4,2)	1.40	dry	chalk.		(1.75)		
1.50 - 2.00	B 2				(MADE GROUND)	_			
						=			
2.05 - 2.50	B 4								
2.25	D 3				Soft to firm indistinctly thinly and thickly laminated greyish brown mottled orangish brown slightly		2.25 +0.91	*******	A
2.50 - 2.95	UT 5	12 blows 100% rec	1.70	dry	sandy CLAY with occasional dustings of silt and	_	-		
			05/01/16	1800	fine sand on laminae surfaces. Frequent relict root tracks and rare rootlets up to 2mm.	_	(1.25)		N
3.00 3.00 - 4.00	D 6	99% rec 3.00-4.00 S&D record	1.70 2.80 06/01/16	2.30			(1.20)		
3.00 - 4.00	F /	unavailable	1.70	0800 2.30					
					Coff thinly and thickly laminated	_ =	3.50 -0.34	316	$ \cdot $
					Soft thinly and thickly laminated greyish brown and dark grey slightly sandy silty slightly organic	_	-	× 36	-1
4.00 - 5.00	P 8	50% rec	2.80	2.70	CLAY. With occasional dustings of light brown and greyish brown silt and fine sand on laminae			× N/e	
4.00 - 5.00		30 % TeC	2.80	2.70	surfaces.			× <u>×</u>	
						_	-	× 346	
						_		X X X	
								316 × 316	
5.00	D 9	83% rec	4.70	3.20				ala x	
5.00 - 6.00	P 10	5.00-6.00 S&D record unavailable						210 × =	
						_		× <u>she</u>	\rightarrow
						-	_	ala 😾 🗂	
								216 ×	
6.00 - 7.00	P 11	78% rec	5.90	3.60		6.00-7.00 firm,— locally soft, with		ale × × 34e × 3e	A
						extremely closely to very closely spaced thin and thick	(5.50)	×	
						laminae (<12mm) of greyish brown fine		21° × 24° 21° × 24° 21° × 24° 21° × 24° 21° 21° 21° 21° 21° 21° 21° 21° 21° 21	
						to medium sand.	-	× × ×	
7.00 7.00 - 8.00	D 12 P 13	85% rec 7.00-8.00 S&D record	5.90	3.80				316 × 316	F -L
7.00 - 6.00	F 13	unavailable						× <u>×</u>	
						_	-	× <u>×</u>	니아
						_	-	316 × 316	
- 8.00	D 14	80% rec	7.70	4.10		8.00-9.00 with—]		- 1 ⊦
8.00 - 9.00	P 15	0070160	1	7.10		extremely closely -	_	× sle	°
						(<4mm) of light grey sand.	-	316 × 1	
						=]	316 × 316	
								x x	Ĭŏ
9.00 9.00 - 10.00	D 16 P 17	70% rec	9.00	3.50	Firm dark brownish grey, locally mottled black,	1 -	9.00 -5.84	711/2 × 711/2	-
					slightly sandy organic CLAY. With plant remains up to 20mm and occasional wood fragments up to	=	(0.65)	71/2 × × 11/2 ×	
					35mm.	9.50-9.65 very —		7111 × × 7111 = × 711	
			06/01/16	1800	Firm dark brown pseudo fibrous PEAT.	organic	9.65 -6.49	a sile sile	
			9.00	3.50			(0.35) 10.00 -6.84	alta alta a a alta alta	
					Hole continues on next sheet				
roundwater Entries No. Depth Strike (m) Remarks Depth Sea				ed (m)	Depth Related Remarks			Duration (min	a) Taala wa
or Dopar came (, riomanio		2004.	ou ()	Depths (m) Remarks 3.00 - 9.00 Water added to assist boring.		Depths (m)	Duration (mir	1S) 100IS US
ee: For ovaloacti	of eumbole as d	abbreviations Br-1-	~4	A 60	CASTI E STDEET IMPROVEMENTS MAIN STE OF		Rorobolo		
tes: For explanation of symbols and abbreviations e Key to Exploratory Hole Records. All depths and duced levels in metres. Stratum thickness given in						Borehole	BH405		
ckets in depth colur cale 1:50	(c) ESC	G www.esg.co.uk	ct No. ed out for		85-15 our Beatty Limited			Sheet 1 of 3	•
1.00	14/0	04/2016 18:24:05	-		·			J.,JUL 1 UI J	

Drilled Equipment, Methods and Remarks Depth from to (m) 17.50 27.12 Diameter Casing Depth Ground Level (mm) 200 150 (m) 17.50 25.10 Dando 2000 MK2. Cable percussion boring. SPT Hammer ID: 024, Rod type: 1 1/2" Whitworth. Logged GS/RM E 509285.25 05/01/2016 Coordinates (m) Checked TC National Grid N 428329.82 End Approved TC 12/01/2016

Samples and Tests						Strata Description				
	Depth	Type & No	Records	Date Casing	Time Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
_	10.00 - 10.45 10.00	UT 19 D 18	23 blows 55% rec 10.00-10.45 S&D record unavailable	10.00 07/01/16 9.00	4.50 0800 4.50	Firm greyish brown slightly sandy gravelly CLAY. Gravel is subangular to subrounded fine to medium of sandstone, quartzite and flint.	=			
_	10.50 - 10.95 10.50	UT 21 D 20	60 blows 70% rec	10.40	6.70		10.55-10.58 with undulating sand filled fissures	(1.50)		
	11.00 - 11.45 11.00	UT 23 D 22	80 blows 70% rec 11.00-11.45 S&D record unavailable	10.40	7.50		(<5mm)			
_	11.50 - 11.95 11.50	UT 25 D 24	80 blows 80% rec 11.50-11.95 S&D record unavailable	11.40	9.10	slightly sandy slightly gravelly CLAY. Gravel is	=======================================	11.50 -8.3	4	
<u>-</u>	12.00 - 12.45 12.00	UT 27 D 26	80 blows 100% rec	11.80	10.70	subangular to subrounded fine to coarse of chalk, sandstone and igneous lithologies.	12.00-12.45 locally— softening around — gravel. —			
_ _ _ _	12.50 - 12.95 12.50	UT 29 D 28	80 blows 100% rec	12.00	dry		12.00-13.00 locally — firm. —			
	13.00 - 13.45 13.00	UT 31 D 30	80 blows 100% rec	12.00	dry		12.87 cobble of			
	13.50 - 13.95 13.50 13.50 - 14.00	UT NR D 32 B 33	100 blows No Recovery	12.00	dry		=======================================	(3.85)		
	14.00 - 14.45 14.00	UT 35 D 34	90 blows 100% rec	12.00	dry		14.00-14.50 locally— very stiff. — 14.06-14.10 locally—			
_ _ _	14.50 - 14.95 14.50	UT 37 D 36	100% rec	12.00	dry		indistinctly — laminated. — 14.50-14.95 locally — indistinctly — laminated. —			
	15.00 - 15.45 15.00	UT 39 D 38	80 blows 100% rec	12.00	dry		= = = = = = = = = = = = = = = = = = = =			
	15.50 - 15.95 15.50	UT 41 D 40	65 blows 89% rec	12.00	dry	Stiff indistinctly thinly and thickly laminated indistinctly fissured brownish grey and greyish brown silty CLAY with frequent dustings and very closely spaced thin laminae (<2mm) of light brown	=======================================	15.35 -12.1	9	
	16.00 - 16.45 16.00	UT 43 D 42	70 blows 89% rec	12.00	dry	silt. Fissures are extremely closely and closely spaced.	= =	(1.65)	× × × × × × × × × × × × × × × × × × ×	
E	16.50 - 16.95 16.50	UT 45 D 44	70 blows 87% rec	12.00 07/01/16	dry 1800		16.50 becoming — locally very stiff. —		× × ×	
_	17.00 - 17.45 17.00	UT 48 D 46	70 blows 100% rec	12.00 12.00 08/01/16 12.00	dry 4.70 0800 4.70	Orangish brown slightly gravelly silty fine to medium SAND. Stiff, locally firm to stiff, thinly and thickly		17.00 -13.8 17.17 ^(0.17) -14.0	\$	
E	17.50 - 17.95 17.50	UT NR D 49	70 blows No Recovery	17.50 08/01/16	5.10 1800	daminated greyish brown silty CLAY with frequent dustings of light brown silt on laminae surfaces.	17.45-17.50 rare _ gravel sized pockets _ of fine to medium _ sand		××	
	18.00 - 18.45 18.00 - 18.50	UT NR B 51	70 blows No Recovery	18.00 18.00 11/01/16 18.00	5.10 4.50 0800 4.50			(1.61)	××	
	18.50 - 18.95	UT 52	70 blows 100% rec	18.00	4.50		18.50 becoming — very closely — fissured, — occasionally —	18.78 -15.6	× × 2	
<u>-</u> -	19.00 - 19.45 19.00 19.00 - 19.50	UT NR D 53 B 54	100 blows No Recovery	18.90	5.10	Stiff indistinctly fissured greyish brown friable CLAY. Fissures are extremely closely to very closely spaced randomly orientated with occasional light brown silt on surfaces. With rare pockets of orangish brown fine sand.	polished		[- <u>-</u> <u>-</u>	
	19.50 - 19.95 19.50 - 20.00	UT NR B 55	95 blows No Recovery	19.40	6.20	powers of orangestrutown line Sano.	=======================================	(1.72)		
						Hole continues on next sheet			<u> </u>	
Groundwater Entries No. Depth Strike (m) Remarks			Depth Sealed	d (m)	Depth Related Remarks Depths (m) Remarks		Hard Boring Depths (m) 13.75 - 14.00	Duration (mins)	Tools used Chisel.	

Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column.

Project

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Project No. Carried out for **Balfour Beatty Limited** **BH405**

Sheet 2 of 3

(c) ESG_www.esg.co.uk 14/04/2016 18:24:05

Borehole

Drilled quipment, Methods and Remarks Depth from Diameter Casing Depth Ground Level (m) 17.50 27.12 (mm) 200 150 (m) 17.50 25.10 ando 2000 MK2. GS/RM E 509285.25 oaaed 05/01/2016 Coordinates (m) Cable percussion boring. SPT Hammer ID: 024, Rod type: 1 1/2" Whitworth. Checked TC N 428329.82 End National Grid 12/01/2016 Approved TC Samples and Tests Strata Description Depth, Level (Thickness) Backfill Legend Type & No Records Detail Casing Wate 20.00 - 20.45 20.00 - 20.50 20.50 - 20.95 SPTS N=25 (3,5/6,6,6,7) 20.40 6.90 20.50 -17.34 Firm to stiff greyish brown indistinctly thinly laminated CLAY, with occasional dustings of grey silt on laminae surfaces and extremely closely spaced thin laminae (<4mm) of orangish brown 21.00 - 21.45 21.00 - 21.45 21.00 - 21.50 SPTS N=27 (3,6/6,6,7,8) 20.90 fine to medium sand. D 59 B 60 21.50-22.00 with occasional laminae of black sand. 100 blows No Recovery (2.65)22.00 - 22.45 22.00 - 22.50 UT NR B 62 100 blows No Recovery 8.60 N=28 (3,6/6,7,7,8) 22.40 9.50 D 63 B 64 22.50 - 22.95 22.50 - 23.00 23.00 - 23.45 22.80 11.10 23.05-23.15 23.15 orangish brown very gravelly sand. Stiff indistinctly thinly and thickly laminated dark orange brown slightly sandy silty CLAY. (0.40)23.50 23.60 - 24.05 D 66 SPTC 23.55 -20.39 Dense greyish brown very sandy, becoming sandy with depth, silty subangular to subrounded fine to N=34 (4,7/8,8,8,10) 23.50 23.60 - 24.10 B 67 coarse GRAVEL of chalk, flint and igneous lithologies. (1.05)24.10 - 24.60 B 68 11/01/16 1800 24.60 12/01/16 24.60 24 60 - 25 05 SPTC N=34 (5.7/8.8.8.10) 24 60 -21 44 Structureless CHALK, recovered as cream mottled light grey subangular to subrounded fine to coarse GRAVEL to COBBLES of chalk. Gravel and cobbles are very weak, low density. 25.60 locally recovered as cream slightly gravelly silty N=37 (6,8/8,9,9,11) 25.10 4.70 50 (7,10/11,14,15,10 for 6.30 12/01/16 1800 27.12 -23.96 END OF EXPLORATORY HOLE Depth Related Remarks No. Depth Strike (m) Remarks Depth Sealed (m) Duration (mins) Tools used 24.30 - 24.50 26.20 - 26.70 30 60 Chisel. Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI Project Borehole (c) ESG_www.esg.co.uk 14/04/2016_18:24-0F **BH405** Project No. A5085-15

Carried out for

Balfour Beatty Limited

ogged RM necked TC oproved TC amples and	End SF 10/12/2015	quipment, Methods and Ren ando 2000 MK2 able percussion boring PT Hammer ID: TS2, Rod Typ		vorth.	Depth from to (m) (m) (m) 0.00 16.70 16.70 24.10	(mm) (m) 200 16.70 150 24.10	Ground Level Coordinates (m) National Grid		3.33 mOE E 509308.11 N 428381.76
Depth	Type & No	Records	Date Casing	Time Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
0.50 - 1.20 0.70	B 2 ES 1	0.00-1.20 Hand excavated inspection pit.	_	1900	Dark brown silty sandy CLAY with rootlets up to 2mm and plant fragments up to 5mm. (TOPSOIL) Greyish brown gravelly CLAY with plant fragments up to 3mm. Gravel is subangular to subrounded fine to coarse of chalk, brick and sandstone. (MADE GROUND)	5	(0.20) - 0.20 +3.13 (0.30) - 0.50 +2.83		
- 1.20 1.50 - 1.95	D 3 SPTS	N=32 (4,7/7,8,8,9)	01/12/15 02/12/15 1.50	1900	Stiff dark greyish brown slightly sandy slightly gravelly CLAY with plant fragments up to 3mm. Gravel is subangular to subrounded fine to coarse brick, chalk, sandstone and occasional tarmacadam. (MADE GROUND)		(1.60)		
1.50 - 1.95 1.50 - 2.20 - 2.00 - 2.50 2.20 2.50 - 2.95 2.50	ES 4 B 5 B 7 D 6 UT 9 D 8	22 blows 89% rec	2.50	dry	Stiff thinly and thickly laminated greyish brown and orangish brown, locally mottled grey, silty CLAY with dustings of greyish brown silt on laminae surfaces. Occasional roots up to 3mm and rare subrounded fine to medium chalk gravel.		2.10 +1.23 (0.40) - 2.50 +0.83	3 = = = = = = = = = = = = = = = = = = =	
- 3.00 - 3.45 3.00	UT 11 D 10	9 blows 97% rec	2.40	dry	(MADE GROUND) Firm thinly and thickly laminated greyish brown and orangish brown silty CLAY with dustings of greyish brown silt on laminae surfaces. Firm, becoming soft at 3.0m, indistinctly thinly and thickly laminated dark grey and dark brownish	3.00-3.70 locally- very soft.	2.70 +0.63	3 X - 	
3.50 3.50 3.50 - 4.50	ES D 12 P 13	80% rec			grey slightly sandy silty CLAY with frequent dustings of light brown and dark grey silt on laminae surfaces.	3.50-5.00 slightly organic 3.61 becoming dark - grey	(2.30)	X	
4.50 - 4.95 4.50 5.00 - 5.45	UT D 14	12 blows 78% rec	4.40	dry	Soft, locally very soft, indistinctly thinly to thickly	4.50-4.85 with — lenses and thin and — thick laminae of — orangish brown fine — sand. —	5.00 -1.67	X	
5.00 5.50 - 5.95 5.50 5.50 - 6.00	D 15 UT NR D 17 B 18	11 blows No Recovery	5.45	dry	laminated greyish brown, locally slightly sandy, silty CLAY with rare plant debris up to 20mm in length. Soft thinly and thickly laminated greyish brown slightly sandy clayey SILT. With dustings and occasional thin and thick laminae (<10mm) of ligh:	- - - -	(0.50) 5.50 -2.17	× × × × ×	
6.00 - 6.45 6.00 6.00 - 6.50	UT NR ES B 19	10 blows No Recovery	5.95	dry	brown silt and fine sand.	-			
7.50 - 7.95 7.50 - 7.95 7.50 - 8.00	P 21 UT NR D 22 B 23	9 blows No Recovery	02/12/15 6.20 7.50 03/12/15 6.20	0500 5.70 1900		-	(2.50)		
8.00 8.00 - 9.00	D 24 P 25	95% rec			Soft thinly and thickly laminated dark greyish brown and orangish brown silty CLAY with extremely closely to very closely spaced thin and thick laminae (<10mm) of orangish brown fine to medium sand. Firm dark brownish grey slightly sandy organic, locally very organic, CLAY. With wood fragments		8.00 -4.67 (0.45) 8.45 -5.12	×	
9.00 - 9.50 9.00 9.00 - 9.50	UT NR B 26 B 27	15 blows No Recovery	8.90	6.30	up to 25mm.	9.00 becoming soft.—	(1.05)	ામાં કર્યો સાંદ સમજ સાંદ સમજ	
9.50 - 9.95 9.50 - 10.00	UT NR B 28	16 blows No Recovery	9.10	5.50	Soft, locally firm, dark brownish grey slightly sandy clayey SILT with plant remains. Hole continues on next sheet	-	9.50 -6.17 (0.50)	× × × × × × × × × × × × × × × × × × ×	
oundwater Entries Io. Depth Strike (tes: For explanation e Key to Exploratory	n of symbols and ab		Depth Sea		Depth Related Remarks Depths (m) Remarks CASTLE STREET IMPROVEMENTS - MAIN SITE GI		Hard Boring Depths (m)	Duration (mir	ıs) Tools us

Dispersion Total Start Englagement, Methods are Removed 10 20 20 20 20 20 20 20	ed TC red TC ples and	3.33 mOE E 509308.11 N 428381.76
Concept Compared Review	ed TC red TC ples and Depth	
Samples and Tests	ples and	N 428381.76
State Stat	ples and	_
Depth Type & No	Depth	
Depth Type & No Records Casing West Main Main Depth Type & No Records 10.00 10	-	Backfil
10.00 10.00 10.2		Баскііі
10.50 - 10.55 UT NT 10.50 UT NT 10.5		
1850-1160		
11.00-11.05 11.00-		11
11.00 - 11.50 S S S S S S S S S		\parallel
1150-1156 SPT S	1.00 - 11.45	
1150 - 1250 12	1.00 - 11.50	141
1 15.0 1.6		- KJY
11.50 - 12.00 B 34 12.00	11.50	
1200 12.45 UT No. 2.36 Dave No Recovery 11.90 9.70 Subangular to subcounded fine to medium of chalk. Sirif dark brown motified grey slightly gravely gravely sarby CLAY. Grave is a subangular to subcounded fine to medium of chalk. Sirif dark brown motified grey slightly gravely gravely gravely gravely process to 12.50 12.50		$-\square$
12.00 12.50 B 36		
1250 - 1255 UT 38 D 37 Inc for toorsers of chalk, sandstone and gineous Inclodes. Stiff, locally very stiff, greyish brown slightly sandy slightly greyerly CLAY. Gravet is subangular to slightly sandy slightly greyerly CLAY. Gravet is subangular to slightly sandy slightly greyerly CLAY. Gravet is subangular to slightly sandy slightly greyerly CLAY. Gravet is subangular to slightly sandy slightly greyerly CLAY. Gravet is subangular to slight brown slightly sandy slightly greyerly CLAY. Gravet is subangular to slight brown slightly sandy slightly gravety CLAY. Gravet is subangular to slight brown slightly sandy slightly gravety CLAY. Gravet is subangular to slight brown slightly sandy slightly gravety CLAY. With dustings of light brown slightly sandy slightly gravety CLAY. Gravet is subangular to slight brown slightly sandy slightly gravety CLAY. Gravet is subangular to slight brown slightly sandy slightly gravety CLAY. Gravet is subangular to slight brown slightly sandy slightly san		
12.50	2.50 12.05	−lo∐′
13.00 - 13.45		loП
13.00 12.10 13.00 12.10 13.00 12.10 13.00 12.10 13.00 12.10 13.00 12.10 13.00 12.10 13.00 12.10 13.00 12.10 13.00 12.10 13.00 12.10 13.00 12.10 13.00 13.74-13.80 very gravelly.		ľЪ
13.00 - 13.90		
13.50 - 13.95		IŏД
13.50 D 41		
14.00 - 14.45	13.50	ЬH
Firmt indistinctly thinly and thickyl jaminated greysh brown and grey slightly sandy CLAY with dustings of light brown silt and fine sand on laminate surfaces. Fissures are extremely to very closely spaced randomly orientated and polished. 16.37		ıΫ́́Я
14.50 - 14.95		
14.50		
15.00 - 15.45		_ ⊬ u
15.00 - 15.45	14.50	
15.00 D 48 Stiff indistinctly fissured brown and greyish brown sity CLAY with dustings of light brown sit on laminae surfaces. Fissures are extremely to very closely spaced randomly orientated with occasional polished. 15.50 15.	5.00 - 15.45	
15.50 - 15.95		\mathbb{Z}
15.50 - 15.95		//
16.00 - 16.45		\vdash
16.00		/ /
16.00 D 52 Stiff indistinctly fissured greyish brown sandy class of light brown silt on laminae surfaces. Fissures are extremely closely to very closely spaced randomly orientated and polished. 16.50 - 16.95 D 54 D		//
extremely closely to very closely spaced randomly orientated and polished. 16.50		
16.50 D 54 D 55 D 54 D 56 D	0.50 40.0-	
are inclined at 45 deg. 17.00 - 17.45 17.00 blows 100% rec 16.70 7.50 Firm to stiff thinly and thickly laminated, locally indistinctly fissured, greyish brown silt on laminae are undulating. 16.73-16.82 laminae are undulating. 17.00 - 13.67 indistinctly fissured, greyish brown silt on laminae are undulating. 17.00 - 13.67 indistinctly fissured greyish brown silt on laminae are undulating. 17.00 - 13.67 indistinctly fissured greyish brown silt on laminae are undulating. 17.00 - 13.67 indistinctly fissured greyish brown silt on laminae are undulating. 17.00 - 13.67 indistinctly fissured greyish brown silt on laminae are undulating. 17.00 - 13.67 indistinctly fissured greyish brown sandly of chalk. Fissures are extremely to very closely spaced, randomly orientated, occasionally polished. 18.00 - 18.45 UT 61		
17.00 - 17.45 UT 57 D 56 100 blows 100% rec 16.70 7.50 Firm to stiff thinly and thickly laminated, locally indistinctly fissured, greyish brown silty CLAY with occasional dustings of light brown silt on laminae surfaces. Rare subrounded fine to medium gravel of chalk. Fissures are extremely to very closely spaced, randomly orientated, occasionally polished. 18.00 - 18.45 UT 61 100 blows 100% rec 16.70 9.40 Stiff indistinctly fissured greyish brown sandy CLAY, with occasional pockets (<5mm) of orangish brown fine to medium sand. Stiff indistinctly fissured greyish brown sandy clay indistinctly fissured greyish brown sandy occasional pockets of orange brown fine to medium sand. 18.23 - 14.90 18.75-19.32 very closely spaced thin laminae of orangish brown fine to medium sand.		
indistinctly fissured, greyish brown silty CLAY with occasional dustings of light brown silt on laminae of crangish brown fine to medium sand. Indistinctly fissured, greyish brown silty CLAY with occasional dustings of light brown silt on laminae of crangish brown silt on laminae of crangish brown silt on laminae of casional dustings of light brown silt on laminae of casional dustings of casional dustings of light brown silt on laminae of casional dustings of casional dustings of light brown silt on laminae of casional dustings of light brown silt on laminae of casional dustings of casional dustings of casional dustings of casional dustings of casional dusting of casio		
17.50 - 17.95	17.00	
17.50	7.50 - 17.95	
18.00 - 18.45		
18.00 D 60 18.16-18.23 occasional pockets of orange brown fine to medium sand. 18.16-18.23 occasional pockets of orange brown fine to medium sand. 18.16-18.23 occasional pockets of orange brown fine to medium sand. 18.23 14.90 2 Stiff indistinctly fissured greyish brown sandy CLAY, with occasional pockets of orange brown fine to medium sand. 18.75-19.32 very closely spaced thin laminae of orangish brown fine to medium sand.		
Stiff indistinctly fissured greyish brown sandy CLAY, with occasional pockets (<5mm) of orange brown fine to medium sand. 18.75 - 18.95		
18.50 - 18.95		
18.50 D 62 18.75-19.32 very closely spaced thin laminae of orangish brown fine to medium sand.		
19.00 - 19.45	18.50	
19.00 D 64 brown fine to	0.00 10 1	
10.32 15.00		
Stiff thinly and thickly laminated greyish brown		
- 19.50 - 19.95 UT 67 100 blows 100% rec 16.70 13.50 silty CLAY. With dustings of silt on laminae and		
laminae (<3mm) of orangish brown fine to medium	.0.50	
sand. Rare subrounded fine to medium gravel of		
Hole continues on next sheet		
Groundwater Entries No. Depth Strike (m) Remarks Depth Sealed (m) Depth Strike (m) Remarks Depth Strike (m) Remarks Depth Sealed (m) Depth Strike (m) Remarks) Tools
No. Depth Strike (m) Remarks Depth Sealed (m) Depths (m) Remarks Depths (m) Durati	.p ou mo (III)	s) Tools used
later: For evaluation of symbols and abbreviations. Desiret ACC CACTLE CTREET IMPROVEMENTS MANY CITE OF	For ovalen-41-	
lotes: For explanation of symbols and abbreviations ee Key to Exploratory Hole Records. All depths and aduced levels in metres. Stratum thickness given in	to Exploratory H	
rackets in denth column		
Scale 1:50 (c) ESG www.esg.co.uk AGS Carried out for Balfour Beatty Limited Sheet	1:50	

Drilled Equipment, Methods and Remarks Depth from to (m) 16.70 24.10 Diameter Casing Depth Ground Level (m) 0.00 16.70 (mm) 200 150 ando 2000 MK2 RM 30/11/2015 E 509308.11 oaaed Coordinates (m) Cable percussion boring SPT Hammer ID: TS2, Rod Type: 1 1/2" Whitworth. Checked TC National Grid N 428381.76 End Approved TC Strata Description Samples and Tests Depth, Level (Thickness) Backfill Legend Type & No Records Detail Casing Wate 20.50 20.50 - 20.95 20.50 - 21.00 D 70 D 71 B 72 07/12/15 16.70 21.00 08/12/15 16.70 100 blows No Recovery 7.90 1900 6.95 21.50-21.64 locally firm. 21.50 - 21.95 UT 74 100 blows 100% rec 21.00 22.00 - 22.45 22.00 22.00 - 22.45 22.00 - 22.50 SPTS D 75 D 76 B 77 N=28 (2,3/6,6,8,8) 21.95 22.00 Structureless CHALK composed of light greyish brown sandy silty subangular fine to coarse GRAVEL. Gravel is very weak to weak, low SPTS D 78 D 79 22.50 - 22.95 N=28 (4,6/6,7,7,8) 22.40 10.70 22.50 22.50 - 22.95 23.00 - 23.45 N=31 (5,7/7,7,8,9) 22.70 11.10 23.00 23.00 - 23.45 23.00 - 23.50 D 80 D 81 (2.50)B 82 23.50 D 83 24.00 - 24.31 24.00 - 24.45 24.00 - 24.50 SPTS 40 (9,10 for 10mm/12,13,15 for 73mm) 24.00 12.10 D 84 B 85 08/12/15 0500 24.50 D 86 24.50 -21.17 END OF EXPLORATORY HOLE Depth Related Remarks Depth Sealed (m) No. Depth Strike (m) Remarks 24.00 - 24.50 60 Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI Borehole Project **BH406** (c) ESG_www.esg.co.uk 14/04/2016 18:24:07 Project No. A5085-15

Carried out for

									CO
rilled MR/IT	Start	Equipment, Methods and Rei	marks		Depth from to D (m) (m)	iameter Casing Depth (mm) (m)	Ground Level		3.48 mOD
ogged RM	02/12/2015	Dando 2000 Cable percussion boring.			0.00 13.30 13.30 28.50	200 13.30 150 27.70	Coordinates (m	1)	E 509336.02
ecked TC	End	SPT Hammer ID: TS2, Rod Typ	oe: 1 1/2" Whitw	vorth.			National Grid		N 428357.42
proved TC	16/12/2015				Otrata Basadatian		4		
amples and	lests		Date	Time	Strata Description	1	Depth, Level	Legend	Backfil
Depth	Type & No		Casing	Water	Main	Detail	(Thickness)	Legend	Баскііі
0.00 - 0.70	ES 1	0.00-1.20 Hand excavated inspection pit.	02/12/15	0330	Dark brown silty sandy CLAY with rootlets up to 2mm and plant fragments up to 5mm.		0.20 (0.20)	28	
					(TOPSOIL) Greyish brown gravelly CLAY with plant fragments	/ :	(0.30)		
0.50 - 1.20	B 2				up to 3mm. Gravel is subangular to subrounded	/	0.50 +2.9	98	
					fine to coarse of chalk, brick and sandstone. (MADE GROUND)	/ :			
			02/12/15	2113	Stiff dark greyish brown sandy gravelly CLAY with	'l <u>-</u>	(0.70)		
1.20 - 1.65	SPTS	N=12 (2,3/3,2,3,4)	1.20 1.20		plant fragments up to 3mm. Gravel is subangular to subrounded fine to coarse of brick, chalk,		1.20 +2.2	.8	
1.20 1.20 - 1.70	D 3 B 4	() / / /	03/12/15 1.20	0330	sandstone and occasional macadam. (MADE GROUND)	/ :			_ \
					Stiff brown slightly sandy slightly gravelly CLAY.	'	(0.50)		
1.70 - 2.15	UT 5	50 blows 67% rec	1.20	dry	Gravel is subangular to subrounded fine to coarse of brick and chalk.	/	1.70 +1.7	8	
					\((MADE GROUND)\) Firm to stiff indistinctly thinly and thickly laminated	/			
2.15	D 6				orangish brown mottled grey CLAY with		(0.80)		
2.40 - 2.85	UT 7	30 blows 100% rec	1.20	dry	occasional thin laminae of fine sand and occasional rootlets up to 2mm. Occasional vertical				
		2.40-2.85 S&D record unavailable			relic rootlet traces, infilled light grey. Firm, locally soft, thinly and thickly, locally	2.50-3.00 - occasional rootlet	2.50 +0.9)8 × ×	
2.85	D8				indistinctly, laminated greyish brown silty CLAY	tracks infilled grey.	1	××	
		40 hls 2007	4.00		with occasional dustings of silt and fine sand along laminae surfaces. Locally oxidised orangish		1	×———×	
3.10 - 3.55	UT 9	10 blows 80% rec	1.20	dry	brown adjacent to laminae.		1	××	
0.50	FC **						1	××	-1
3.50	ES 10					-	1	\times	
							(2.68)	X	
4.00 - 5.00	P 11	90% rec] ` ′	××	
		4.00-5.00 S&D record unavailable				-		×———×	
						-		××	
						-		×	
			03/12/15	2125				<u> </u>	
5.00 - 5.45	UT 12	10 blows 100% rec	5.00	2015		5.00-5.18 very soft		$=$ \times $\hat{\Box}$	
			04/12/15 5.00	0015 dry	Firm, locally soft, thinly and thickly laminated	to soft and indistinctly fissured.	5.18 -1.7	N. 50 - 50 - 50 - 50 - 50 - 50 - 50 - 50	
5.45	D 13				greyish brown slightly sandy clayey organic SILT with dustings of light brown fine sand on laminae	5.18-5.50 soft, locally very soft.		. × × × ν × νγ° × ×	
5.60 - 6.05	UT 14	10 blows 100% rec			surfaces.			. × × × ′′/ × ′′/(° × ×	
						-		$\times \times \times \sim \sim \sim \sim \sim$	
6.05 - 7.05	P 15	100% rec				_		\times \times	
								×2/10××	
6.50	ES 16					_	(2.42)	\times ' γ (° \times \times ')	
								\times $^{\prime\prime}$ \times \times $^{\prime\prime}$	
								$\times \times \times \times$	
7.10 - 7.55	UT 17	10 blows 100% rec						. × × × ′′ × ′′/(° × ×	
							1	× × × ′′/ × ′′/(° × ×	
							1	\times %)(° \times \times	
7.60 - 8.05	UT 18	10 blows 82% rec			Firm black and dark grey very organic CLAY with	7.71-7.78	7.60 -4.1		
			04/12/15 8.20	0430 dry	wood fragments up to 10mm.	interlaminations of sandy silt.	(0.45)	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
8.05 8.05 - 8.50	D 19 B 20		11/12/15	1900	Firm, locally soft, thinly and thickly laminated		8.05 -4.5	7	· [
			8.20	4.70	greyish brown and brownish grey sandy slightly organic CLAY with dustings of silt on laminae and	-			· <u>[</u>
8.50 - 8.95	UT 21	27 blows 100% rec	8.20	4.70	occasional thin and thick laminae (<10mm) of fine	_	(0.95)		-
					sand.				''
9.00 - 10.00	P 22	80% rec 75Psi					9.00 -5.5	2	
a.uu - 1U.UU	P 22	00% IEC / 3PSI			Firm brownish grey, locally mottled black, slightly sandy organic CLAY, locally silt. With plant		3.00 -0.5	× Nic	
					remains up to 25mm.		1	SIG <u>×</u>	
						-	(1.00)	ala ×	
]		ale ×	1/
							10.00 -6.5	×	
					Hole continues on next sheet		10.00	_	
undwater Entries D. Depth Strike (r	m) Remarke	L	Depth Seal	led (m)	Depth Related Remarks		Hard Boring	Due-ti-	-) To -!
. p 50000 (I	,		-p 00u	· · · · · · · ·	Depths (m) Remarks		Depths (m)	Duration (mir	iaj idois US6
es: For explanation			et	A63	CASTLE STREET IMPROVEMENTS - MAIN SITE GI		Borehole		
Key to Exploratory uced levels in metre ckets in depth colun	Hole Records.	All depths and the control of the co			85-15			BH407	•
cale 1:50	(c) ESC	AGS	d out for		four Beatty Limited			Sheet 1 of 3	
	14/	J TO TO T. UU							

rilled MR/IT ogged RM hecked TC pproved TC	02/12/2015 [End 5 16/12/2015	Equipment, Methods and Ren Dando 2000 Cable percussion boring. SPT Hammer ID: TS2, Rod Typ		orth.	(m) (m) (1 0.00 13.30 13.30 28.50	meter Casing Depth mm) (m) 200 13.30 150 27.70	Ground Level Coordinates (m) National Grid		3.48 mOE E 509336.02 N 428357.42
amples and			Date	Time	Strata Description		Depth, Level	Legend	Backfill
Depth	Type & No	Records	Casing	Water	Main	Detail	(Thickness)	Logena	Duckiiii
10.00 - 10.45 10.50 - 10.95 10.50	UT 23 UT 25 D 24	23 blows 100% rec 50 blows 100% rec	10.40	4.90 5.90	Soft, locally very soft, locally indistinctly thinly and thickly laminated greyish brown sandy clayey SILT with occasional thin laminae (<3mm) of greyish brown fine to medium sand. Firm brownish grey, locally mottled black, slightly sandy organic CLAY, locally silt. With plant remains up to 25mm.	10.29 pocket (15 x - 25mm) of dark - orangish brown fine - to medium sand 10.50-11.00 firm to stiff with wood	(0.25) 10.25 -6.77 (0.75)	X	
- 11.00 - 11.45 11.00	UT 27 D 26	50 blows 78% rec	10.40	6.20	Firm locally stiff dark brown oxidising to black pseudofibrous PEAT with local wood fragments up	fragments up to 20mm.	11.00 -7.52	316 X 318 318 318 318 318 318 318 3	
11.50 - 11.95 11.50	UT 29 D 28	56 blows 100% rec	11.40	6.50	to 20mm thick. Interbedded with firm bluish grey mottled black slightly organic CLAY. Firm light brownish grey and greyish brown,	_ _ _	11.40 -7.92 (0.36) 11.76 -8.28	2 316 316	
- 12.00 - 12.45 12.10	UT 31 D 30	60 blows 100% rec	11.40	6.90	locally organic, sandy CLAY. With occasional fragments of wood debris up to 8mm thick. Firm greyish brown and yellowish brown, locally mottled grey, slightly gravelly sandy CLAY. Gravel is subangular to subrounded fine to coarse of	- - - -	-0.20		
12.50 - 12.95 12.50	UT 33 D 32	80 blows 68% rec	12.10	7.50	sandstone, quartzite and igneous lithologies.	- - - -	(1.74)		
- 13.00 - 13.45 13.00	UT 35 D 34	95 blows 80% rec	12.10	8.50		13.00-13.36 locally— stiff 13.12-13.23 - gravelly			
13.50 - 13.95 13.50	UT 37 D 36	110 blows 100% rec	13.30	9.70	Stiff, locally very stiff, greyish brown, locally yellowish brown, slightly sandy slightly gravelly CLAY. Gravel subangular to subrounded fine to	13.60-13.71 sandy. – –	13.50 -10.02		
- 14.00 - 14.45 14.00	UT 39 D 38	120 blows 80% rec	13.30	10.20	coarse sandstone, quartzite, chalk and igneous lithologies.		(1.50)		
14.50 - 14.95 14.50	UT 41 D 40	120 blows 93% rec	13.30	10.70		- - - - -			
15.00 - 15.45 15.00	UT 43 D 42	110 blows 100% rec	14.90 11/12/15 14.90	11.30 0500 11.30	Stiff locally indistinctly thinly and thickly laminated greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to	- - - -	15.00 -11.52		
15.50 - 15.95 15.50	UT 45 D 44	120 blows 56% rec	14.90 15.20 14/12/15 14.90	9.70 1900 9.70	medium, occasionally coarse of sandstone, quartzite, chalk and igneous lithologies.	- - - -	(1.00)		
16.00 - 16.45 16.00	UT 47 D 46	120 blows 78% rec	15.20	10.50	Stiff to very stiff indistinctly thinly and thickly laminated, fissured, greyish brown CLAY with occasional dustings of yellowish brown fine sand		16.00 -12.52 (0.58)		
16.50 - 16.95 16.50	UT 49 D 48	100 blows 100% rec	16.40	10.90	on laminae surfaces. Fissures are extremely closely spaced, randomly orientated, occasionally polished with occasional dustings of grey silt. Indistinctly thinly laminated greyish brown and	 - - -	16.58 -13.10 (0.42)		
17.00 - 17.45 17.00	UT 51 D 50	100 blows 89% rec	16.40	11.10	yellowish brown slightly clayey fine to medium SAND with occasional thin laminae of firm clay. Stiff thinly and thickly, locally indistinctly, laminated, fissured, greyish brown CLAY with	17.15 with rare subrounded fine gravel of chalk	17.00 -13.52		
17.50 - 17.95 17.50	UT 53 D 52	100 blows 78% rec	16.40	11.60	occasional dustings and very closely spaced thin laminae of yellowish brown silt and fine sand. Fissures are extremely closely spaced randomly orientated, occasionally polished.	along laminae 17.50-17.65 firm - -	(1.50)	<u> </u>	
18.00 - 18.45 18.00	UT 55 D 54	100 blows 100% rec	17.80	12.10					
18.50 - 18.95 18.50	UT 57 D 56	100 blows 100% rec	17.80	12.50	Stiff thinly and thickly, locally indistinctly, laminated greyish brown and brownish grey CLAY with dustings and extremely closely to very closely	extremely closely — spaced laminae of — sand. — 18.50-18.95 locally —	18.50 -15.02		
19.00 - 19.45 19.00 19.00 - 19.50	UT NR D 58 B 59	95 blows No Recovery	18.80	13.10	spaced thin laminae (<5mm) of yellowish brown silt and fine to medium sand.	very closely fissured, occasionally polished.	(1.50)		
19.50 - 19.95	UT 60	100 blows 89% rec	18.80	13.70		19.54 becoming _ with rare gravel of _ chalk and flint			
					Hole continues on next sheet	20.00-20.45 locally firm.	20.00 -16.52	<u> </u>	
oundwater Entries lo. Depth Strike (m) Remarks	- 1	Depth Seal	led (m)	Depth Related Remarks Depths (m) Remarks		Hard Boring Depths (m)	Duration (mir	ns) Tools use
tes: For explanation e Key to Exploratory duced levels in metre ackets in depth colur	Hole Records. A es. Stratum thickr	II depths and			CASTLE STREET IMPROVEMENTS - MAIN SITE GI		Borehole	BH407	,

Drilled MR/IT Equipment, Methods and Remarks Depth from Diameter Casing Depth Ground Level (**m**) 0.00 13.30 (m) 13.30 28.50 (mm) 200 150 (m) 13.30 27.70 RM E 509336.02 oaaed 02/12/2015 Coordinates (m) Cable percussion boring. SPT Hammer ID: TS2, Rod Type: 1 1/2" Whitworth. Checked TC N 428357.42 End National Grid Approved TC Samples and Tests Strata Description Depth, Level Backfill Legend Type & No Records Detail Casing Wate 20.00 grevish brown CLAY with frequent dustings and thin laminae (<6mm) of light brown silt along 20.50 - 20.95 20.50 20.50 - 20.95 20.50 - 21.00 SPTS N=27 (3,5/5,7,7,8) 20.40 14.80 D 63 D 64 B 65 21.00 - 21.45 100 blows 100% rec 20.40 21.22-21.28 indistinctly laminated 21.50 - 21.95 21.50 21.50 - 21.95 21.50 - 22.00 SPTS D 67 D 68 B 69 N=29 (4,6/6,7,7,9) 21.40 15.50 22.00 - 22.45 95 blows 100% rec 21.40 15.80 22 13 with rare SPTS D 71 D 72 N=29 (5,5/6,6,8,9) 22.40 16.10 22.50 22.50 - 22.95 22.50 - 23.00 B 73 23.00 - 23.45 UT NR B 74 80 blows No Recovery 22.40 16.30 23.00 - 23.50 -20.02 UT 75 23.50 23.50 - 23.95 100 blows 89% rec 22.40 16.50 Firm to stiff thinly and thickly laminated, locally cross laminated, greyish brown CLAY with (0.50)dustings of light greyish brown silt and fine sand on laminae surfaces. Closely spaced thin and 24.00 - 24.45 SPTS -20.52 N=35 (5,8/8,8,9,10) 23.90 16.70 off laminaes and essent spaced thin and thick laminae (<10mm) of dark brown and light brown silt and fine sand.

Stiff indistinctly thinly and thickly laminated locally indistinctly fissured greyish brown slightly sandy slightly gravelly silty CLAY. Gravel is subangular (fine of chalk. 24.00 24.00 24.00 - 24.45 24.00 - 24.50 D 76 D 77 (0.50)UT 79 24.50 - 24.95 100 blows 100% rec 23.90 17.10 24.50 -21.02 Firm to stiff indistinctly laminated dark orangish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine of chalk and 14/12/15 0500 25.00 - 25.45 SPTS N=27 (3.4/6.6.7.8) 24.90 Thinly interbedded with orangish brown, locally dark grey / black, slightly clayey fine to medium SAND. (1.50)UT NR B 83 25.50 - 25.95 65 blows No Recovery 24.90 10.10 N=32 (4,7/7,8,8,9) 25.95 26.00 -22.52 Greyish brown and cream clayey sandy subrounded fine to coarse GRAVEL of chalk, with medium cobble content. Gravel and cobbles are weak to medium strong, medium density. With 26.50 - 27.00 rare cobbles of flint. N=36 (5,7/8,9,9,10) 26.90 8.50 Structureless CHALK composed of cream gravelly COBBLES. Gravel is angular to subangular fine to coarse of chalk and rare flint. Cobbles are subangular weak to medium strong, low to 50 (7,10/10,12,15,13 for 58mm) 27.70 (1.00) 28.00 - 28.43 28.00 - 28.50 8.60 medium density, occasionally stained orangish 15/12/15 0500 28.50 -25.02 END OF EXPLORATORY HOLE Depth Related Remarks No. Depth Strike (m) Remarks Depth Sealed (m) 28.10 - 28.50 60 Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI Project Borehole (c) ESG_www.esg.co.uk 14/04/2016_18:24:08 **BH407** A5085-15 Project No.

Carried out for

Dando 175
Cable percussion boring
Hammer ID: 024, Rod Type: 1 1/2 Whitworth., Hammer ID: 02, Rod Type: 1 1/2 Whitworth. Depth from (m) 0.00 20.00 Diameter (mm) 200 150 Casing Depth (m) 20.00 25.50 Drilled JB/SS Start to (m) 20.00 26.30 Ground Level Logged RM 30/11/2015 E 509360.27 Coordinates (m) Checked TC National Grid N 428406.49 End Approved TC 10/12/2015

Depth	Type & No	Records	Date	Time	Strata Description		Depth, Le	evel Legend	Ra	_
20001	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Main	Detail		Legena	Du	ckfi
		0.00-1.20 Hand excavate	Casing	Water	MACADAM and CONCRETE.	Detail	(Thickness)	******		┰
		inspection pit.	01/12/15	1900	No samples available. (MADE GROUND)]				$\ \ $
					(MADE GROUND)	_				ا ا
] =	(1.40)			\prod
						_=				╽╽
]
1.40 - 1.85	SPTS	N=9 (1,2/2,3,2,2)				_	1.40	+2.21		11
1.40 - 1.85 1.40 - 2.00	D 1 B 2				Firm indistinctly fissured orangish brown mottled grey slightly sandy slightly gravelly CLAY. Gravel	_				11
					is subangular fine to coarse of concrete, brick and chalk. Fissures are extremely closely spaced,	-				\prod
2.00 - 2.45	UT 3	21 blows 89% rec	2.00	dry	randomly orientated, locally polished. (MADE GROUND)	2.00-2.45 stiff,— locally indistinctly	(1.05)			11
					(22 3.133)	laminated.]
2.45 - 2.65	D 4				Firm to stiff indistinctly thinly and thickly laminated,	<u>-</u>	2.45	+1.16] }
2.70 - 3.15	UT 5	12 blows 89% rec	2.50	dry	locally indistinctly fissured, dark orangish brown slightly sandy silty CLAY with occasional relict root	-	(0.60)	×_ ×		1
					tracks infilled reddish brown and grey. Fissures are randomly orientated.] =	(0.00)	×		11
3.15 - 3.35	D 6				Firm thinly and thickly, locally indistinctly,	1 -		+0.56		\prod
3.35 - 3.80	UT 7	10 blows 89% rec	3.30	dry	laminated dark orangish brown slightly sandy silty organic CLAY.	_	(0.37)	+0.19 × × ×		
					Greyish brown and brown slightly clayey subangular to subrounded fine to coarse GRAVEL	=		+0.06]
3.80 - 4.00	D 8				of limestone, quartzite and flint. Firm indistinctly thinly and thickly laminated dark] =		31k × v		╽┞
4.00 - 4.45	UT 9	12 blows 89% rec	4.00	dry	greyish brown and dark grey slightly sandy silty organic CLAY. Rare orangish brown discolouration	4.00-4.40 locally—soft	(1.05)	316 ×		11
					adjacent to laminae.	-		210 × = 200		$\ \cdot\ $
4.45 - 4.65	D 10						-	21℃ × × 34℃		√Г
			01/12/15	0500	Soft locally firm indistinctly thinly and thickly] =	4.60	-0.99 × slic		11
4.90 4.90 - 5.90	ES 12 P 11	100% rec	4.90	1900	laminated, fissured, dark brownish grey slightly sandy silty organic CLAY with rare rootlets up to	_=		× <u>shre</u> shre ×		╢
4.90 - 5.90	PII		03/12/15 4.90	1900	2mm. Locally oxidising to brown. Fissures are extremely closely spaced randomly orientated.			x <u>she</u>]
						=		× SHE		11
						_		316 × 316		$\ \ $
						=		× <u>× × × × × × × × × × × × × × × × × × </u>		Ì إ
6.00 - 6.45	UT 13	16 blows	6.00	dry		_		× <u>×</u> <u>×</u>		\prod
						-	(3.45)	316 ×		<u> </u>
6.45 - 6.65	D 14					_	(3.43)	316 × 316		1
6.70 - 7.15	UT 15	19 blows 80% rec	6.70	dry		6.70 becoming firm,	-	316 × 316		11
						locally soft, with - occasional dustings -		316 ×		$\ \ $
7.15 - 7.35	D 16					of orangish brown		316 X		ا ا
7.40 - 7.85	UT 17	27 blows	7.40	dry		laminae surfaces. 6.85 becoming with extremely closely to		316 ×		11
				-		very closely spaced _ thin and thick _	-	210 × = = = = = = = = = = = = = = = = = =		╢
7.85 - 8.05	D 18					laminae of fine _ sand. Locally _		210 ×]
8.05 - 9.05	P 19	90% rec			Firm indistinctly thinly and thickly laminated dark	interlaminated SAND and CLAY	8.05	4.44 ×		╁
					grey, locally greyish brown, slightly sandy silty	8.27-8.78 thinly and	1			1
					CLAY.	thickly _ interlaminated with _	(1.00)		P /	11
						dark grey and – greyish brown silty – fine to medium –]		/	11
		1000/				SAND 8.78-9.05 more				<u> </u>
9.05 - 10.05	P 20	100% rec			Firm indistinctly thinly and thickly laminated greyish brown and brownish grey sandy silty	distinctly laminated, =	9.05	-5.44		
					CLAY with occasionally thick laminae of silt and	thick laminae of silty fine to medium				┧╏
					fine to medium sand.	sand 9.50-10.05	-			11
						interlaminated with fine to medium	(1.50)			+v
					Hole continues on next sheet	sand, locally cross laminated.			ш	Н
oundwater Entries					Depth Related Remarks		Hard Borin	na .		_
lo. Depth Strike (m	n) Remarks		Depth Sea	led (m)	Depths (m) Remarks		Depths (m)	-	nins) Tools	use
tes: For explanation of			ct	A63	CASTLE STREET IMPROVEMENTS - MAIN SITE GI		Borehole			_
e Key to Exploratory F luced levels in metres	s. Stratum thickne	ss given in	et No		0E 4E			BH40	8	
ackets in depth columi		AGS	ct No. ed out for		85-15 our Beatty Limited			Sheet 1 of 3		

les and Depth 0 - 10.55 15 - 10.75 16 - 11.25 17 17.60 17 17.25 18 - 12.15 17.60 18 - 12.60 18 - 12.60 18 - 13.05 18 - 13.05 18 - 13.05 18 - 13.70 18 - 13.70 18 - 14.15	Type & No UT 21 D 22 UT 23 D 24 UT 25 W 27 D 26 SPTS D 28 B 29 UT 30 D 31 UT NR B 33	Records 13 blows 67% rec 16 blows 90% rec 29 blows 44% rec 8 (4,2/2,3,3 for 75mm) 27 blows 65% rec 32 blows No Recovery	Date Casing 10.00 10.80 11.25 12.00 12.60	8.50 8.90 6.25	Strata Description Main Soft, locally very soft, dark grey slightly sandy clayey organic SILT. Dark grey and greyish brown clayey fine to coarse SAND with rare subangular fine to medium gravel of quartzite and frequent shell fragments. Firm dark greyish brown very sandy silty CLAY.	Detail 10.10-10.40 frequent pockets (10 x 15mm) of orangish brown fine to medium sand. 10.90-11.10 mottled orangish brown, slightly organic. 11.75 becoming greyish reddish brown, brown.	Depth, Lt (Thickness) 10.55 (0.35) 10.90 (1.10)	-6.94 -7.29	Legend Note: A section of the secti	Backfill
55 - 10.75 50 - 11.25 55 - 11.45 50 - 11.95 11.50 55 - 12.52 55 - 12.60 55 - 12.60 56 - 12.60 57 - 12.60 58 - 12.60 59 - 13.05 100 - 13.05 105 - 13.25 105 - 13.70 105 - 13.70	D 22 UT 23 D 24 UT 25 W 27 D 26 SPTS D 28 B 29 UT 30 D 31 UT NR B 33	16 blows 90% rec 29 blows 44% rec 8 (4,2/2,3,3 for 75mm) 27 blows 65% rec	10.00 10.80 11.25	8.50 8.90 6.25	clayey organic SILT. Dark grey and greyish brown clayey fine to coarse SAND with rare subangular fine to medium gravel of quartzite and frequent shell fragments.	frequent pockets (10 x 15mm) of orangish brown fine to medium sand. 10.90-11.10 mottled orangish brown, slightly organic. 11.75 becoming greyish reddish	10.55 (0.35)		The second second second	
10 - 11.25 15 - 11.45 10 - 11.95 11.50 15 - 12.15 5 - 12.50 5 - 12.60 5 - 12.60 10 - 13.05 15 - 13.25 15 - 13.70 10 - 14.15	UT 23 D 24 UT 25 W 27 D 26 SPTS D 28 B 29 UT 30 D 31 UT NR B 33	29 blows 44% rec 8 (4,2/2,3,3 for 75mm) 27 blows 65% rec	11.25	6.25	clayey organic SILT. Dark grey and greyish brown clayey fine to coarse SAND with rare subangular fine to medium gravel of quartzite and frequent shell fragments.	x 15mm) of orangish brown fine to medium sand. 10.90-11.10 mottled orangish brown, slightly organic. 11.75 becoming greyish reddish	(0.35)		The second second second	
10 - 11.25 15 - 11.45 10 - 11.95 11.50 15 - 12.15 5 - 12.50 5 - 12.60 5 - 12.60 10 - 13.05 15 - 13.25 15 - 13.70 10 - 14.15	UT 23 D 24 UT 25 W 27 D 26 SPTS D 28 B 29 UT 30 D 31 UT NR B 33	29 blows 44% rec 8 (4,2/2,3,3 for 75mm) 27 blows 65% rec	11.25	6.25	clayey organic SILT. Dark grey and greyish brown clayey fine to coarse SAND with rare subangular fine to medium gravel of quartzite and frequent shell fragments.	medium sand 10.90-11.10 mottled orangish brown, slightly organic 11.75 becoming greyish reddish	(0.35)		The second second second	
15 - 11.45 10 - 11.95 11.50 15 - 12.15 5 - 12.52 5 - 12.60 5 - 12.60 10 - 13.05 15 - 13.25 15 - 13.70 10 - 14.15	D 24 UT 25 W 27 D 26 SPTS D 28 B 29 UT 30 D 31 UT NR B 33	29 blows 44% rec 8 (4,2/2,3,3 for 75mm) 27 blows 65% rec	11.25	6.25	Dark grey and greyish brown clayey fine to coarse SAND with rare subangular fine to medium gravel of quartzite and frequent shell fragments.	orangish brown,— slightly organic. — ———————————————————————————————————	10.90	-7.29	The second second second	
60 - 11.95 11.50 15 - 12.15 5 - 12.52 5 - 12.60 5 - 12.60 10 - 13.05 15 - 13.25 15 - 13.70 15 - 13.70	UT 25 W 27 D 26 SPTS D 28 B 29 UT 30 D 31 UT NR B 33	8 (4,2/2,3,3 for 75mm) 27 blows 65% rec	12.00		SAND with rare subangular fine to medium gravel of quartzite and frequent shell fragments.	slightly organic. — ———————————————————————————————————	(1.10)			
60 - 11.95 11.50 15 - 12.15 5 - 12.52 5 - 12.60 5 - 12.60 10 - 13.05 15 - 13.25 15 - 13.70 15 - 13.70	UT 25 W 27 D 26 SPTS D 28 B 29 UT 30 D 31 UT NR B 33	8 (4,2/2,3,3 for 75mm) 27 blows 65% rec	12.00			greyish reddish	(1.10)			⊢γ
11.50 15 - 12.15 5 - 12.60 5 - 12.60 5 - 12.60 10 - 13.05 15 - 13.25 15 - 13.70 10 - 14.15	W 27 D 26 SPTS D 28 B 29 UT 30 D 31 UT NR B 33	8 (4,2/2,3,3 for 75mm) 27 blows 65% rec	12.00		Firm dark greyish brown very sandy silty CLAY.	greyish reddish	(1.10)			
5 - 12.52 5 - 12.60 5 - 12.60 60 - 13.05 65 - 13.25 65 - 13.70 65 - 13.70 60 - 14.15	SPTS D 28 B 29 UT 30 D 31 UT NR B 33	27 blows 65% rec		7.65	Firm dark greyish brown very sandy silty CLAY.	greyish reddish]		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5 - 12.52 5 - 12.60 5 - 12.60 60 - 13.05 65 - 13.25 65 - 13.70 65 - 13.70 60 - 14.15	SPTS D 28 B 29 UT 30 D 31 UT NR B 33	27 blows 65% rec		7.65	Firm dark greyish brown very sandy silty CLAY.	_ brown.	1			
5 - 12.60 5 - 12.60 60 - 13.05 65 - 13.25 65 - 13.70 65 - 13.70 70 - 14.15	D 28 B 29 UT 30 D 31 UT NR B 33	27 blows 65% rec				-	12.00	-8.39	X	
60 - 13.05 15 - 13.25 15 - 13.70 15 - 13.70 10 - 14.15	UT 30 D 31 UT NR B 33		12.60				(0.40)	-8.79	×——×	
15 - 13.25 15 - 13.70 15 - 13.70 10 - 14.15	D 31 UT NR B 33			7.60	Firm black, oxidised to dark brown, pseudo fibrous PEAT. With wood fragments up to 20mm,	1 -	12.40	-0.10	2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
25 - 13.70 25 - 13.70 26 - 14.15	UT NR B 33	32 blows No Recovery	1			-	(0.85)		alk alk a s alk alk	
25 - 13.70 70 - 14.15	UT NR B 33	32 blows No Recovery					-		alk alk a s alk alk	
'0 - 14.15			13.00 07/12/15	7.83 1900	Stiff, locally firm, dark greyish brown slightly sandy		13.25	-9.64	alk alk a	
			07/12/15 13.50 03/12/15	1900 4.10 0500	slightly gravelly CLAY Gravel is subangular to rounded fine to coarse of chalk, sandstone and		-			
	UT 34	59 blows 89% rec	13.00	7.83 6.00	igneous lithologies.	_	_			
				ŀ]			
5 - 14.60	UT 35	61 blows 100% rec		ŀ		14.15-14.60 firm 14.20-14.30 grey	-			
				ŀ			-			
60 - 14.80	D 36						(2.96)			
0 - 15.25	UT 37	49 blows		ŀ			-			
45	5.20			ŀ		_	-			
5 - 15.45 5 - 15.90	D 38 UT 39	69 blows 100% rec				15.45-15.90 locally	-			
5 - 10.00	01 00	09 DIOWS 100 /0100		ŀ		very stiff	‡			
n - 16.10	D 40			ŀ		infill to indistinct — irregular fissures. —	1			
	UT 41	58 blows 100% rec				-	-	- 22		
				ŀ	Stiff, locally very stiff, indistinctly fissured, greyish brown silty CLAY with frequent dustings of light		16.21	-12.60	<u>×x</u>	
5 - 16.75	D 42			ŀ	brown silt and fine sand on fissures surfaces.	_	1		×	
5 - 17.20	UT 43	63 blows 89% rec		ŀ	spaced, randomly orientated, occasionally	16.75-17.20 locally stiff, occasionally	-		×	
					polished.	indistinctly thinly and thickly _	-		×	//
	D 44			ŀ		laminated	(2.14)		<u>×</u> _ <u>×</u>	
0 - 17.85	UT 45	61 blows 100% rec		ŀ			-		×x	
	= 10					_	-		×	
	D 46 UT 47	50 blows 100% rec		ŀ		_]		×	
5 - 10.00	U1 7.	59 DIOWS 100 /0100		ŀ			-		<u>×</u> _ <u>×</u>	
n - 18.70	D 48			ŀ	Stiff thinly and thickly laminated greyish brown	18.43 with rare	18.35	-14.74	××	
	UT 49	56 blows 100% rec			brown sand on laminae surfaces.	18.70 with thin —		15 14	××	
					Stiff fissured, indistinctly thinly and thickly laminated, greyish brown silty CLAY with	laminae (<2mm) of — fine to medium —	10.15	-10.11	××	//
5 - 19.35	D 50			ŀ	occasional dustings and thin laminae (<3mm) of orangish brown silt on laminae surfaces. Fissures	sand.	<u> </u>		××	
5 - 19.80	UT 51	48 blows 51% rec		ŀ	are extremely closely spaced, randomly orientated.		(1.05)		××	
					Olishate 1.	19.52 thin —	-		××	
0 - 20.00	D 52		07/12/15 13.50	0500 6.00	Stiff, locally firm, thinly and thickly laminated	orangish brown fine to medium sand.	19.80	-16.19		
					Hole continues on next sheet	20.00-20.45 with rare subrounded			<u> </u>	
					Depth Related Remarks	fine gravel of chaik.	Hard Borir	ng		
epth Strike (r 10.05		n after 20 minutes.	Depth Sear	led (m)	Depths (m) Remarks			_	Duration (mi	ins) Tools used
3 3 3	00 - 16.10 10 - 16.55 55 - 16.75 55 - 17.20 20 - 17.40 10 - 17.85 15 - 18.05 10 - 18.70 10 - 19.15 15 - 19.35 15 - 19.35 16 - 19.35 17 - 19.35 18 - 19.80	00 - 16.10 D 40 10 - 16.55 UT 41 155 - 16.75 D 42 175 - 17.20 UT 43 10 - 17.85 UT 45 10 - 17.85 UT 45 10 - 18.50 D 46 10 - 18.70 D 48 10 - 19.15 UT 49 15 - 19.80 UT 51 165 - 19.80 UT 51 165 - 19.80 UT 51 165 - 19.80 UT 51	00 - 16.10	00 - 16.10	00 - 16.10	Stiff, locally very stiff, indistinctly fissured, greyish brown silty CLAY with frequent dustings of light brown silty CLAY with frequent dustings of orangish brown silty CLAY with frequent dustings of orangish brown sand on laminae surfaces. Stiff thinly and thickly laminated greyish brown silty CLAY with frequent dustings of orangish brown sand on laminae surfaces. Stiff fissured, indistinctly thinly and thickly laminated, greyish brown silty CLAY with occasional dustings and thin laminae (<3mm) of orangish brown silt on laminae surfaces. Fissures are extremely closely spaced, randomly orientated. Stiff, locally firm, thinly and thickly laminated dustings and thin laminae (<3mm) of orangish brown silt on laminae surfaces. Fissures are extremely closely spaced, randomly orientated. Stiff, locally firm, thinly and thickly laminated the continues on next sheet Depth Sealed (m) Depth Sealed (m) Depth Sealed (m) Depth Remarks	10 - 16.10	No - 16.10 D 40 D	10 - 16.10	10 - 16.10 D 40 D

Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column.

Scale 1:50 (c) ESG www.esg.co.uk 14/04/2016 18:24:09

Project No. A5085-15

Carried out for Balfour Beatty Limited

BH408

Sheet 2 of 3

Drilled JB/SS Equipment, Methods and Remarks Depth from Diameter Casing Depth Ground Level (m) 0.00 20.00 (m) 20.00 26.30 (mm) 200 150 (m) 20.00 25.50 RM E 509360.27 oaaed 30/11/2015 Coordinates (m) Cable percussion boring Hammer ID: 024, Rod Type: 1 1/2 Whitworth., Hammer ID: 02, Rod Type: 1 1/2 Checked TC National Grid N 428406.49 End Whitworth. Approved TC Samples and Tests Strata Description Depth, Level (Thickness) Backfill Legend Records Detail Casing Wate greyish brown CLAY with frequent dustings of silt 20.00 20.00 20.00 - 20.45 08/12/15 on laminae surfaces and thin laminae of orangish 20.45 - 20.90 20.45 - 20.90 No Recovery 20.00 11.45 20 90 - 21 35 SPTS N=19 (3,4/5,4,5,5) 20.00 11.40 21.35-21.40 indistinctly laminated. 21.35 - 21.80 UT 57 79 blows 100% rec 21.00 11.05 (3.75)21.80 - 22.00 22.00 - 22.45 22.00 - 22.45 N=20 (3,4/4,5,5,6) 22.00-22.45 S&D record 22.00 11.00 unavailable 22.45 - 22.90 UT 60 71 blows 100% rec 22.00 11.00 22.45-22.90 with thin and thick laminae (<10mm) of laminae (<10mm) of orangish brown fine sand. 22.59 steeply-inclined polished fissure. 22.65 with rare 22.90 - 23.10 D 61 SPTS D 62 B 63 23.10 - 23.55 23.10 - 23.55 23.10 - 23.55 23.00 N=18 (3,3/5,4,5,4) 10.90 gravel of chalk. 23.55 - 24.00 UT 64 67 blows 100% rec 23.00 5.00 23.55 -19.94 Firm to stiff thinly and thickly laminated dark orangish brown sandy gravelly CLAY. Gravel is (0.40)subangular fine to coarse of chalk with occasional pockets of dark grey and black sand.

Structureless CHALK composed of greyish brown sandy silty subangular fine to coarse GRAVEL. -20.34 23.95 24.00 - 24.20 D 65 24.20 - 24.65 SPTS 24.00 N=39 (4,4/4,8,12,15) 5.00 24.20 - 24.65 Gravel is very weak to weak, low density. 08/12/15 0500 24.00 5.00 09/12/15 1900 6.40 25 00 - 25 45 SPTC N=33 (6.5/7.7.9.10) 25.00 6 40 (2.35) 25.50 - 25.88 25.50 - 26.00 54 (9,10/15,17,22 for 75mm) SPTC 25.50 6.40 26.00 - 26.29 SPTC 60 (9,18/22,38 for 65mm) 26.30 -22.69 END OF EXPLORATORY HOLE Depth Related Remarks No. Depth Strike (m) Remarks Depth Sealed (m) 25.60 - 26.00 60 Borehole

Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column.

Scale 1:50 (c) ESG www.esg.co.uk

Project A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Project No. A5085-15

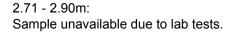
Carried out for Balfour Beatty Limited

BH408

heet 3 of 3

Drilled Equipment, Methods and Remarks Depth from Casing Depth Ground Level (m) 10.15 (mm) 150 (m) 9.50 RM E 510051.72 oaaed 15/12/2015 Coordinates (m) Cable percussion boring Hammer ID: 02, Rod Type: 1 1/2 Whitworth. Checked TC N 428444.47 End National Grid Approved TC Strata Description Samples and Tests Depth, Level Backfill Legend Type & No Records Detail Casing Wate (0.20) 0.20 Greyish brown sandy gravelly CLAY with lov cobble content. Gravel is subangular to subrounded fine to coarse of chalk, limestone, brick and igneous lithologies. Cobbles are angular to subrounded chalk, brick, clay pipe and roof 0.70 ES 1 (1.00) (MADE GROUND) 1.20 - 1.65 1.20 - 1.65 1.20 - 2.00 SPTS D 2 B 3 +3.88 N=10 (2,3/3,2,3,2) Loose to medium dense dark brown sandy clayey GRAVEL with low cobble content. Gravel is subangular to subrounded fine to coarse of mortar, brick, concrete and chalk. Cobbles are (1.10) subangular brick. (MADE GROUND) N=7 (2,1/3,2,1,1) 1.50 D 4 B 5 Firm indistinctly thinly and thickly laminated SPTS N=8 (2,2/2,2,2,2) 2.40 (0.30) dry orangish brown slightly sandy silty CLAY with rare 2.45 - 2.90 2.45 - 2.90 B 7 D 6 2.60 root tracks infilled angular to subangular medium to coarse gravel os mortar and brick.
(MADE GROUND) light grey and black. 2.90 - 3.35 UT 8 21 blows 84% rec 2.90 dr_\ Firm indistinctly thinly and thickly laminated, indistinctly fissured, orangish brown, mottled grey, slightly sandy CLAY. With very closely spaced thin 3.35 - 3.55 D 9 laminae (<3mm) of light brown fine sand. Fissures (1.60) are very closely spaced randomly orientated. 3.55 - 4.00 UT 10 3.55 dn 32 blows 3.55-4.10 S&D record D 11 4.00 - 4.20 +0.88 4.20 - 4.65 UT 12 31 blows 4.20 4.20 Firm thinly and thickly, locally indistinctly, laminated dark orangish brown slightly sandy CLAY with occasional dustings of light orangish (0.80) brown fine sand on laminae surfaces. 4 65 - 4 85 D 13 4.85 - 5.25 UT 14 28 blows 100% rec 4.85 5.00-5.25 locally 5.00 +0.08 Soft thinly and thickly laminated greyish brown and dark grey slightly sandy silty organic CLAY, with dustings and closely spaced laminae of light 5 25 - 5 45 D 15 14/12/15 0500 20 blows No Recovery brown silt. 6.00 - 7.00 P 17 100% rec 75Psi 6.00-7.00 occasional vertical rootlet tracks infilled with organic (2.75)material. 6.05 subvertical fissure infilled with organic material, strong odour. 0 Ō 7.00 - 7.50 Ö 7.00 UT 19 21 blows 7.50 - 7.95 damp 0 0 Soft locally firm indistinctly thinly and thickly (0.25)laminated dark brownish grey slightly sandy 7.95 - 8.15 D 20 8.00 O O clayey organic SILT.
Firm indistinctly thinly and thickly laminated dark <u>×</u> 8.15 - 8.50 B 21 grey and dark greyish brown slightly sandy silty slightly organic CLAY. × Ō 8.50 - 8.95 UT 22 22 blows 71% rec 8.50 dami 8.50-8.82 locally × Locally oxidised brown adjacent to laminae slightly sandy clayey Ö O SME 8.95 - 9.15 D 23 (2.15) 9.15 - 9.50 B 24 × -<u>×</u> <u>slæ</u> 9.50 - 9.95UT 25 24 blows 9.50-9.95 S&D record unavailable 9.50 dam 9.95 - 10.15 D 26 15/12/15 9.50 0500 Hole continues on next sheet Depth Related Remarks Hard Boring Depth Sealed (m) No. Depth Strike (m) Remarks Duration (mins) Tools used Rose to 3.60 m after 20 minutes Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI Project Borehole **BH417** (c) ESG_www.esg.co.uk 14/04/2016_18:24:11 A5085-15 Project No. Carried out for **Balfour Beatty Limited**

Drilled SS Equipment, Methods and Remarks Depth from Casing Depth Ground Level Diameter (mm) 150 (m) 9.50 Logged RM E 510051.72 15/12/2015 Coordinates (m) Dando 175 Cable percussion boring Hammer ID: 02, Rod Type: 1 1/2 Whitworth. N 428444.47 Checked TC National Grid End Approved TC Samples and Tests Strata Description Depth, Level (Thickness) Backfill Legend Records Detail Casing Wate SHE 10.15 -5.07 END OF EXPLORATORY HOLE Depth Related Remarks No. Depth Strike (m) Remarks Depth Sealed (m) Duration (mins) Tools used Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI Borehole Project **BH417** (c) ESG_www.esg.co.uk 14/04/2016 18:24:11 Project No. Carried out for **Balfour Beatty Limited**



Borehole No	BH402		
Sample No	6		
Sample Depth, mBGL	2.45	-	2.90
Sample Type	UT		

Description

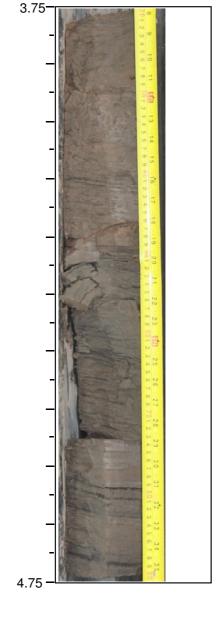
2.45 - 2.71m:

Soft, locally firm, indistinctly thinly and thickly laminated, indistinctly fissured brown, CLAY. With dustings of light brown silt on laminae surfaces. Fissures closely spaced randomly orientated. Occasional lenses up to 3mm of light brown fine sand.

Remarks:

Borehole No	BH402		
Sample No	9		
Sample Depth, mBGL	3.75	-	4.75
Sample Type	Р		

Description


3.75 - 3.90m:

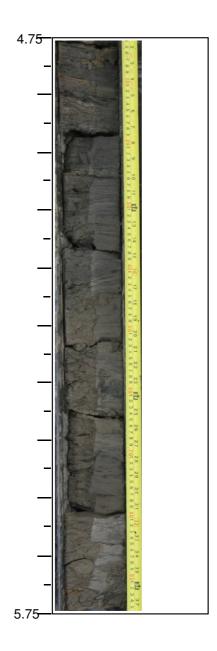
Greyish brown sandy clayey SILT.

3.90 - 4.55m:

Thinly and thickly laminated greyish brown sandy clayey SILT with occasional interlaminations of firm clay. Frequent thin laminae of dark grey fine to medium, locally coarse, sand.

4.55 - 4.75m: No recovery

Remarks:


Borehole No	BH402		
Sample No	10		
Sample Depth, mBGL	4.75	-	5.75
Sample Type	Р		

Description

4.75 - 5.75m:

Soft, locally firm, indistinctly thinly and thickly laminated, dark brownish grey, slightly sandy clayey organic SILT.

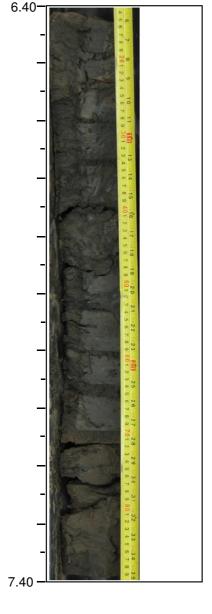
4.75 - 4.85m, with very closely spaced thin laminae (<5mm) of brownish grey fine to medium sand.

Remarks:

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH402

Borehole No	BH402		
Sample No	13		
Sample Depth, mBGL	6.40	-	7.40
Sample Type	Р		

Description


6.40 - 7.03m:

Soft locally firm, indistinctly thinly and thickly laminated greyish brown and brown slightly sandy clayey SILT with occasional dustings of dark grey silt along laminae surfaces. With very closely spaced thin laminae (<5mm) of dark orangish brown fine to medium sand.

Dark orangey brown and grey brown fine to medium sand with occasional thin laminations of grey brown clay.

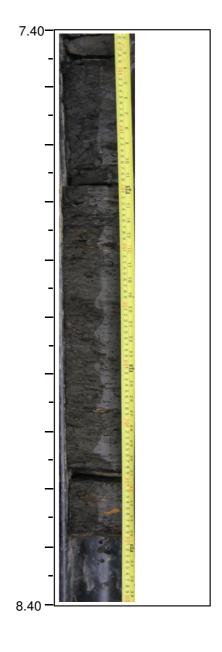
7.17 - 7.40m: No recovery.

Remarks:

Borehole No	BH402		
Sample No	14		
Sample Depth, mBGL	7.40	-	8.40
Sample Type	Р		

Description

7.4 - 7.43m:


Grey fine to medium sand.

7.43 - 8.25m:

Firm indistinctly thinly laminated dark brown very organic CLAY. With frequent plant remains up to 20mm.

8.25 - 8.40m:

8.25 - 8.40m: No recovery

Remarks:

Borehole No	BH402		
Sample No	16		
Sample Depth, mBGL	8.40	-	8.85
Sample Type	UT		

Description

8.40 - 8.78m:


Brownish grey and brown sandy to very sandy SILT.

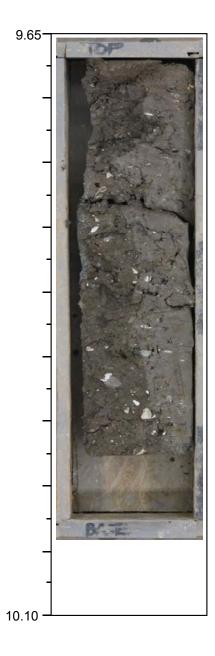
8.63 - 8.78m:

Slightly clayey. Slightly organic.

8.67m - 1No:

Flattened plant debris 60 x 4mm.

Remarks:



Borehole No	BH402		
Sample No	20		
Sample Depth, mBGL	9.65	-	10.10
Sample Type	UT		

Description

9.65 - 10.10m:

Stiff, locally firm to stiff greyish brown locally mottled dark yellowish brown and grey, slightly gravelly sandy CLAY. Gravel is subangular to subrounded fine to coarse of chalk, sandstone and igneous lithology.

Remarks:

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH402



Borehole No	BH402		
Sample No	22		
Sample Depth, mBGL	10.30	-	10.75
Sample Type	UT		

Description

10.30 - 10.75m:

Very stiff brown locally grey slightly sandy, slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse chalk, flint and quartzite. Occasional carbonaceous relict rootlet tracks.

Remarks:

Borehole No	BH402		
Sample No	24		
Sample Depth, mBGL	10.95	-	11.40
Sample Type	UT		

Description

10.95 - 11.40m:

Very stiff brown, locally greyish brown, slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, quartzite and sandstone.

Remarks:

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH402


Borehole No	BH402		
Sample No	26		
Sample Depth, mBGL	11.60	-	12.05
Sample Type	UT		

Description

11.60 - 12.05m:

Very stiff indistinctly thinly and thickly laminated greyish brown slightly sandy CLAY with rare subangular to subrounded, predominantly fine to medium, gravel of chalk igneous material. Detail - 11.60 - 11.67m:

Extremely closely spaced thin laminae (<4mm) of orangish brown fine to medium sand.

Remarks:

Borehole No	BH402		
Sample No	28		
Sample Depth, mBGL	12.25	-	12.70
Sample Type	UT		

Description

12.25 - 12.48m:

Firm to stiff indistinctly thinly to thickly laminated light greyish brown slightly sandy slightly gravelly CLAY.

Gravel is subrounded to subangular fine to coarse sandstone, igneous material occasional chalk.

12.45m:

Subrounded cobble of sandstone

12.48 - 12.70m:

Very stiff greyish brown slightly sandy slightly gravelly, locally gravelly CLAY.

Gravel is subrounded to subangular fine to coarse sandstone, chalk and igneous material.

Remarks:

Borehole No	BH402		
Sample No	30		
Sample Depth, mBGL	13.30	-	13.75
Sample Type	UT		

Description

13.30 - 13.65m:

Stiff locally indistinctly thinly and thickly laminated, greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, sandstone and quartzite with occasional igneous material. Occasional steeply inclined fissures, locally polished.

13.65 - 13.75m:

No sample available due to lab testing.

Remarks:

Borehole No	BH402		
Sample No	32		_
Sample Depth, mBGL	13.95	-	14.40
Sample Type	UT		

Description

13.95 - 14.33m:

Stiff locally indistinctly thinly and thickly laminated, locally indistinctly fissured brown and greyish brown CLAY with occasional dustings and thin laminae (<2mm) of light brown silt. Fissures extremely closely to very closely spaced, randomly orientated, occasionally polished.

14.33 - 14.40m: No recovery

Remarks:

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH402

Borehole No	BH402		
Sample No	34		
Sample Depth, mBGL	14.60	-	15.05
Sample Type	UT		

Description

14.60 - 15.05m:

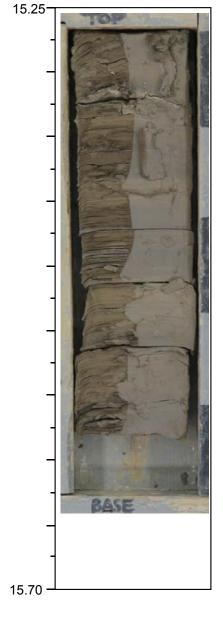
Stiff, thinly and thickly laminated, locally cross laminated, greyish brown and light brown CLAY with dustings of light greyish brown silt on laminae surfaces. Extremely closely and closely spaced thin laminae (<2mm) of light greyish brown silt.

Remarks:

Borehole No	BH402		
Sample No	36		
Sample Depth, mBGL	15.25	-	15.70
Sample Type	UT		

Description

15.25 - 15.70m:


Stiff, locally very stiff, thinly and thickly laminated greyish brown CLAY with occasional dusting of light brown silt along laminae surfaces.

15.47m:

Subvertical polished fissured surface.

15.63m:

Rare subrounded fine gravel of chalk along laminae surfaces.

Remarks:

Borehole No	BH402		
Sample No	38		
Sample Depth, mBGL	15.90	-	16.35
Sample Type	UT		

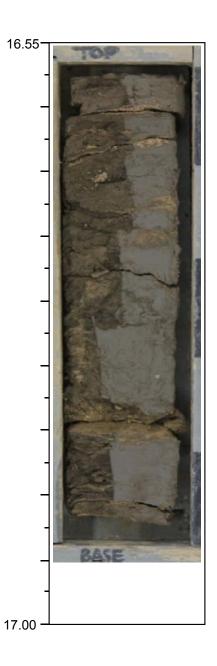
Description

15.90 - 16.35m:

Stiff thinly and thickly laminated indistinctly fissured, greyish brown CLAY with occasional dustings of light brown silt along laminae surfaces. Fissures are very closely to closely spaced, steeply inclined, occasionally polished.

Remarks:

Borehole No	BH402		
Sample No	40		
Sample Depth, mBGL	16.55	-	17.00
Sample Type	UT		


Description

16.55 - 17.00m:

Stiff locally thinly and thickly laminated, locally indistinctly fissured, greyish brown CLAY. With very closely spaced thin laminae (<4mm) of orangish brown fine to medium sand. Fissures are extremely closely spaced, randomly orientated.

16.87 - 16.93m:

With rare subangular to subrounded fine to medium gravel of chalk.

Remarks:

Borehole No	BH402		
Sample No	42		
Sample Depth, mBGL	17.20	-	17.65
Sample Type	UT		

Description

17.20 - 17.65m:

Stiff indistinctly thinly and thickly laminated, indistinctly fissured, greyish brown CLAY with occasional dustings and thin laminae (<1mm) of orangish brown and light brown fine sand and silt. Rare subangular to subrounded gravel of chalk. Fissures are extremely closely spaced and randomly orientated. 17.22m:

60 degree inclined fissure, planar, rough.

17.44m: Parting up to 5mm of light brown sand.

17.65

17.20

Remarks:

Borehole No	BH402		
Sample No	44		
Sample Depth, mBGL	17.85	-	18.30
Sample Type	UT		

Description

17.85 - 18.30m:

Stiff indistinctly thinly to thickly laminated locally indistinctly fissured greyish brown CLAY. Fissures extremely closely spaced randomly orientated.

17.88m:


Subangular coarse gravel of chalk.

18.01 - 18.18m:

Extremely close to very close spaced thin and thick laminae (<9mm) of orangish brown fine to medium sand.

18.04 - 18.15m:

Rare subangular to subrounded fine to medium gravel of chalk.

Remarks:

Borehole No	BH402		
Sample No	46		
Sample Depth, mBGL	18.50	-	18.95
Sample Type	UT		

Description

18.50 - 18.95m:

Stiff indistinctly thinly to thickly laminated indistinctly fissured greyish brown CLAY. Fissures are extremely closely to very closely spaced and randomly orientated.

Detail 18.78 - 18.85m:

With occasional thin laminae (<2mm) of orangish brown silty fine to medium sand.

18.85 - 18.95m: No recovery

Remarks:

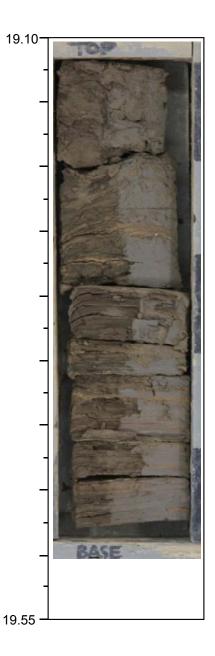
Borehole No	BH402		
Sample No	48		
Sample Depth, mBGL	19.10	-	19.55
Sample Type	UT		

Description

19.10 - 19.20m:

Stiff indistinctly fissured greyish brown CLAY.

19.20 - 19.55m:


Stiff thinly and thickly laminated greyish brown CLAY with frequent dustings and thin laminae (<4mm) and dustings of light brown silt and orangish brown fine to medium sand. 19.12m:

Subrounded medium gravel of chalk 19.20 - 19.33m:

Indistinctly laminated

19.25m:

Angular coarse gravel of flint.

Remarks:

Borehole No	BH402		
Sample No	50		
Sample Depth, mBGL	19.75	-	20.20
Sample Type	UT		

Description

19.75 - 20.20m:

Stiff thinly to thickly, locally cross, laminated greyish brown CLAY with frequent dustings and thin laminae (<3mm) of light brown silt and fine to medium orangish brown sand.

Detail:

19.98 - 20.13m:

Rare subangular to subrounded fine to coarse gravel of chalk.

20.05m:

Thick lamination (8mm) of orangish brown fine to medium sand.

20.11 - 20.13m:

Thick lamination (20mm) of orangish brown fine to medium sand.

20.13 - 20.20m:

Slightly gravelly. Gravel is subangular to subrounded fine to medium of chalk.

Remarks:

Borehole No	BH403		
Sample No	4		
Sample Depth, mBGL	1.65	-	2.10
Sample Type	UT		

Description

1.65 - 1.90m:

Firm orangish brown indistinctly thinly and thickly laminated silty CLAY. Occasional dustings of light brown and grey silt on laminae surfaces.

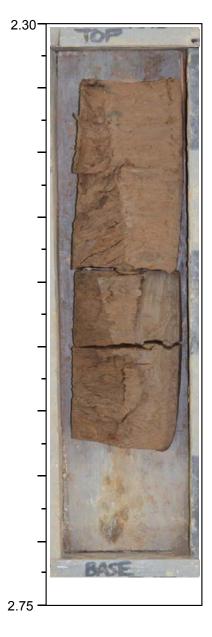
1.65 - 1.81m:

Locally mottled dark brownish orange and grey. Frequent relic rootlet tracks infilled grey.

1.90 - 2.10m: No recovery

Remarks:

Borehole No	BH403		
Sample No	6		
Sample Depth, mBGL	2.30	-	2.75
Sample Type	UT		


Description

2.30 - 2.63m:

Firm indistinctly thinly to thickly laminated orangish brown and brown slightly sandy silty CLAY with frequent dustings of grey silt and orangish brown fine sand on laminae surfaces.

2.40 - 2.48m: Locally soft.

2.63 - 2.75m: No recovery.

Remarks:

Borehole No	BH403		
Sample No	8		
Sample Depth, mBGL	2.95	-	3.40
Sample Type	UT		

Description

2.95 - 3.25m:

Firm orangish brown, locally mottled dark brown, slightly sandy silty CLAY.

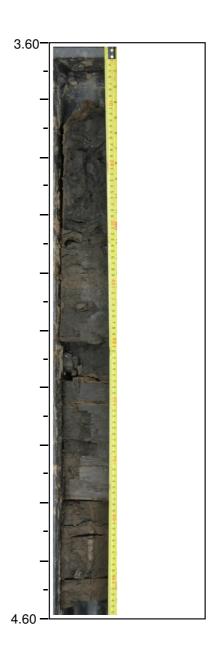
3.25 - 3.30m:

Firm locally soft, indistinctly thinly and thickly laminated dark greysilty CLAY. With occasional dusting of light brown fine sand on laminae surfaces.

3.30 - 3.40m: No recovery.

Remarks:

Borehole No	BH403		
Sample No	10		
Sample Depth, mBGL	3.60	-	4.60
Sample Type	Р		

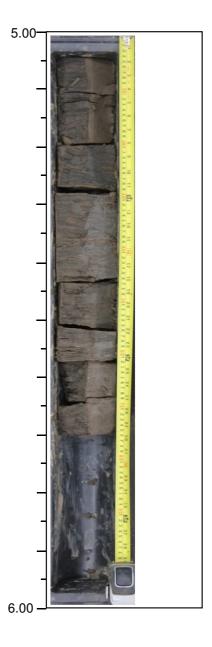

Description

3.60 - 4.60m

Soft, locally firm, thinly and thickly locally indistinctly, laminated greyish brown oxidised brown silty slightly organic CLAY with occasional dustings of grey silt along laminae surfaces.

3.60 - 3.80m Locally dark grey.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH403


Borehole No	BH403		
Sample No	P12		
Sample Depth, mBGL	5.00	-	6.00
Sample Type	UT		

Description

5.00 - 5.75m:

Soft, locally firm, indistinctly thinly and thickly laminated greyish brown and dark grey, silty, slightly organic CLAY. With dustings of silt on laminae surface and very closely spaced thin laminae (<2m) of light brown fine sand.

5.75 - 6.00m: No recovery.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH403

Borehole No	BH403		
Sample No	14		
Sample Depth, mBGL	7.00	-	8.00
Sample Type	Р		

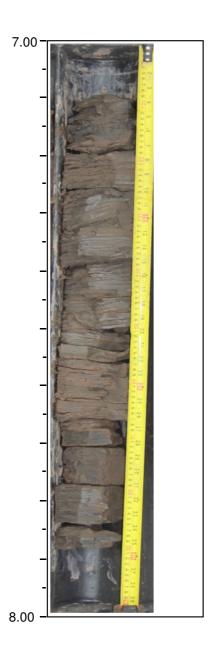
Description

7.00 - 7.80m:

Soft to firm thinly to thickly interlaminated greyish brown silty CLAY and fine to medium SAND.

Detail:

7.00 - 7.10m:


Strong organic odour.

7.05 - 7.08m:

Grey.

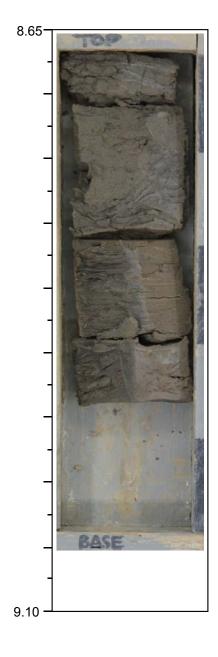
7.63 - 7.80m: Locally interlaminated grey.

7.80 - 8.00m: No recovery

Remarks:

Borehole No	BH403		
Sample No	18		
Sample Depth, mBGL	8.65	-	9.10
Sample Type	UT		

Description


8.65 - 8.79m:

Greyish brown, clayey, silty, fine to medium SAND.

8.79 - 9.00m:

Soft to firm thinly to thickly interlaminated greyish brown, silty CLAY and greyish brown fine to medium SAND.

9.00 - 9.10m: No recovery

Borehole No	BH403		
Sample No	22		
Sample Depth, mBGL	9.95	-	10.40
Sample Type	UT		

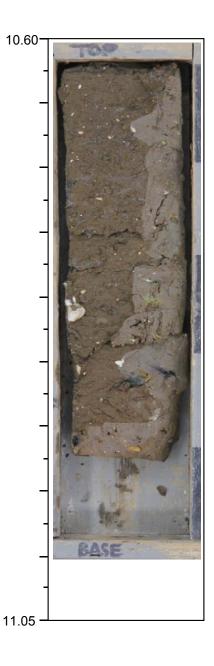
Description

9.95 - 10.40m:

Stiff, locally very stiff, indistinctly laminated, dark brown, locally mottled brown, slightly sandy, slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse, of chalk, flint, sandstone and igneous lithologies. With local dark reddish brown relict root tracks, up to 2mm, associated with grey mottling.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH403

Borehole No	BH403		
Sample No	24		
Sample Depth, mBGL	10.60	-	11.05
Sample Type	UT	·	


Description

10.60 - 11.05m:

Stiff locally, very stiff, indistinctly laminated brown and greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to course of chalk, sandstone and igneous lithologies. Occasional grey infill to laminae surfaces.

10.97m:

1N° subrounded cobble of quartzite.

Remarks:

Borehole No	BH403		
Sample No	27		
Sample Depth, mBGL	11.90	-	12.35
Sample Type	UT		

Description

11.90 - 12.35m:

Very stiff brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, sandstone and quartzite.

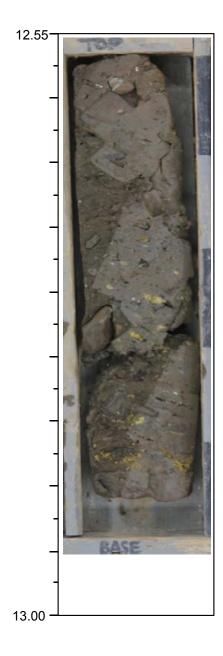
12.23 - 12.35m: Sample unavailable due to lab testing.

Remarks:

Borehole No	BH403		
Sample No	29		
Sample Depth, mBGL	12.55	-	13.00
Sample Type	UT		

Description

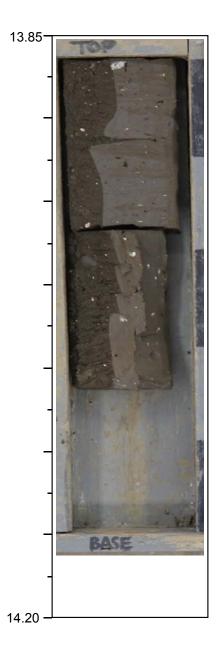
12.55 - 13.00m:


Stiff, locally very stiff, brownish grey and brown slightly sandy, slightly gravelly CLAY.

Gravel is subangular to subrounded fine to coarse sandstone, quartzite, igneous lithologies and occasional chalk.

1N° subrounded sandstone cobble.

Remarks:



Borehole No	BH403		
Sample No	32		
Sample Depth, mBGL	13.85	-	14.20
Sample Type	UT		

Description

13.85 - 14.20m:

Stiff, locally indistinctly laminated, greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, flint, sandstone and quartzite.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH403

Borehole No	BH403		
Sample No	34		
Sample Depth, mBGL	14.40	-	14.85
Sample Type	UT		

Description

14.40 - 14-70m:

Stiff, locally firm, greyish brown slightly sandy, slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse, of chalk, flint and sandstone.

Occasional softening (wet) adjacent to gravel fraction.

14.70 - 14.85m: No recovery

Remarks:

Borehole No	BH403		
Sample No	36		
Sample Depth, mBGL	15.05	-	15.50
Sample Type	UT		

Description

15.05 - 15.50m:

Stiff thinly and thickly, locally cross laminated, greyish brown silty CLAY with occasional dustings of light brown silt along laminae surfaces.

15.05 - 15.30m:

Locally firm to stiff (possible sample disturbance)
Rare inclined polished fissure surfaces throughout.

Remarks:

Borehole No	BH403		
Sample No	38		
Sample Depth, mBGL	15.70	-	16.15
Sample Type	UT		

Description

15.70 - 15.80m:

Sample disturbed. Recovered as soft greyish brown CLAY.

15.80 - 16.15m:

Stiff indistinctly thinly and thickly, locally cross, laminated, greyish brown silty CLAY with occasional dustings of light brown silt on laminae surfaces.

15.96m:

Thin lamination (4mm) of orangish brown fine to medium sand.

Remarks:

Borehole No	BH403		
Sample No	40		
Sample Depth, mBGL	16.35	-	16.80
Sample Type	UT		

Description

16.35 - 16.46m:

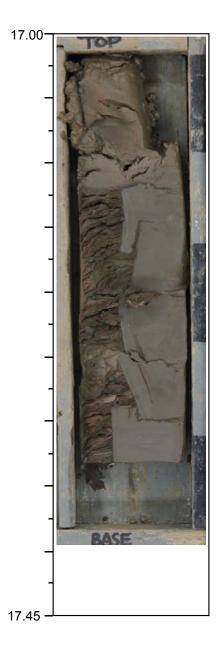
Stiff thickly, locally cross laminated greyish brown CLAY with occasional dusting of light brown silt along laminae surfaces. Rare inclined, locally polished, fissures.

16.46 - 16.80m:

Sample unavailable due to lab testing.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH403

Borehole No	BH403		
Sample No	42		
Sample Depth, mBGL	17.00	-	17.45
Sample Type	UT		


Description

17.00 - 17.45m:

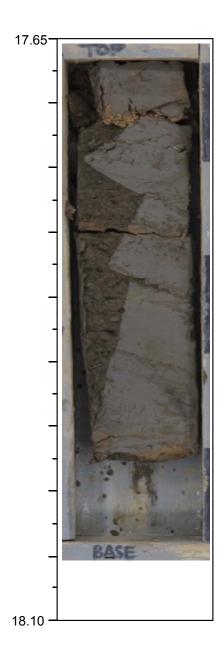
Stiff thinly and thickly laminated, locally fissured, greyish brown silty CLAY with occasional dustings of light brown silt on laminae surfaces. With rare subangular fine to medium gravel of chalk. Fissures are very closely and closely spaced, locally polished, locally dusted with light brown silt, randomly orientated.

Detail:

17.00 - 17.12m - possible sample disturbance (very soft).

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH403

Borehole No	BH403		
Sample No	44		
Sample Depth, mBGL	17.65	-	18.10
Sample Type	UT		


Description

17.65 - 18.10m:

Stiff indistinctly thinly and thickly laminated, locally indistinctly fissured, greyish brown CLAY. With occasional thin laminae (<4mm) of orangish brown fine to medium sand. Fissures extremely closely spaced, randomly orientated.

17.75m:

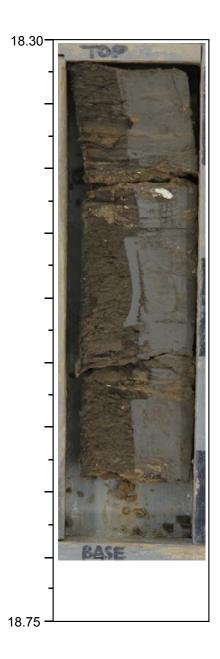
1No subangular medium gravel of chalk.

Remarks:

Borehole No	BH403		
Sample No	46		
Sample Depth, mBGL	18.30	-	18.75
Sample Type	UT		

Description

18.30 - 18.75m:


Stiff indistinctly thinly and thickly laminated greyish brown CLAY. With extremely closely spaced thin laminae (<3mm) of orangish brown fine to medium sand. Rare subrounded fine to medium gravel of chalk.

18.35 - 18.47m:

More distinctly laminated.

18.45m:

1 No. subrounded coarse gravel of chalk.

Remarks:

Borehole No	BH403		
Sample No	48		
Sample Depth, mBGL	18.95	-	19.40
Sample Type	UT		

Description

18.95 - 19.40m:

Stiff thinly and thickly laminated greyish brown silty CLAY with occasional dustings of light brown silt on laminae surfaces. With extremely closely to very closely spaced thin laminae (<3mm) of orangish brown fine to medium sand.

Detail:

18.99 - 19.10m:

Indistinctly laminated.

19.16m:

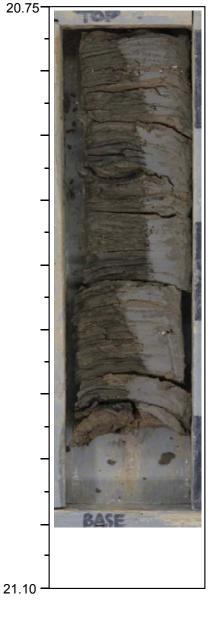
Thick lamination (12mm) of orangish brown fine to medium sand.

Remarks:

Borehole No	BH403		
Sample No	54		_
Sample Depth, mBGL	20.75	-	21.10
Sample Type	UT		

Description

20.65 - 21.10m:


Stiff thinly and thickly laminated greyish brown silty CLAY with frequent dustings of light brown silt on laminae surface. With very closely spaced thin laminae (<3mm) of orangish brown, silt and fine to medium sand.

20.69m:

Rare subrounded fine to medium gravel of chalk.

20.94m:

Rare subrounded fine to medium grains to chalk.

Remarks:

Borehole No	BH404		
Sample No	3		
Sample Depth, mBGL	1.50	-	1.95
Sample Type	UT		

Description

1.50-1.95m:

Stiff indistinctly thinly and thickly laminated dark orangey brown mottled grey CLAY. Rare relic and rootlet tracks throughout. (MADE GROUND)

1.83m:

 $1N^{\circ}$ subangular cobble of concrete 90mm by 60mm.

1.88 - 1.95m:

No recovery.

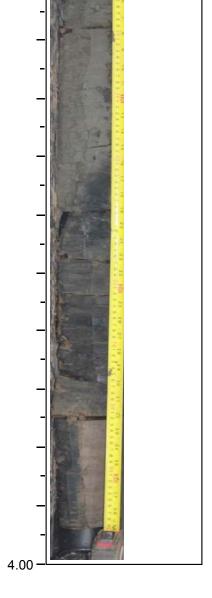
Remarks:

Borehole No	BH404		
Sample No	7		
Sample Depth, mBGL	3.00	-	4.00
Sample Type	Р		

Description

3.00 - 3.88m:

Firm indistinctly thinly and thickly laminated greyish green slightly sandy, locally sandy, silty slightly organic CLAY occasional dusting of brownish grey silt along laminae surfaces.


3.35 - 3.88m:

Dark brownish grey, colour change inclined at approximately 65°

3.52 - 3.88m:

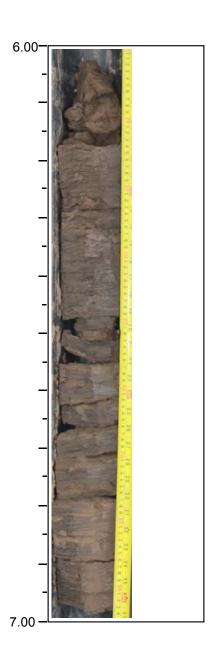
Locally dark orangish brown adjacent to laminae and with rare relic rootlet tracks throughout.

3.88 - 4.00m: No recovery.

3.00

Remarks:

Borehole No	BH404		
Sample No	10		
Sample Depth, mBGL	6.00	-	7.00
Sample Type	Р		


Description

6.00 - 6.42m:

Firm thinly and thickly laminated dark brownish grey and greyish brown sandy silty CLAY with occasional thin and thick laminae of greyish brown silty fine to medium sand.

6.42 - 6.82m: Thinly and thickly interlaminated greyish brown and dark brown slightly clayey silty fine to medium SAND and firm greyish brown CLAY.

6.82 - 7.00m: No recovery.

Remarks:

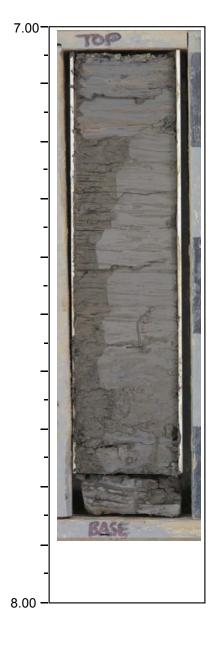
Borehole No	BH404		
Sample No	11		
Sample Depth, mBGL	7.00	-	8.00
Sample Type	Р		

Description

7.00 - 7.50m:

Firm thinly and thickly laminated brownish grey slightly sandy silty CLAY. With extremely closely to very closely spaced thin laminae of greyish brown and orangish brown silt and fine sand.

7.31 - 7.50m:


Laminae are indistinct.

7.50 - 8.00m:

Unavailable due to lab testing.

7.90 - 8.00m: No recovery.

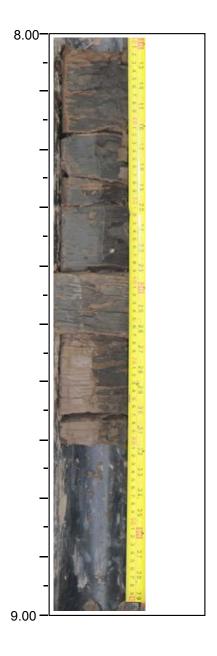
Remarks:

Borehole No	BH404		
Sample No	14		
Sample Depth, mBGL	8.00	-	9.00
Sample Type	Р		

Description

8.00 - 8.50m:

Firm dark brownish grey thinly and thickly laminated slightly sandy silty CLAY. With extremely closely to very closely spaced thin laminae of orangish brown and greyish brown silty fine to medium sand.


Locally oxidised dark orangish brown adjacent to laminae.

8.33m:

15mm thick parting of orangey brown fine to medium sand.

8.50 - 8.78m: Sample unavailable due to laboratory testing.

Remarks:

Borehole No	BH404		
Sample No	17		
Sample Depth, mBGL	9.00	-	10.00
Sample Type	Р		

Description

9.00 - 9.20m:

Firm dark brown and black, pseudo fibrous PEAT with wood fragments up to 25mm.

9.20 - 9.30m:

Sample disturbed. Recovered as dark brown silty CLAY with fragments of sealing wax.

9.30 - 10.00m: No recovery

Remarks:

Borehole No	BH404		
Sample No	26		
Sample Depth, mBGL	11.50	-	11.95
Sample Type	UT		

Description

11.50- 11.82m:

Stiff, locally very stiff, greyish brown locally mottled grey slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse chalk quartzite and igneous lithologies.

BASE

11.50

11.95

11.82 - 11.95m: No recovery.

Remarks:

Two portions of sample photographed seperately and presented together.

Notes:	Project	A63 CASTLE STREET	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH404

Borehole No	BH404		
Sample No	28		
Sample Depth, mBGL	12.00	-	12.45
Sample Type	UT		

Description

12.00 - 12.45m:

Stiff, locally very stiff, greyish brown and brown slightly sandy slightly gravelly CLAY.

Gravel subangular fine to coarse of chalk, quartzite and igneous lithologies.

Remarks:

Borehole No	BH404		
Sample No	30		
Sample Depth, mBGL	12.50	-	12.95
Sample Type	UT		

Description

12.50 - 12.95m:

Very stiff, locally stiff, dark greyish brown, locally dark, orangish brown, slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, sandstone, quartzite and igneous lithologies.

12.77m:

1N° inclined polished fissure.

Borehole No	BH404		
Sample No	32		
Sample Depth, mBGL	13.00	-	13.45
Sample Type	UT		

Description

Stiff, locally very stiff, greyish brown and brown slightly sandy slightly gravelly CLAY. Gravel subangular to subrounded fine to coarse of chalk, quartzite and igneous lithologies.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH404

Borehole No	BH404		
Sample No	36		
Sample Depth, mBGL	14.00	-	14.45
Sample Type	UT		

Description

14.00 - 14.40m:

Stiff, locally firm, dark greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, quartzite, sandstone and igneous lithologies.

14.40 - 14.45m: No Recovery.

Remarks:

Borehole No	BH404		
Sample No	38		
Sample Depth, mBGL	14.50	-	14.95
Sample Type	UT		

Description

15.50 - 14.95m:


Stiff, locally very stiff, indistinctly thinly and thickly, locally cross, laminated greyish brown silty CLAY with occasional dustings of light brown silt along laminae surfaces.

14.75m:

Occasional subrounded fine gravel of chalk.

14.80m:

Thin laminations (2mm) of light brown silty fine sand.

Remarks:

Borehole No	BH404		
Sample No	40		
Sample Depth, mBGL	15.00	-	15.45
Sample Type	UT		

Description

15.00 - 15.45m:

Stiff indistinctly thinly and thickly laminated, fissured, greyish brown silty CLAY with frequent dustings of light brown silt on laminae and fissure surfaces. Fissures are extremely closely to very closely spaced, randomly orientated, occasionally polished.

Remarks:

Borehole No	BH404		
Sample No	42		
Sample Depth, mBGL	15.50	-	15.95
Sample Type	UT		

Description

15.50 - 19.95m:

Stiff, locally very stiff, indistinctly thinly and thickly laminated fissured, brown and greyish brown silty CLAY with occasional dusting of light brown silt on laminae, and occasional fissure, surfaces.

Fissures very closely spaced, randomly orientated and locally polished.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH404

Borehole No	BH404		
Sample No	44		
Sample Depth, mBGL	16.00	-	16.45
Sample Type	UT		

Description

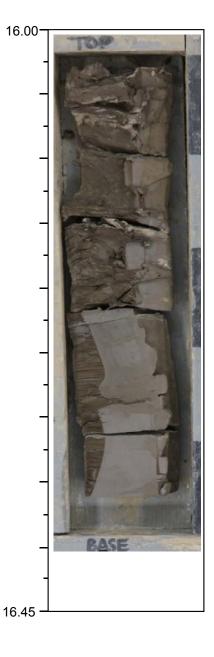
16.00 - 16.26m:

Stiff, indistinctly thinly and thickly laminated, fissured, greyish brown CLAY with occasional dustings of light brown silt along laminae and fissure surfaces. Fissures are very closely spaced and randomly orientated.

16.10 - 16.16m:

Steeply inclined fissures, polished.

16.26 - 16.45m:


Stiff thinly to thickly laminated greyish brown CLAY.

16.28m:

Thin lamination (1mm) of light brown silt.

16.37m:

Thin lamination (1mm) of light brown silt.

Remarks:

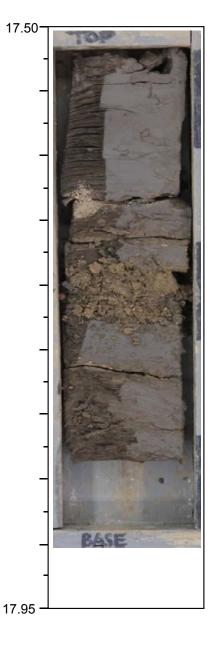
Borehole No	BH404		
Sample No	50		
Sample Depth, mBGL	17.50	-	17.95
Sample Type	UT		

Description

17.50 - 17.95m:

Stiff thinly and thickly laminated greyish brown CLAY, occasional dustings of light brown silt along laminae surfaces.

17.66m:


Thin lamination (3mm) thick parting of light brown to fine to coarse sand.

17.71 - 17.76m:

Orangish brown slightly gravelly silty fine to coarse SAND. Gravel subangular to subrounded fine to coarse predominantly chalk.

17.76 - 17.95m:

Stiff indistinctly fissured greyish brown CLAY. Fissures are extremely closely spaced and randomly orientated.

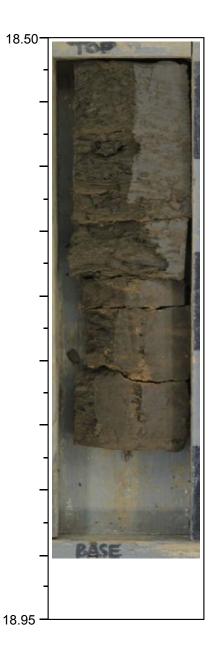
Remarks:

Borehole No	BH404		
Sample No	54		
Sample Depth, mBGL	18.50	-	18.95
Sample Type	UT		

Description

18.50 - 18.95m:

Firm to stiff, locally indistinctly thinly and thickly laminated, indistinctly fissured greyish brown silty CLAY. With extremely closely to very closely spaced thin laminae (2mm) of orangish brown fine to medium sand.


Detail:

18.65m:

1N° subrounded coarse gravel of chalk.

18.65 - 18.95m:

Fissures are extremely closely spaced and randomly orientated.

Remarks:

Borehole No	BH404		
Sample No	56		
Sample Depth, mBGL	19.00	-	19.45
Sample Type	UT		

Description

Stiff thinly and thickly laminated greyish brown CLAY. With frequent dustings of light brown silt along laminae surfaces and frequent thin laminae (<3mm).

19.00 - 19.17m:

Very closely spaced thin laminae (<6mm) of orangish brown fine to medium sand.

19.33m

1N° subrounded fine gravel of chalk.

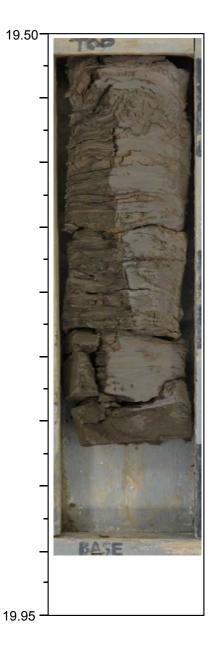
19.36m:

Thin laminations (3mm) of orangish brown fine to medium sand.

19.39 - 19.45m:

No recovery.

Remarks:


Borehole No	BH404		
Sample No	58		
Sample Depth, mBGL	19.50	-	19.95
Sample Type	UT		

Description

19.50 - 19.95m:

Firm to stiff thinly, locally thickly, laminated greyish brown CLAY with frequent dustings and laminae (<3mm) of light brown silt.

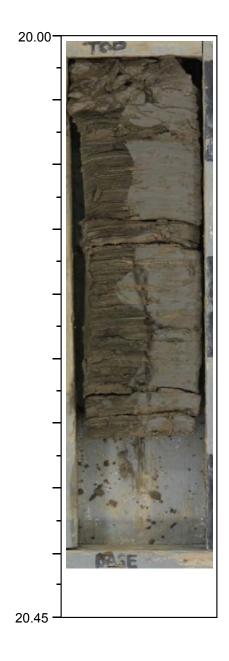
19.67m - Thin laminae (<2mm) of orangish brown fine to medium sand.

Remarks:

Borehole No	BH404		
Sample No	60		
Sample Depth, mBGL	20.00	-	20.45
Sample Type	UT		

Description

20.00 - 20.45m:

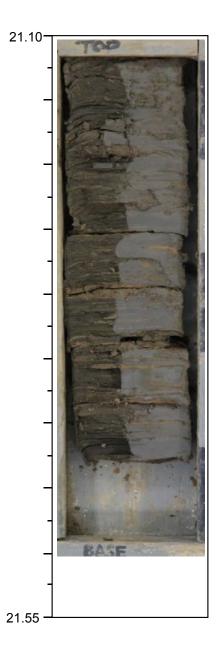

Stiff, locally firm, thinly and thickly laminated greyish brown CLAY. With closely spaced thin laminae (<3mm) of orangish brown fine sand. Frequent dustings of greyish brown silt on laminae surfaces.

20.00 - 20.03m:

Possible local sample disturbance - tending to firm.

20.39 - 20.45m: No recovery

Remarks:



Borehole No	BH404		
Sample No	64		
Sample Depth, mBGL	21.10	-	21.55
Sample Type	UT		

Description

21.10 - 21.55m:

Firm to stiff thinly, locally thickly, laminated greyish brown CLAY with frequent dustings and very closely spaced thin laminae (<5mm) of light brown silt and fine sand.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH404

Borehole No	BH404		
Sample No	68		
Sample Depth, mBGL	22.20	-	22.65
Sample Type	UT		

Description

22.20 - 22.46m:

Stiff thinly and thickly, locally indistinctly, laminated greyish brown silty CLAY.

22.27 - 22.31m:

Extremely closely spaced thin laminae of orangish brown fine sand.

22.34 - 22.40m:


Greyish brown fine to medium silty sand with occasional subrounded fine gravel of chalk.

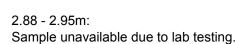
22.40 - 22.46m:

Extremely closely spaced thin laminae (<3mm) of orangish brown fine sand.

22.46 - 22.65m:

No recovery.

Remarks:



Borehole No	BH405		
Sample No	5		
Sample Depth, mBGL	2.50	-	2.95
Sample Type	UT		

Description

2.50 - 2.95m:

Firm to stiff indistinctly thinly and thickly laminated greyish brown mottled orangish brown slightly sandy silty CLAY with occasional relict rootlet tracks infilled grey.

Remarks:

Notes:

Project A63 CASTLE STREET

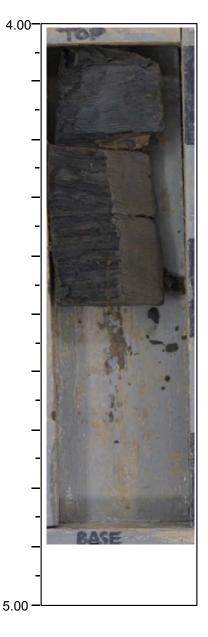
Project No. A5085-15
Carried out for Balfour Beatty Limited

Bh No/Depth

BH405

Borehole No	BH405	
Sample No	8	_
Sample Depth, mBGL	4.00	5.00
Sample Type	Р	

Description


4.00 - 4.26m:

Soft thinly and thickly laminated greyish brown and dark grey slightly sandy silty organic CLAY with occasional dusting of light brown silt and fine sand on laminae surfaces.

4.26 - 4.50m:

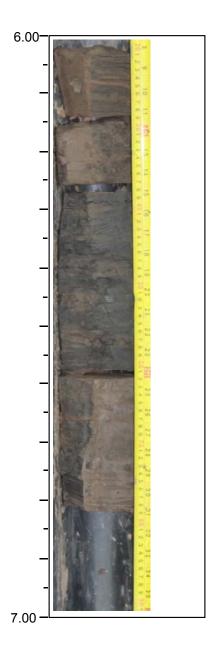
Sample unavailable due to lab testing.

4.50 - 5.00m: No recovery.

Remarks:



Borehole No	BH405	
Sample No	11	
Sample Depth, mBGL	6.00	7.00
Sample Type	Р	

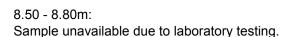

Description

6.00 - 6.60m:

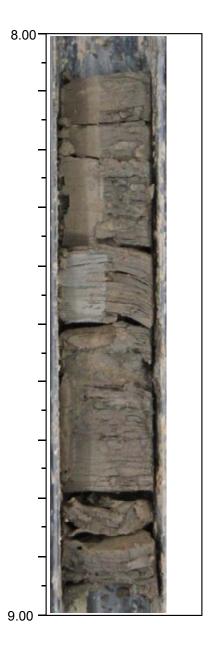
Firm, locally soft, thinly and thickly laminated greyish brown and dark grey slightly sandy silty slightly organic CLAY with occasional dustings of grey brown silt along laminae surfaces. Extremely closely to very closely spaced thin and thick laminae (<12mm) thick of grey brown fine to medium sand.

6.78 - 7.00m: No recovery.

Remarks:



Borehole No	BH405		
Sample No	15		
Sample Depth, mBGL	8.00	-	9.00
Sample Type	Р		


Description

8.00 - 8.80m:

Soft thinly and thickly laminated greyish brown and dark grey slightly sandy silty organic CLAY with extremely closely spaced thin laminae (<4mm) of light grey fine sand.

8.80 - 9.00m: No recovery.

Remarks:

Borehole No	BH405		
Sample No	17		
Sample Depth, mBGL	9.00	-	10.00
Sample Type	Р		

Description

9.00 - 9.50m:


Firm dark brownish grey locally mottled black slightly sandy organic CLAY. With plant fragments up to 20mm and occasional wood fragments up to 35mm.

9.50 - 9.65m: Very organic.

9.65 - 9.70m:

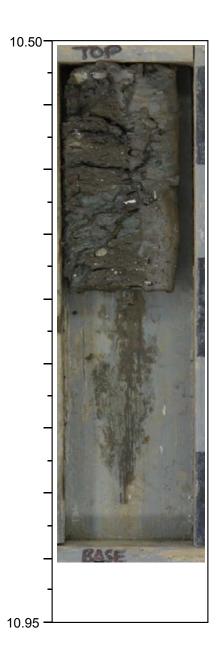
Firm dark brown pseudo fibrous PEAT.

9.70 - 10.00m: No recovery

Remarks:

Borehole No	BH405		
Sample No	21		
Sample Depth, mBGL	10.50	-	10.95
Sample Type	UT		

Description


10.50 - 10.75m:

Firm indistinctly thinly and thickly laminated indistinctly fissured brownish grey locally mottled light grey, slightly sandy, slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse chalk, flint, sandstone. Fissures are closely spaced randomly orientated.

10.55 - 10.58m:

Planar undulated fissure infilled up to 5mm with dark brown fine and medium sand.

10.75 - 10.95m: No recovery.

Remarks:

Borehole No	BH405		
Sample No	27		
Sample Depth, mBGL	12.00	-	12.45
Sample Type	UT		

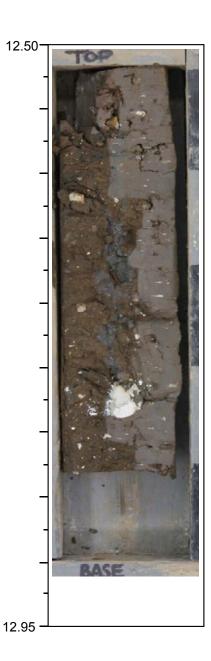
Description

12.00 - 12.45m:

Stiff, locally firm, greyish brown, locally mottled light grey, slightly sandy, slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, sandstone and igneous lithologies. Frequent localised softening of material noted associated with gravel content.

12.00 - 12.10: Sample disturbance (very wet and soft).

Remarks:



Borehole No	BH405		
Sample No	29		
Sample Depth, mBGL	12.50	-	12.95
Sample Type	UT		

Description

12.50 - 12.95m:

Stiff, locally firm, greyish brown, locally mottled light grey, slightly sandy, slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, sandstone and igneous lithologies. Localised softening of material associated with gravel noted.

12.65 - 12.85m:

Mottled light grey material possibly associated with infilled relict root tracks up to 2mm.

12.87m:

1No. subrounded cobble of chalk.

Remarks:

Borehole No	BH405		
Sample No	31		
Sample Depth, mBGL	13.00	-	13.45
Sample Type	UT		

Description

13.00 - 13.45m:

Stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, quartzite and igneous lithologies.

Remarks:

Notes:

Project A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Project No.
Carried out for Balfour Beatty Limited

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Bh No/Depth

BH405

Borehole No	BH405		
Sample No	35		
Sample Depth, mBGL	14.00	-	14.45
Sample Type	UT		

Description

14.00 - 14.45m:

Stiff, locally very stiff, greyish brown slightly sandy, slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, sandstone and igneous lithologies.

14.06 - 14.10m:

Locally indistinctly thickly laminated.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH405

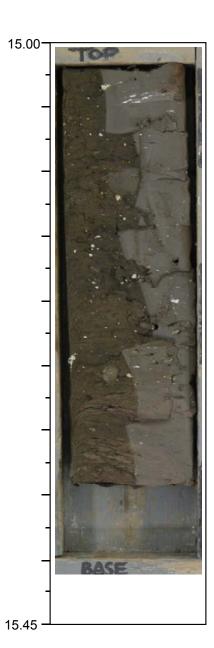
Borehole No	BH405	
Sample No	37	
Sample Depth, mBGL	14.50	14.95
Sample Type	UT	

Description

14.50 - 14.95m:

Stiff indistinctly thickly laminated greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse chalk, sandstone and igneous lithologies.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH405



Borehole No	BH405		
Sample No	39		
Sample Depth, mBGL	15.00	-	15.45
Sample Type	UT		

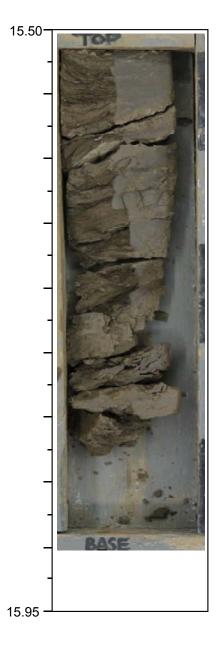
Description

15.00 - 15.35m:

Stiff, greyish brown slightly sandy, slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, sandstone and igneous lithologies. Softening of material associated with gravel noted.

15.35 - 15.45m:

Stiff indistinctly thinly and thickly laminated indistinctly fissured greyish brown silty CLAY with frequent dustings of light brown silt on laminae surfaces. Fissures are extremely closely to closely spaced and randomly orientated.



Borehole No	BH405		
Sample No	41		
Sample Depth, mBGL	15.50	-	15.95
Sample Type	UT		

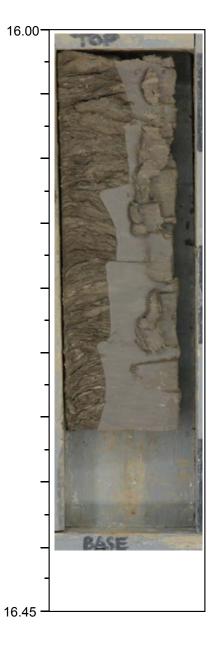
Description

15.50 - 15.95m:

Stiff indistinctly thinly and thickly laminated, indistinctly fissured, greyish brown silty CLAY with frequent dustings of light brown silt on laminae surfaces and very closely spaced thin laminae (<2mm) of light brown silt. Fissures are extremely closely and closely spaced and randomly orientated.

Remarks:

Borehole No	BH405		
Sample No	43		
Sample Depth, mBGL	16.00	-	16.45
Sample Type	UT		


Description

16.00 - 16.45m:

Stiff, locally very stiff, indistinctly thinly and thickly laminated, indistinctly fissured, brown and greyish brown silty CLAY with occasional, dustings of light brown silt along laminae surfaces. Fissures are extremely close to very closely spaced randomly orientated.

16.24 - 16.40m: Dustings of silt are frequent.

16.40 - 16.45m: No recovery.

Borehole No	BH405		
Sample No	45		
Sample Depth, mBGL	16.50	-	16.95
Sample Type	UT		

Description

16.50 - 16.89m:

Stiff, locally very stiff, indistinctly thinly and thickly laminated, indistinctly fissured, greyish brown silty CLAY with frequent dustings and rare thin laminae (<2mm) thick of light brown silt along laminae and fissures. Fissures are extremely closely to very closely spaced and randomly orientated.

16.89 - 16.95m: No recovery

Remarks:

Borehole No	BH405		
Sample No	48		
Sample Depth, mBGL	17.00	-	17.45
Sample Type	UT		

Description

17.00 - 17.17m:

Orangish brown silty fine to medium SAND with rare subangular to subrounded fine to medium gravel of chalk with occasional thick laminae of brown silty clay.

17.17 - 17.45m:

Stiff, locally firm to stiff, thinly and thickly laminated greyish brown silty CLAY with frequent dustings of light brown silt along laminae surfaces.

17.40m:

Subrounded fine gravel of chalk.

Borehole No	BH405		
Sample No	52		
Sample Depth, mBGL	18.50	-	18.95
Sample Type	UT		

Description

18.50 - 18.95m:

Stiff thin, and thickly laminated, fissured, greyish brown silty CLAY. Very closely spaced fissured, randomly orientated, locally polished.

18.70 - 18.95m:

Indistinctly laminated and indistinctly fissured with occasional light brown silt on surface.

18.70 - 18.78m:

Locally firm.

18.78m:

Occasional subrounded fine to medium gravel of chalk.

Remarks:

Borehole No	BH405		
Sample No	65		
Sample Depth, mBGL	23.00	-	23.45
Sample Type	UT		

Description

23.00 - 23.11m:

Stiff indistinctly thinly and thickly laminated, indistinctly fissured, greyish brown CLAY with occasional thin laminae (<3mm) of orangish brown fine sand.

23.11 - 23.15m:

Orangish brown very gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse of chalk and flint.

23.15 - 23.45m:

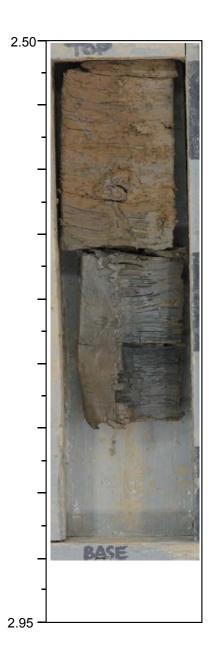
Stiff, locally very stiff, indistinctly thinly and thickly laminated dark orangish brown slightly sandy silty CLAY.

23.40 - 23.45m:

With occasional thin laminae (<3mm) of orangish brown and black fine to medium sand.

Remarks:

Borehole No	BH406		
Sample No	9		
Sample Depth, mBGL	2.50	-	2.95
Sample Type	UT		


Description

2.50 - 2.70m:

Firm thinly and thickly laminated greyish brown and orangish brown silty CLAY with dustings of greyish brown silt on laminae surfaces.

2.70 - 2.95m:

Firm thinly and thickly laminated dark grey silty CLAY with dustings of greyish brown silt on laminae surfaces.

Remarks:

Borehole No	BH406		
Sample No	11		_
Sample Depth, mBGL	3.00	-	3.45
Sample Type	UT		

Description

3.00 - 3.45m:

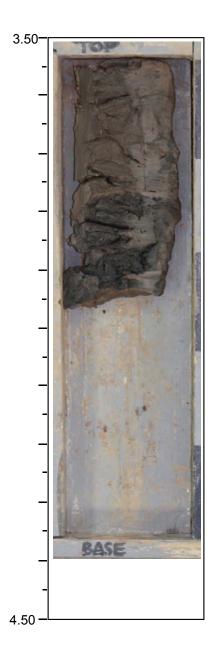
Soft, locally very soft, indistinctly thinly and thickly laminated greyish brown, locally dark grey, silty CLAY with dustings of light brown silt on laminae surfaces.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH406

Borehole No	BH406		
Sample No	13		
Sample Depth, mBGL	3.50	-	4.50
Sample Type	Р		

Description

3.50 - 3.70m:


Soft, locally very soft, indistinctly thinly and thickly laminated dark greyish brown, slightly organic silty CLAY with occasional dustings of grey fine sand on laminae surfaces.

3.61m:

Becoming dark grey.

3.70 - 4.50m:

Sample unavailable due to lab testing

Remarks:

Borehole No	BH406		
Sample No	14		
Sample Depth, mBGL	4.50	-	4.95
Sample Type	UT		

Description

4.50 - 4.85m:

Soft, indistinctly thinly and thickly laminated, indistinctly fissured dark grey mottled orangish brown silty slightly organic CLAY with lenses and thick to thick laminae (<10mm) of orangish brown fine sand.

4.85 - 4.95m: No recovery.

Remarks:

Borehole No	BH406		
Sample No	16		
Sample Depth, mBGL	5.00	-	5.45
Sample Type	UT		

Description

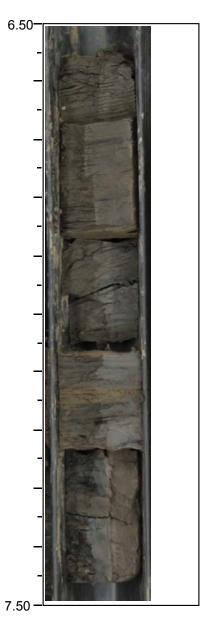
5.00 - 5.45m:

Soft, locally very soft, indistinctly thinly to thickly laminated greyish brown, locally slightly sandy, silty CLAY with rare plant debris up to 20mm in length.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH406

Borehole No	BH406		
Sample No	21		
Sample Depth, mBGL	6.50	-	7.50
Sample Type	Р		

Description


6.50 - 7.20m:

Soft thinly and thickly laminated, locally cross laminated, dark greyish brown slightly sandy clayey SILT. With dustings of silt on laminae surfaces and occasional thin and thick laminae (<10mm) of light brown silt and fine sand.

7.00m:

Thick lamination (<10mm) of light brown fine sand.

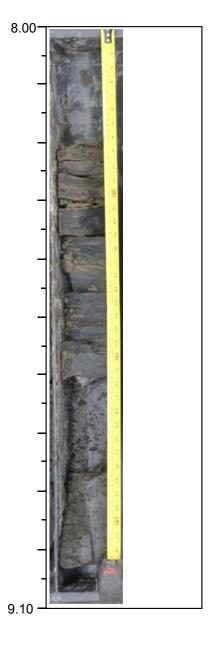
7.20 - 7.50m: No recovery.

Remarks:

Borehole No	BH406		
Sample No	25		_
Sample Depth, mBGL	8.00	-	9.10
Sample Type	Р		

Description

8.00 - 8.45m:


Soft thinly and thickly laminated dark greyish brown and orangish brown silty CLAY with extremely closely to very closely spaced thin and thick laminae (<10mm) of orangish brown fine to medium sand.

Firm dark brownish grey slightly organic to organic CLAY. With wood fragments up to 25mm.

8.80 - 9.10m:

Sample not available due to lab testing.

Remarks:

Borehole No	BH406		
Sample No	38		
Sample Depth, mBGL	12.50	-	12.95
Sample Type	UT		

Description

12.50 - 12.75m:

Stiff, locally very stiff, greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse chalk, sandstone and igneous lithologies. Rare steeply inclined fissures, infilled grey.

12.75 - 12.95m: No recovery.

Remarks:

Borehole No	BH406		
Sample No	40		
Sample Depth, mBGL	13.00	-	13.45
Sample Type	UT		

Description

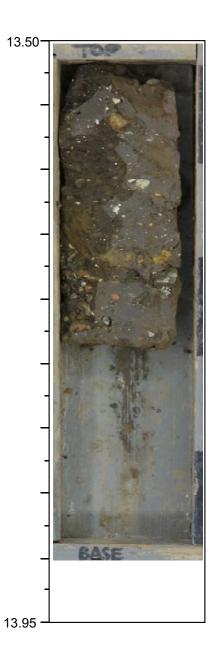
13.00 - 13.33m:

Very stiff dark brown mottled orangish brown, slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, quartzite and sandstone with rare igneous and coal.

13.33 - 13.45m: No recovery.

Remarks:

Borehole No	BH406		
Sample No	43		
Sample Depth, mBGL	13.50	-	13.95
Sample Type	UT		


Description

13.50 - 13.80m:

Very stiff to hard dark brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse chalk, sandstone, quartzite and igneous lithologies.

13.74 - 13.80m: Very gravelly.

13.80 - 13.95m: No recovery.

Remarks:

Borehole No	BH406		
Sample No	45		_
Sample Depth, mBGL	14.00	-	14.45
Sample Type	UT		

Description

14.00 - 14.24m:

Firm indistinctly thinly and thickly laminated greyish brown and grey slightly sandy silty organic CLAY with dustings of light brown silt and fine sand on laminae surfaces.

14.24 - 14.45m: No recovery.

Remarks:

See engineers log.

Borehole No	BH406		
Sample No	47		
Sample Depth, mBGL	14.50	-	14.95
Sample Type	UT		

Description

14.50 - 14.80m:

Stiff, locally firm, greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to medium, locally coarse, of chalk, quartzite, sandstone and igneous lithologies.

14.80 - 14.95m: No recovery.

Remarks:

Borehole No	BH406		
Sample No	49		
Sample Depth, mBGL	15.00	-	15.45
Sample Type	UT		

Description

15.00 - 15.17m:

Stiff, locally firm, greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular subrounded fine to coarse of chalk, sandstone and igneous lithologies.

15.17 - 15.22m:

Orangish brown fine to medium SAND with occasional thin laminae of clay.

15.22 - 15.45m:

Stiff indistinctly fissured brown, locally greyish brown, CLAY with occasional dustings of light brown silt on fissure surfaces. Fissures extremely close to very close spaced randomly orientated.

Remarks:

Borehole No	BH406	
Sample No	51	
Sample Depth, mBGL	15.50	15.95
Sample Type	UT	

Description

15.50 - 15.85m:

Stiff, locally very stiff, indistinctly fissured brown silty CLAY with occasional dustings of light brown silt along fissure surfaces. Fissures are extremely closely to very closely spaced, randomly orientated.

15.85 - 15.95m: No recovery.

Remarks:

Borehole No	BH406		
Sample No	53		
Sample Depth, mBGL	16.00	-	16.45
Sample Type	UT		

Description

16.00 - 16.45m:

Stiff indistinctly thinly and thickly laminated, fissured, greyish brown CLAY with dustings of light brown silt on laminae surfaces. Fissures are extremely closely to closely spaced, randomly orientated, locally polished.

16.37m

Fissure surfaces are inclined at approximately 45 degree planar, polished.

Remarks:

Borehole No	BH406		
Sample No	55		
Sample Depth, mBGL	16.50	-	16.95
Sample Type	UT		

Description

16.50 - 16.82m:

Stiff locally indistinctly thinly and thickly laminated, indistinctly fissured, silty CLAY occasional dusting of light brown silt on fissure surfaces.

Fissures extremely closely to very closely spaced, randomly orientated, occasionally polished.

16.68 - 16.73m:

Laminae are at approximately 450 and undulating.

16.73 - 16.82m:

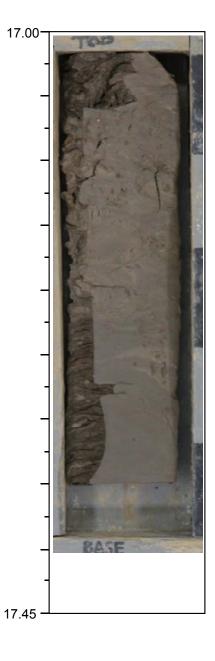
Laminae are undulating.

16.82 - 16.95m:

No recovery.

Remarks:

Notes: Bh No/Depth Project A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI Project No. **BH406** Carried out for **Balfour Beatty Limited**


Borehole No	BH406		
Sample No	57		
Sample Depth, mBGL	17.00	-	17.45
Sample Type	UT		

Description

17.00 - 17.45m:

Firm to stiff thinly and thickly laminated, locally indistinctly fissured, greyish brown silty CLAY with occasional dustings of light brown silt on laminae surfaces. Rare subrounded fine to medium gravel of chalk. Fissures are extremely to very closely spaced, randomly orientated, occasionally polished.

17.17m: Becoming stiff.

Remarks:

Borehole No	BH406		
Sample No	59		
Sample Depth, mBGL	17.50	-	17.95
Sample Type	UT		

Description

17.50 - 17.95m:

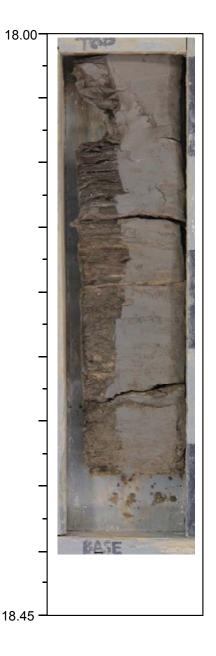
Stiff thinly and thickly, locally indistinctly, laminated, indistinctly fissured, greyish brown silty CLAY with occasional dustings of light brown silt on laminae surfaces. Fissures are extremely closely to very closely spaced, randomly orientated, occasionally polished.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH406

Borehole No	BH406		
Sample No	61		
Sample Depth, mBGL	18.00	-	18.45
Sample Type	UT		

Description

18.00 - 18.45m:


Stiff indistinctly thinly and thickly laminated, fissured, greyish brown CLAY. Fissures are extremely closely spaced, randomly orientated, locally polished.

18.16 - 18.23m:

Stiff thinly and thickly laminated greyish brown CLAY. With frequent dustings of light brown silt on laminae surfaces and extremely closely spaced thin laminae (<2mm) of orangish brown fine to medium sand. Rare subrounded to medium gravel of chalk.

18.23 - 18.45m:

Stiff indistinctly fissured greyish brown sandy CLAY. With occasional pockets (<5mm) of orangish brown fine to medium sand.

Remarks:

Borehole No	BH406		
Sample No	63		
Sample Depth, mBGL	18.50	-	18.95
Sample Type	UT		

Description

18.50 - 18.95m:

Stiff, locally indistinctly fissured, indistinctly thinly and thickly laminated greyish brown silty CLAY with occasional dustings of light brown silt on laminae surfaces and rare subrounded fine to medium gravel of chalk. Fissures are extremely closely to very closely spaced, randomly orientated, occasionally polished.

18.71 - 18.75m:

Very clayey fine to medium sand.

18.75 - 18.95m:

Very closely spaced thin laminae (<4mm) of orangish brown occasionally dark grey, fine to medium sand.

Remarks:

Borehole No	BH406		
Sample No	65		
Sample Depth, mBGL	19.00	-	19.45
Sample Type	UT	•	

Description

19.00 - 19.32m:

Stiff indistinctly thinly and thickly, locally cross, laminated greyish brown silty CLAY with occasional laminae (<3mm) of orangish brown fine sand.

19.45

19.00

19.32 - 19.45m:

Stiff thinly and thickly laminated greyish brown silty CLAY. With dustings of silt on laminae and extremely closely to very closely spaced thin laminae (<3mm) of orangish brown fine to medium sand. Rare subrounded fine to medium gravel of chalk.

Remarks:

Borehole No	BH406		
Sample No	67		
Sample Depth, mBGL	19.50	-	19.95
Sample Type	UT		

Description

19.50 - 19.95m

Stiff thinly and thickly laminated greyish brown silty CLAY with frequent dustings of silt on laminae and thin laminae (<2mm) of light brown silt.

Extremely closely to very closely spaced thin and thickly laminae (<8mm) of orangish brown fine to medium sand.

19.74 - 19.95m:

Rare subrounded fine gravel of chalk.

19.82m:

thick laminations (10mm) of orangish brown and black fine to medium sand.

Remarks:

Borehole No	BH406		
Sample No	69		
Sample Depth, mBGL	20.00	-	20.45
Sample Type	UT		

Description

20.00 - 20.45m:

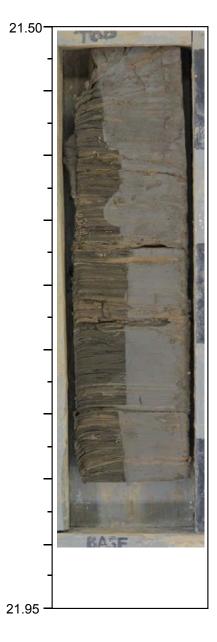
Stiff, locally firm, thinly and thickly laminated greyish brown silty CLAY with dustings of light grey silt on laminae surfaces. Frequent extremely closely and closely spaced laminae (<5mm) of fine yellowish brown sand.

Remarks:

Borehole No	BH406		
Sample No	74		
Sample Depth, mBGL	21.50	-	21.95
Sample Type	UT		

Description

21.50 - 21.95m:


Stiff thinly and thickly laminated greyish brown silty CLAY with frequent dustings of light brown and dark grey silt on laminae surfaces. Extremely closely to very closely spaced thin laminae (<6mm) of orangish brown fine to medium sand.

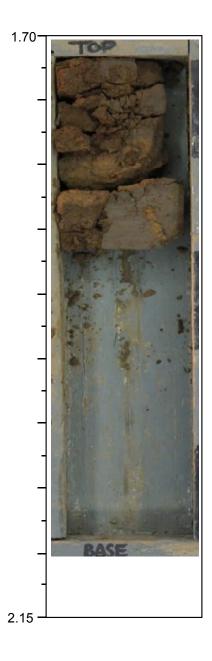
21.50 - 21.64m:

Firm to stiff.

21.75m:

1No. subrounded fine gravel of chalk.

Remarks:



Borehole No	BH407		
Sample No	5		
Sample Depth, mBGL	1.70	-	2.15
Sample Type	UT		

Description

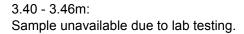
1.70 - 2.15m:

Stiff, locally firm, fissured orangish and yellowish brown sandy CLAY. Fissures are extremely closely spaced, randomly orientated, locally polished.
(MADE GROUND)

Remarks:

Sample disturbed during testing.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH407



Borehole No	BH407		
Sample No	9		_
Sample Depth, mBGL	3.10	-	3.55
Sample Type	UT		

Description

3.10 - 3.40m:

Firm thinly and thickly, locally indistinctly, laminated greyish brown, locally orangish brown, silty CLAY with occasional dustings of grey silt and fine sand on laminae surfaces.

3.46 - 3.55m: No recovery.

Remarks:

Borehole No	BH407		
Sample No	12		_
Sample Depth, mBGL	5.00	-	5.45
Sample Type	UT		

Description

5.00m:

Soft, locally very soft, indistinctly fissured greyish brown slightly sandy, silty CLAY. Fissures very closely spaced randomly orientated.

5.18m:

Soft, locally very soft thinly and thickly laminated greyish brown slightly sandy, clayey SILT. Dustings of light brown fine sand on laminae surfaces

Remarks:

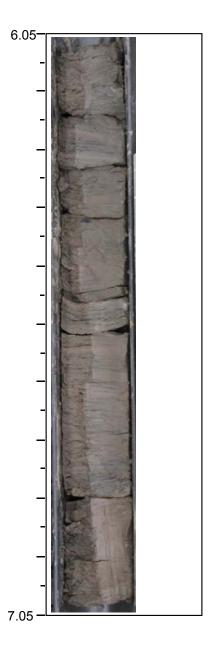
Borehole No	BH407		
Sample No	14		
Sample Depth, mBGL	5.60	-	6.05
Sample Type	UT		

Description

5.60 - 6.05m:

Firm, locally soft, dark greyish brown and brownish grey slightly sandy clayey slightly organic SILT.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH407



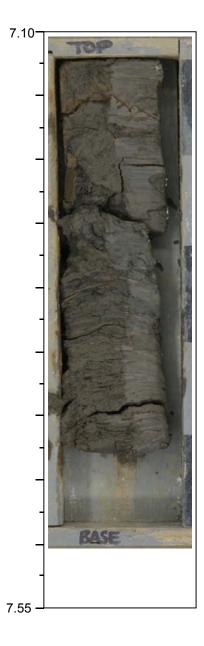
Borehole No	BH407		
Sample No	15		_
Sample Depth, mBGL	6.05	-	7.05
Sample Type	Р		

Description

6.05 - 7.05m:

Soft to firm thinly and thickly laminated, locally cross laminated, greyish brown and dark grey organic clayey SILT with dustings of light brown silt and fine sand on laminae surfaces.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH407



Borehole No	BH407		
Sample No	17		
Sample Depth, mBGL	7.10	-	7.55
Sample Type	UT	•	

Description

7.10 - 7.55m:

Firm, locally soft, thinly and thickly laminated brownish grey slightly sandy clayey slightly organic SILT. With dustings of light brown fine sand on laminae surfaces.

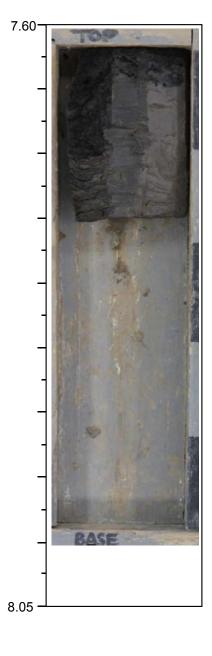
Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH407

Borehole No	BH407		
Sample No	18		
Sample Depth, mBGL	7.60	-	8.05
Sample Type	UT		

Description

7.60 - 7.78m:

Firm black and dark grey organic CLAY with wood fragments up to 10mm thick.


7.71 - 7.78m:

Firm thinly and thickly interlaminated sandy CLAY and sandy SILT.

7.78 - 7.97m:

Sample unavailable due to lab testing.

7.97 - 8.05m: No recovery.

Remarks:


Borehole No	BH407		
Sample No	21		
Sample Depth, mBGL	8.50	-	8.95
Sample Type	UT		

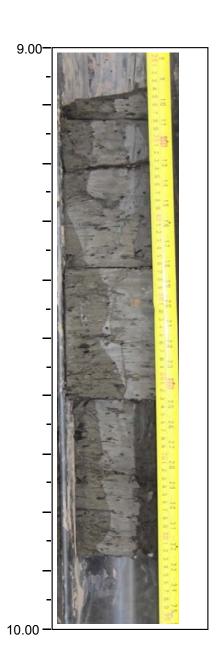
Description

8.50 - 8.80m:

Soft, locally firm thinly and thickly laminated dark brownish grey and dark grey silty slightly organic CLAY with dustings of light brown fine sand on laminae surfaces. Closely spaced lenses up to 10mm of light brown fine and medium sand.

8.80 - 8.95m: No recovery.

Remarks:


Borehole No	BH407		
Sample No	22		
Sample Depth, mBGL	9.00	-	10.00
Sample Type	Р		

Description

9.00 - 10.00m:

Firm dark greyish brown, locally mottled black, slightly sandy organic CLAY. With plant remains up to 25mm.

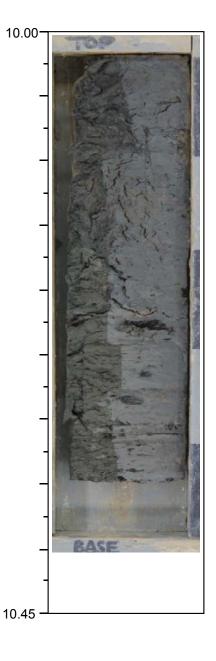
9.60 - 10.00m: NO RECOVERY.

Remarks:

Borehole No	BH407		
Sample No	23		
Sample Depth, mBGL	10.00	-	10.45
Sample Type	UT		

Description

10.00 - 10.25m:


Soft, locally very soft, locally indistinctly thinly and thickly laminated greyish brown sandy clayey SILT with occasional thin laminae (<3mm) of greyish brown fine to medium sand.

10.25 - 10.45m:

Firm indistinctly thinly and thickly laminated grey and greyish brown organic CLAY.

10.29m:

Pocket (25mm \times 15mm) of dark orangish brown fine to medium sand.

Remarks:

Borehole No	BH407		
Sample No	25		
Sample Depth, mBGL	10.50	-	10.95
Sample Type	UT		

Description

10.50 - 10.95m:

Firm to stiff dark greyish brown, locally dark grey, organic CLAY. With wood fragments up to 20mm.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH407

Borehole No	BH407		
Sample No	27		
Sample Depth, mBGL	11.00	-	11.45
Sample Type	UT		

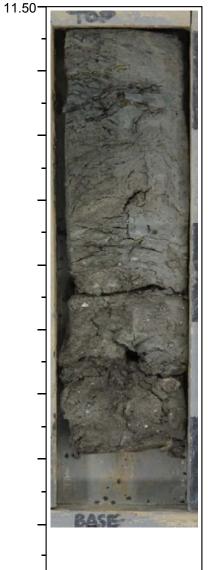
Description

11.00 - 11.35m:

Very thinly to thickly interbedded (<80mm) firm, locally stiff, dark brown oxidising to black pseudo fibrous and fibrous PEAT with local wood fragments up to 30mm thick and plant fragments up to 5mm and firm bluish grey mottled black silty sandy CLAY.

11.35 - 11.45m: No recovery.

Remarks:



Borehole No	BH407		
Sample No	29		
Sample Depth, mBGL	11.50	-	11.95
Sample Type	UT		

Description

11.50 - 11.76m:

Firm light brownish grey and greyish brown sandy locally organic, sandy CLAY. With occasional fragments of wood debris up to 8mm thick.

11.76 - 11.95m:

Firm light browngrey and greyish brown slightly gravelly sandy CLAY. Gravel is subangular to subrounded fine to coarse of sandstone quartzite, chalk and igneous material. With occasional thin laminae (<3mm) of fine to medium sand.

Remarks:

Notes:

Project A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI
Project No.
Carried out for Balfour Beatty Limited

Bh No/Depth
BH407

11.95


Borehole No	BH407		
Sample No	31		
Sample Depth, mBGL	12.00	-	12.45
Sample Type	UT		

Description

12.00 - 12.45m:

Firm greyish brown mottled dark yellowish brown and grey slightly sandy, locally sandy, gravelly CLAY. Gravel is subangular to subrounded fine to coarse sandstone, igneous lithologies and occasional chalk.

12.32m: Becoming stiff.

Remarks:

Sample disturbed during testing.

Borehole No	BH407		
Sample No	33		
Sample Depth, mBGL	12.50	-	12.95
Sample Type	UT		


Description

12.50 - 12.65m:

Firm greyish brown, locally mottled dark grey, slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartzite and igneous lithologies. Rare pockets of carbonaceous material.

12.65m - 12.81m: Sample unavailable due to lab testing.

12.81 - 12.95m: No recovery.

Remarks:

Borehole No	BH407		
Sample No	35		
Sample Depth, mBGL	13.00	-	13.45
Sample Type	UT		

Description

13.00 - 13.36m:

Firm, locally stiff, greyish brown, locally mottled grey, slightly gravelly slightly sandy CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartzite and igneous material, rare chalk.

13.12 - 13.23m: Gravelly.

13.36 - 13.45m: No recovery.

Remarks:

Sample disturbed during testing.

Borehole No	BH407		
Sample No	37		
Sample Depth, mBGL	13.50	-	13.95
Sample Type	UT		

Description

13.50 - 13.95m:

Stiff, locally very stiff, greyish brown, locally yellowish brown, slightly sandy slightly gravelly CLAY. Gravel subangular to subrounded fine to coarse sandstone, quartzite, chalk and igneous lithologies.

13.60 - 13.71m:

Sandy.

13.62m:

1N° subangular cobble of sandstone

Remarks:

Borehole No	BH407		
Sample No	39		
Sample Depth, mBGL	14.00	-	14.45
Sample Type	UT		

Description

14.00 - 14.35m:

Very stiff, locally stiff, greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartzite, igneous lithologies and occasional chalk.

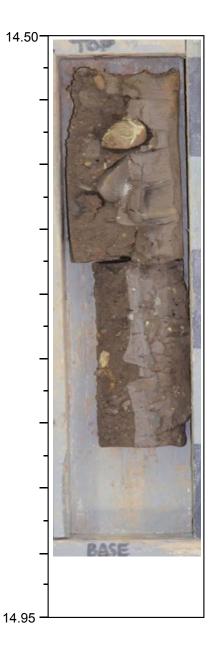
14.35 - 14.45m: No recovery.

Remarks:

Borehole No	BH407		
Sample No	41		
Sample Depth, mBGL	14.50	-	14.95
Sample Type	UT		

Description

14.50 - 14.95m:


Stiff, greyish brown, slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of igneous lithologies, sandstone and quartzite.

14.70m:

Becoming locally very stiff.

14.85m:

Becoming locally yellowish brown.

Remarks:

Borehole No	BH407		
Sample No	43		
Sample Depth, mBGL	15.00	-	15.45
Sample Type	UT		

Description

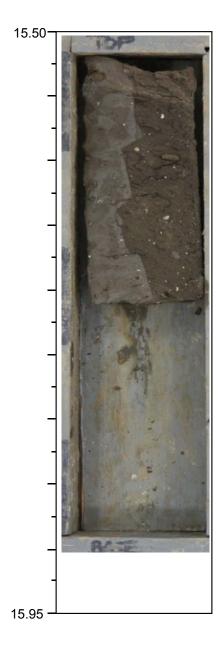
15.00 - 15.45m:

Stiff locally indistinctly laminated greyish brown slightly sandy slightly gravelly CLAY. Gravel subangular to subrounded fine to coarse sandstone chalk, quartzite and igneous material.

15.30 - 15.45m: Locally firm to stiff.

Remarks:

Borehole No	BH407		
Sample No	45		
Sample Depth, mBGL	15.50	-	15.95
Sample Type	UT		


Description

15.50 - 15.95m:

Stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel subangular to subrounded fine to coarse chalk, sandstone and igneous lithologies.

15.50 - 15.55m:

Locally indistinctly thinly and thickly laminated.

Remarks:

Sample disturbed during testing.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH407

Borehole No	BH407		
Sample No	47		
Sample Depth, mBGL	16.00	-	16.45
Sample Type	UT		

Description

16.00 - 16.35m:

Stiff to very stiff indistinctly thinly and thickly laminated, fissured greyish brown and brown CLAY with occasional dustings of light brown silt on laminae surfaces. Fissures are extremely closely spaced, randomly orientated, occasionally polished.

16.35 - 16.45m: No recovery.

Remarks:

Borehole No	BH407		
Sample No	49		
Sample Depth, mBGL	16.50	-	16.95
Sample Type	UT		

Description

16.50 - 16.58m:

Stiff indistinctly laminated greyish brown and brown CLAY with occasional dustings of light brown silt on laminae.

16.58 - 16.95m:

Indistinctly thinly and thickly laminated greyish brown and yellowish brown slightly clayey fine to medium SAND with local laminae of firm greyish brown clay.

Remarks:

Sample disturbed during testing.

Borehole No	BH407		
Sample No	51		_
Sample Depth, mBGL	17.00	-	17.45
Sample Type	UT		

Description

17.00 - 17.45m:

Stiff, locally very stiff, locally indistinctly thinly and thickly laminated, fissured greyish brown CLAY with occasional dustings of light brown silt along laminae and fissure surfaces. Fissures are extremely closely spaced, randomly orientated, occasionally polished.

17.15m:

Rare subrounded fine gravel of chalk along laminae surface.

Remarks:

Borehole No	BH407		
Sample No	53		
Sample Depth, mBGL	17.50	-	17.95
Sample Type	UT		

Description

17.50 - 17.85m:

Firm to stiff, indistinctly thinly and thickly laminated, fissured, greyish brown CLAY with occasional dustings of grey silt along laminae and fissure surfaces. Fissures are extremely closely to very closely spaced, randomly orientated, occasionally polished.

17.65m: Becoming stiff.

17.85 - 17.95m: No recovery.

Remarks:

Borehole No	BH407		
Sample No	55		
Sample Depth, mBGL	18.00	-	18.45
Sample Type	UT		

Description

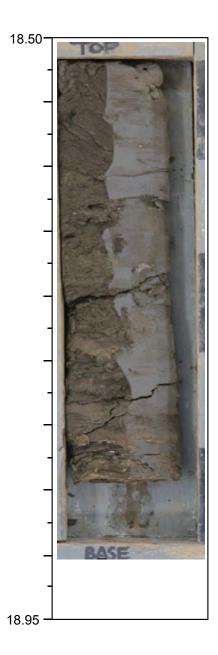
18.00 - 18.19m:

Stiff indistinctly thinly and thickly laminated, fissured, greyish brown CLAY with rare dustings of light brown silt along fissure and laminae surfaces. Fissures are extremely closely to very closely spaced and randomly orientated.

18.19 - 18.45m:

Stiff thinly and thickly laminated brownish grey CLAY with occasional dusting of light brown silt on laminae surfaces.

With extremely closely spaced thin laminae (<2mm) of orangish brown fine sand.



Borehole No	BH407		
Sample No	57		
Sample Depth, mBGL	18.50	-	18.95
Sample Type	UT		

Description

18.50 - 18.95m:

Stiff indistinctly thinly and thickly laminated, locally fissured, greyish brown and brownish grey CLAY with dustings of light brown silt and fine sand on laminae surfaces and closely spaced thin laminae (<2mm) of light brown fine sand. Rare subangular fine to medium gravel of chalk and flint. Fissures are very closely spaced, randomly orientated, locally polished.

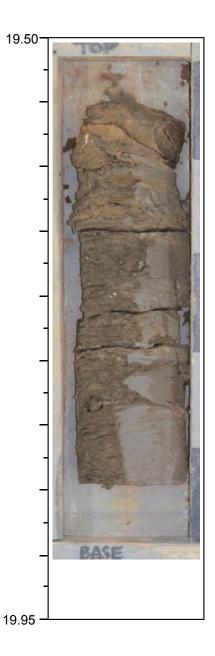
Remarks:

Borehole No	BH407		
Sample No	60		
Sample Depth, mBGL	19.50	-	19.95
Sample Type	UT		

Description

19.50 - 19.95m:

Stiff thinly and thickly locally indistinctly, laminated brown and greyish brown CLAY. With extremely closely spaced thin laminae (<5mm) of orangish brown and black fine to medium sand. 19.54m:


1No subangular coarse gravel of flint.

19.64 - 19.95m:

With occasional dustings and thin laminae (<2mm) of light brown silt along laminae surfaces.

19.68 - 19.72m:

Rare subangular to subrounded fine to medium gravel of chalk and flint.

Remarks:

Sample disturbed during testing.

Borehole No	BH407		
Sample No	62		
Sample Depth, mBGL	20.00	-	20.45
Sample Type	UT		

Description

20.00 - 20.45m:

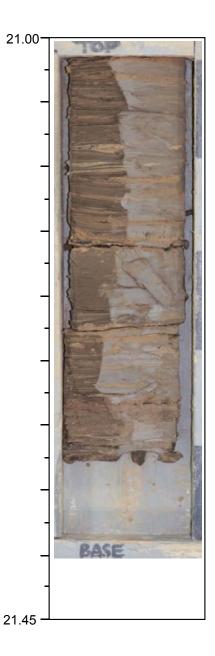
Stiff, locally firm, thinly and thickly, locally indistinctly, laminated greyish brown CLAY with dustings of light brown silt on laminae surfaces and very closely spaced thin laminae (<5mm) of orangish brown fine sand.

Remarks:

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH407

Borehole No	BH407	
Sample No	66	
Sample Depth, mBGL	21.00	21.45
Sample Type	UT	

Description


21.00 - 21.45m:

Stiff thinly and thickly laminated brown and greyish brown CLAY with frequent dustings and thin laminae (<6mm) of light brown silt along laminae.

21.11 - 21.22m:

Extremely closely spaced thick and thin laminae (<7mm) of orangish brown fine to medium sand.

21.22 - 21.28m: Indistinctly laminated.

Remarks:

Sample disturbed during testing.

Borehole No	BH407		
Sample No	70		
Sample Depth, mBGL	22.00	-	22.45
Sample Type	UT		

Description

22.00 - 22.45m:

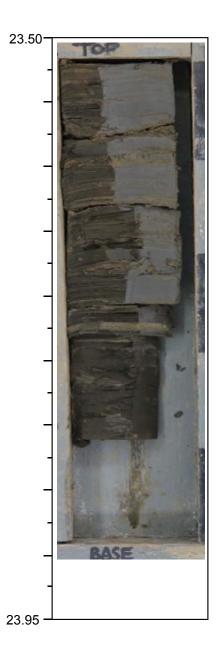
Stiff thinly and thickly, locally indistinctly, laminated greyish brown CLAY with occasional dustings of light brown silt on laminae surfaces. Extremely closely to very closely spaced thin laminae (<5mm) of orangish brown fine to medium sand.

Detail:

22.13m:

1No. subangular coarse gravel of flint.

Remarks:



Borehole No	BH407		
Sample No	75		
Sample Depth, mBGL	23.50	-	23.95
Sample Type	UT		

Description

23.50 - 23.95m:

Firm to stiff thinly and thickly laminated, locally cross laminated, greyish brown CLAY with dustings of light greyish brown silt and fine sand on laminae surfaces and closely spaced thin and thick laminae (<10mm) of dark brown and light brown silt and fine sand

Remarks:

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH407

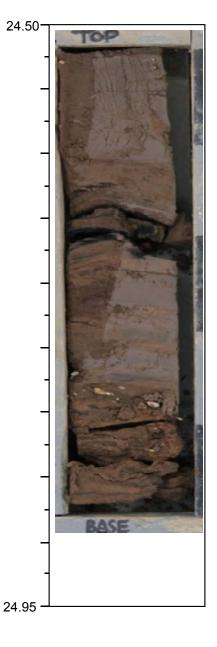
Borehole No	BH407		
Sample No	79		
Sample Depth, mBGL	24.50	-	24.95
Sample Type	UT		

Description

24.50 - 24.62m:

Firm, locally stiff, indistinctly thinly and thickly laminated, locally indistinctly fissured, orangish brown slightly sandy slightly gravelly silty CLAY. Gravel is subangular to subrounded fine, locally medium, of chalk, locally flint. Fissures are very closely spaced and randomly orientated.

24.62 - 24.72m:


Thinly and thickly laminated orangish brown, locally dark grey and black, slightly clayey fine to medium SAND with thin laminae (<4mm) of dark grey and black medium sand.

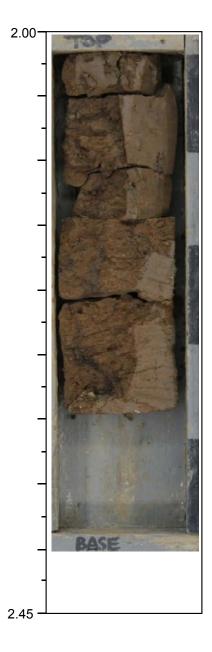
24.72 - 24.86m:

Firm, locally stiff, indistinctly thinly and thickly laminated, locally indistinctly fissured, orangish brown slightly sandy slightly gravelly silty CLAY. Gravel is subangular to subrounded fine, locally medium, of chalk, locally flint. Fissures are very closely spaced and randomly orientated.

24.86 - 24.95m:

Indistinctly thinly and thickly laminated orangish brown, locally dark grey and black, slightly gravelly slightly clayey fine to medium SAND. Gravel is subangular to subrounded fine to medium of chalk and flint.

Remarks:


Borehole No	BH408		
Sample No	3		
Sample Depth, mBGL	2.00	-	2.45
Sample Type	UT		

Description

2.00 - 2.45m:

Stiff indistinctly fissured, locally indistinctly laminated, orangish brown slightly gravelly slightly sandy CLAY. Gravel is subangular to subrounded fine to coarse of chalk, brick and concrete. Fissures are extremely closely spaced, randomly orientated, locally polished.

(MADE GROUND)

Remarks:

Sample disturbed during testing.

Borehole No	BH408		
Sample No	5		
Sample Depth, mBGL	2.70	-	3.15
Sample Type	UT		

Description

2.70 - 3.15m:

Firm, locally stiff, indistinct thinly and thickly laminated orangish brown slightly sandy silty CLAY with occasional relict root tracks infilled grey.

Rare indistinct randomly oriented fissures.

3.05 - 3.15m: More distinctly laminated.

Remarks:

Borehole No	BH408		
Sample No	7		
Sample Depth, mBGL	3.35	-	3.80
Sample Type	UT		

Description

3.35 - 3.42m:

Firm indistinctly thinly and thickly laminated orangish brown slightly sandy silty CLAY.

3.42 - 3.55m:

Greyish brown and brown sandy very clayey GRAVEL. Gravel is subangular to subrounded fine to coarse of limestone, quartzite and flint.

3.55 - 3.80m:

Firm indistinctly thinly and thickly laminated dark greyish brown and dark grey slightly sandy silty organic CLAY.

Remarks:

Borehole No	BH408		
Sample No	9		
Sample Depth, mBGL	4.00	-	4.45
Sample Type	UT		

Description

4.00 - 4.45m:

Firm, locally soft dark, greyish brown and dark grey thinly and thickly laminated slightly sandy silty CLAY.

4.24m:

Discoloured orangish brown adjacent to lamination.

Remarks:

Borehole No	BH408		
Sample No	11		
Sample Depth, mBGL	4.90	-	5.90
Sample Type	Р		

Description

4.90 - 5.05m:

Soft, locally firm. Indistinctly thinly laminated, and fissured dark brownish grey oxidising to brown silty CLAY. Fissures are extremely closely spaced and randomly orientated.

5.05 - 5.74m:

Sample unavailable due to lab testing.

5.74 - 5.78m:

Soft indistinctly laminated greyish brown CLAY.

5.78 - 5.90m:

Soft, locally firm. Indistinctly thinly laminated, and fissured dark brownish grey oxidising to brown silty CLAY. Fissures are extremely closely spaced and randomly orientated.

Remarks:

5.05 - 5.75m not available due to testing procedures.

Borehole No	BH408		
Sample No	13		_
Sample Depth, mBGL	6.00	-	6.45
Sample Type	UT		

Description

6.00m:

Soft, locally firm, thinly and thickly laminated greyish brown slightly sandy, clayey SILT.

Detail. 6.27 - 6.30m Undulating lenses up to 5mm light brown fine sand.

Detail. 6.40m Horizontal lenses up to 5mm of light brown fine sand.

Remarks:

Notes:

Project A63 CASTLE STREET

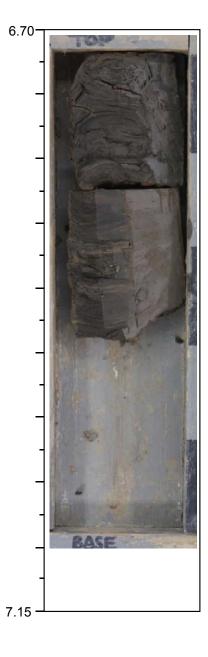
Project No.
Carried out for Balfour Beatty Limited

Bh No/Depth

BH408

Borehole No	BH408		
Sample No	15		
Sample Depth, mBGL	6.70	-	7.15
Sample Type	UT		

Description


6.70 - 7.06m:

Firm, locally soft, thinly and thickly laminated slightly sandy silty CLAY with occasional dustings of orangish brown fine sand along laminae surfaces.

6.85 - 7.01m:

Firm, with extremely closely to very closely spaced thin laminae (<4mm) of orangish brown fine sand.

7.06 - 7.15m: No recovery.

Remarks:

Borehole No	BH408		
Sample No	17		
Sample Depth, mBGL	7.40	-	7.85
Sample Type	UT		

Description

7.40 - 7.60m:

Soft dark brownish grey slightly sandy silty CLAY.

7.60 - 7.85m:

Firm, locally soft, thinly and thickly laminated dark grey slightly sandy silty CLAY. With dustings of light brown fine sand on laminae surfaces.

7.60 - 7.65m:

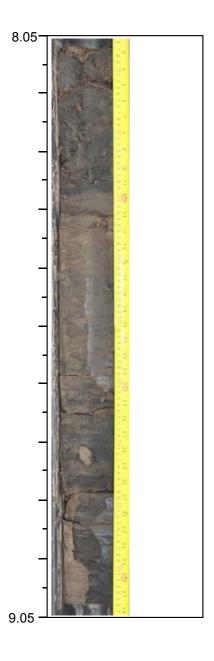
Light brown (wet)

Remarks:

Borehole No	BH408		
Sample No	19		
Sample Depth, mBGL	8.05	-	9.05
Sample Type	Р		

Description

8.05 - 8.27m:


Firm indistinctly thinly and thickly laminated dark grey, locally greyish brown, slightly sandy silty CLAY.

8.27 - 8.78m:

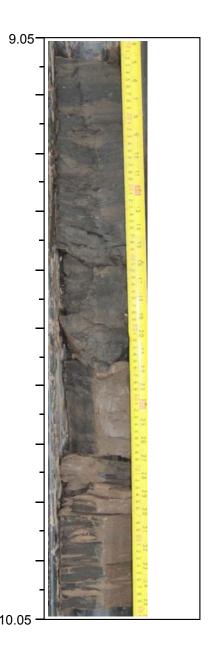
Thinly and thickly interlaminated dark grey and greyish brown silty fine to medium SAND and firm silty CLAY.

8.78 - 9.05m:

Firm thinly and thickly laminated dark grey and greyish brown sandy silty CLAY with frequent thin and thick laminae of silty fine to medium sand.

Remarks:

Borehole No	BH408		
Sample No	20		
Sample Depth, mBGL	9.05	-	10.05
Sample Type	Р		


Description

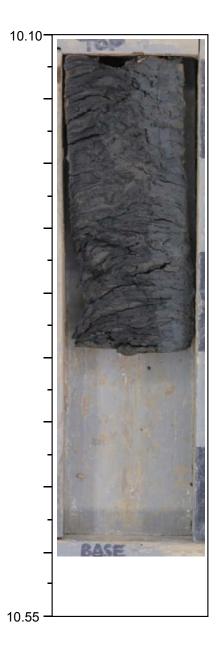
9.05 - 9.50m:

Firm indistinctly thinly and thickly laminated greyish brown and brownish grey sandy silty CLAY with occasionally thick laminae of silt and fine to medium sand.

Thinly and thickly interlaminated greyish brown and grey firm silty CLAY and fine to medium SAND, locally cross interlaminated.

Remarks:

Borehole No	BH408		
Sample No	21		
Sample Depth, mBGL	10.10	-	10.55
Sample Type	UT		


Description

10.10 - 10.40m:

Firm indistinctly thinly and thickly laminated dark greyish brown and brownish grey sandy silty CLAY with occasional dusting of silt and fine sand along laminae surfaces.

Frequent pockets (up to 10mm by 15mm) of orangish brown fine to medium sand.

10.40 - 10.55m: No recovery.

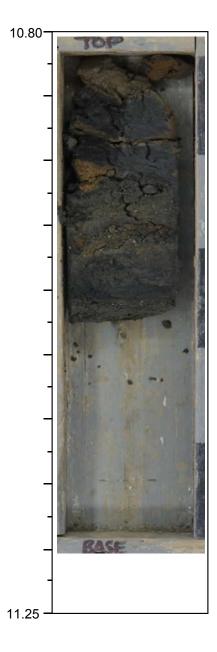
Remarks:

Borehole No	BH408		
Sample No	23		_
Sample Depth, mBGL	10.80	-	11.25
Sample Type	UT		

Description

10.80 - 10.90m:

Soft thinly laminated dark grey slightly sandy clayey organic SILT.


10.90m:

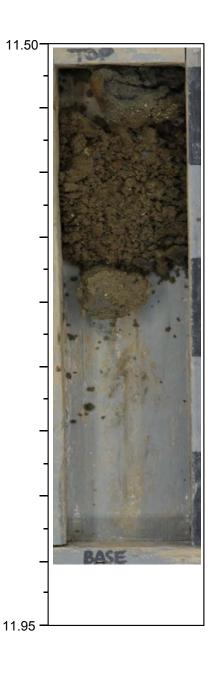
Rare subrounded to round fine to medium gravel.

10.90 - 11.10m:

Dark grey mottled orangish brown and greyish brown slightly clayey slightly organic fine to coarse SAND. (ORGANIC ODOUR).

11.10 - 11.25m: No recovery.

Remarks:


Borehole No	BH408		
Sample No	25		
Sample Depth, mBGL	11.50	-	11.95
Sample Type	UT		

Description

11.50 - 11.75m: No recovery.

11.75 - 11.95m:

Greyish reddish brown fine to medium, occasionally coarse, SAND with rare subangular fine to medium gravel of quartzite and frequent shell fragments.

Remarks:

Sample is loose sand, disturbed during testing.

Borehole No	BH408		
Sample No	30		
Sample Depth, mBGL	12.60	-	13.05
Sample Type	UT		

Description

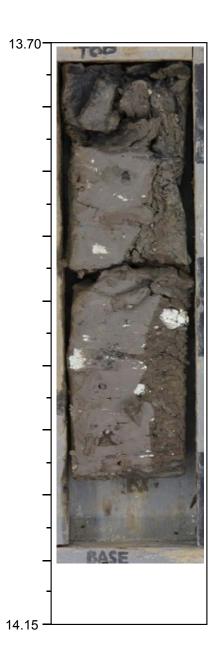
12.60 - 12.75m:

Firm dark brownish black oxidising to dark brown pseudofibrous PEAT.

12.75 - 13.05m: No recovery.

Remarks:

Borehole No	BH408		
Sample No	34		
Sample Depth, mBGL	13.70	-	14.15
Sample Type	UT		


Description

13.70 - 13.78m:

Firm dark brown sandy CLAY and dark grey organic CLAY. (SAMPLE DISTURBED).

13.78 - 14.15m:

Stiff, locally firm, dark greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to rounded fine to coarse of chalk and igneous lithologies.

Remarks:

Borehole No	BH408		
Sample No	35		
Sample Depth, mBGL	14.15	-	14.60
Sample Type	UT		

Description

14.15 - 14.60m:

Firm greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk, sandstone and igneous lithologies.

14.20 - 14.30m: Grey.

Remarks:

Borehole No	BH408		
Sample No	37		
Sample Depth, mBGL	14.80	-	15.25
Sample Type	UT		

Description

14.80 - 15.25m:

Stiff, locally firm, indistinctly fissured dark greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of chalk and igneous lithologies.

14.80 - 15.01m:

Possible sample disturbance. Sample soft and wet.

Remarks:

Sample disturbed during testing.

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN STREET GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH408

Borehole No	BH408		
Sample No	39		
Sample Depth, mBGL	15.45	-	15.90
Sample Type	UT		

Description

15.45 - 15.90M:

Very stiff, locally stiff, greyish brown slightly sandy slightly gravelly CLAY. Gravel subangular to subrounded fine to coarse chalk, flint and igneous lithologies.

15.45 - 15.53m:

Locally firm to stiff (possible sample disturbance)

15.70 - 15.90m:

Grey infill to occasional indistinct irregular fissure.

Remarks:

Borehole No	BH408		
Sample No	41		
Sample Depth, mBGL	16.10	-	16.55
Sample Type	UT		

Description

16.10 - 16.21m:


Stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel subangular to subrounded fine to medium chalk, sandstone, occasional igneous lithologies.

16.21 - 16.55m:

orientated, occasionally polished.

Stiff, locally very stiff, indistinctly fissured silty CLAY with frequent dustings of light brown silt along fissure surfaces.

Fissures are extremely closely to very closely spaced randomly

Remarks:

Borehole No	BH408		
Sample No	43		
Sample Depth, mBGL	16.75	-	17.20
Sample Type	UT		

Description

16.75 - 17.20m:

Stiff, locally very stiff, occasionally indistinctly thinly and thickly laminated, fissured, brown CLAY with frequent dustings of light brown silt on fissure and laminae surfaces. Fissures are extremely closely to very closely spaced, randomly orientated, occasionally polished.

Remarks:

iotes.

A63 CASTLE STREET IMPROVEMENTS - MAIN STREET GI

Bh No/Depth

Project No. Carried out for

Project

A5085-15 Balfour Beatty Limited BH408

Borehole No	BH408		
Sample No	45		
Sample Depth, mBGL	17.40	-	17.85
Sample Type	UT		

Description

17.40 - 17.85m:

Stiff fissured greyish brown silty CLAY with frequent dustings of light brown silt along fissure surface.

Fissures extremely closely spaced randomly orientated occasionaly polished.

17.40 - 17.57m:

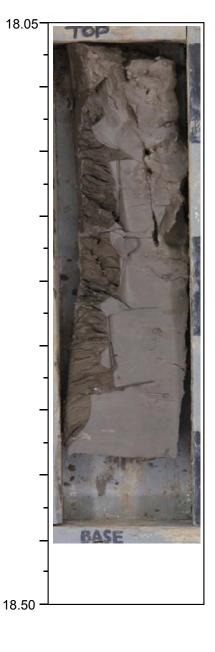
Sample disturbed. Very soft and wet.

Remarks:

Borehole No	BH408		
Sample No	47		
Sample Depth, mBGL	18.05	-	18.50
Sample Type	UT		

Description

18.05 - 18.35m:


Stiff, locally indistinctly fissured, greyish brown silty CLAY. Fissures are extremely closely to very closely spaced and randomly orientated.

18.35 - 18.50m:

Stiff thinly and thickly laminated greyish brown silty CLAY with frequent dustings of orangish brown sand on laminae surfaces.

18.43m:

1No. subrounded medium gravel of chalk.

Remarks:

Borehole No	BH408		
Sample No	49		
Sample Depth, mBGL	18.70	-	19.15
Sample Type	UT		

Description

18.70 - 18.75m:

Stiff thinly and thickly laminated greyish brown silty CLAY with frequent laminae (<2mm) of orangish brown fine sand. 18.75 - 19.15m:

Stiff, fissured, locally indistinctly thinly laminated, greyish brown silty CLAY with occasional dustings and irregular partings up to 2mm of orangish brown fine sand. Fissures are extremely to very closely spaced and randomly orientated.

19.01 - 19.09m: Sample wet, locally soft to firm.

Remarks:

Borehole No	BH408		
Sample No	51		
Sample Depth, mBGL	19.35	-	19.80
Sample Type	UT		

Description

19.35 - 19.58m:

Stiff, locally firm, locally fissured, thinly and thickly laminated greyish brown silty CLAY. Fissures are extremely closely to very closely spaced, randomly orientated. With rare rounded fine gravel of chalk.

19.52m:

Thin laminae (3mm) of orangish brown fine to medium sand.

19.58 - 19.80m: No recovery.

Remarks:

Borehole No	BH408		
Sample No	57		
Sample Depth, mBGL	21.35	-	21.80
Sample Type	UT		

Description

21.35 - 21.57m:

Stiff, locally firm, thinly and thickly laminated greyish brown CLAY. With extremely closely spaced thin laminae (<3mm) orangish brown, occasionally black, fine to medium sand. 21.35 - 21.40m:

Indistinctly laminated (with no dusting of thin laminae with silt or sand)

21.39m:

1N° subrounded coarse gravel of igneous material.

21.57 - 21.80m:

Sample unavailable due to lab testing.

Remarks:

Notes:

Project
Project No.
Carried out for
A5085-15

Relfour Reatty Limited

A63 CASTLE STREET IMPROVEMENTS - MAIN STREET GI
Bh No/Depth
BH408

Borehole No	BH408		
Sample No	60		
Sample Depth, mBGL	22.45	-	22.90
Sample Type	UT		

Description

22.45 - 22.90m:

Stiff, locally firm, thinly and thickly laminated greyish brown CLAY. Occasional dustings of light brown silt along laminae surfaces. With extremely closely to very closely spaced thin and thick laminae (<10mm) of orangish brown fine sand.

22.59m:

Steeply inclined polished fissure.

22.65m:

Rare subrounded fine gravel of chalk.

Remarks:

Borehole No	BH408		
Sample No	64		
Sample Depth, mBGL	23.55	-	24.00
Sample Type	UT		

Description

23.55 - 23.61m:

Probable sample disturbance. Recovered as sandy gravelly CLAY.

23.61 - 23.95m:

Firm to stiff thinly and thickly laminated dark orangish brown sandy gravelly CLAY. Gravel is subangular fine to coarse of chalk with occasional pockets of dark grey and black sand.

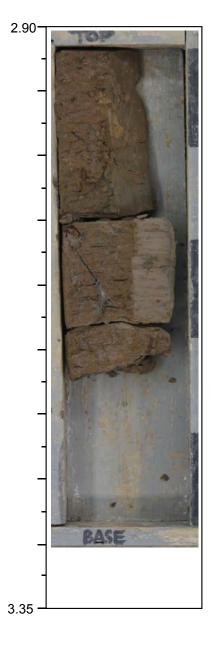
23.55

23.95 - 24.00m:

Structureless CHALK composed of sandy silty subangular fine to coarse GRAVEL. Gravel is very weak to weak, low density.

Remarks:

Borehole No	BH417		
Sample No	8		
Sample Depth, mBGL	2.90	-	3.35
Sample Type	UT		


Description

2.90 - 3.22m:

Firm indistinctly fissured, indistinctly thinly and thickly laminated, reddish brown, mottled grey, slightly sandy CLAY with very closely spaced thin laminae (<3mm) of light brown fine sand. Relict root tracks up to 3mm infilled light grey and black. Rare subangular medium gravel of sandstone. Fissures are very closely spaced and randomly orientated.

3.22 - 3.28m: Sample unavailable due to lab testing.

3.28 - 3.35m: No recovery.

Remarks:



Borehole No	BH417		
Sample No	12		
Sample Depth, mBGL	4.20	-	4.65
Sample Type	UT		

Description

4.20 - 4.65m:

Firm thinly and thickly, locally indistinctly, laminated dark orangish brown slightly sandy CLAY with occasional dustings of light orangish brown fine sand on laminae surfaces.

Remarks:

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN STREET GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH417

Borehole No	BH417					
Sample No	14					
Sample Depth, mBGL	4.85	-	5.25			
Sample Type	UT					

Description

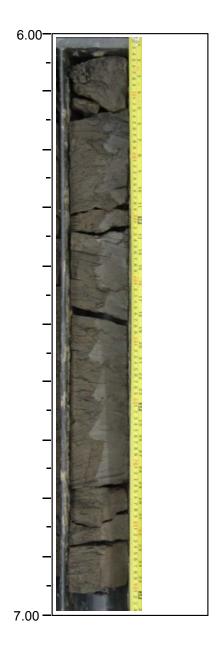
4.85 - 5.25m:

Firm, locally soft, thinly and thickly laminated dark orangish brown slightly sandy CLAY with occasional dustings of dark grey silt along laminae surfaces

Remarks:

Notes:	Project	A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH417

Borehole No	BH417		
Sample No	17		
Sample Depth, mBGL	6.00	-	7.00
Sample Type	Р		


Description

6.00 - 7.00m:

Soft thinly and thickly laminated, locally indistinctly greyish brown and dark grey slightly sandy silty organic CLAY. With dustings and closely spaced laminae (<2mm) of light brown silt.

Occasional vertical rootlets tracks infilled with organic material.

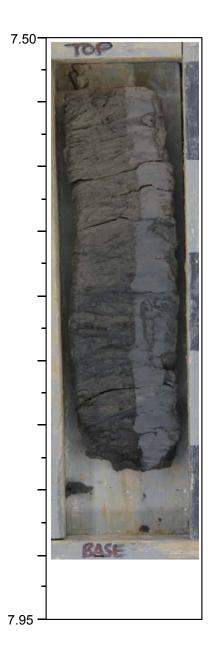
Subvertical fissure infilled with organic material with strong odour.

Remarks:

Notes:

Project A63 CASTLE STREET IMPROVEMENTS - MAIN STREET GI
Project No.
Carried out for Balfour Beatty Limited

Bh No/Depth
BH417



Borehole No	BH417		
Sample No	19		
Sample Depth, mBGL	7.50	-	7.95
Sample Type	UT		

Description

7.50m:

Soft locally firm indistinctly thinly and thickly laminated dark brownish grey, slightly sandy, clayey, organic SILT

Remarks:

Recovery = 0.44m

Notes:	Project	A63 CASTLE STREET	Bh No/Depth
	Project No. Carried out for	A5085-15 Balfour Beatty Limited	BH417

Borehole No	BH417		
Sample No	22		
Sample Depth, mBGL	8.50	-	8.95
Sample Type	UT		

Description


8.50 - 8.82m:

Firm indistinctly thinly and thickly laminated dark brown grey, locally brown slightly sandy silty organic CLAY, locally grading to slightly sandy clayey SILT.

8.50 - 8.63m:

Probable sample disturbance.

8.82 - 8.95m: No recovery.

Remarks:

Notes:

Project A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI
Project No. A5085-15
Carried out for Balfour Beatty Limited

Bh No/Depth
BH417

gged GS necked TC oproved	16/12/2015 Compet Carried Balfour 16/12/2015	titor Dart 130 out to facilitate the ins Beatty.	tallation of stand	pipe piezo	ometer, under instruction from		Coordinates (m) National Grid		E 509458.26 N 428428.37
amples and	Tests				Strata Description				_
Depth	Type & No	Records	Date Casing	Time Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
0.00 - 1.00	L ES 1				TOPSOIL Dark brown slightly sandy clayey GRAVEL. Gravel is subrounded to rounded fine to coarse of		(0.30)		°.4 °
0.80 - 1.40	ES 2				predominantly quartzite. (MADE GROUND) Light brown mottled yellowish brown and greyish	-	(0.50)		
1.00 - 1.80	L				brown sandy clayey GRAVEL. Gravel is subangular to rounded fine to coarse of brick, mortar, limestone and quartzite. Rare pockets of black carbonaceous material. (MADE GROUND)	-	(1.00)		
1.60 - 1.80	ES 3				END OF EXPLORATORY HOLE		1.80 +1.42		
oundwater Entries No. Depth Strike (r	n) Remarks of symbols and abbrevi Hole Records. All depth	ations Proje	Depth Seal		Depth Related Remarks Depths (m) Remarks CASTLE STREET IMPROVEMENTS - MAIN SITE GI		Hard Boring Depths (m)	Duration (mir	s) Tools used
duced levels in metre ackets in depth colun scale 1:25	es. Stratum thickness giv	ven in Proje AGS	ct No. ed out for		85-15 our Beatty Limited		1	WS401 Sheet 1 of 1	

Drilled Spektral Logged GS Checked TC Approved	16/12/2015	Equipment, Methods and Competitor Dart 130 Carried out to facilitate the Balfour Beatty.	nd Remarks ne installation of standpipe	piezometer, unde	Depth from (m)		ameter Casing Depth (mm) (m)	Ground Level Coordinates (m) National Grid	1	3.32 mOD E 509513.92 N 428447.52
Samples and					Description					
Depth	Type & No	Records		ime /ater	Main		Detail	Depth, Level (Thickness)	Legend	Backfill
	ES1			Greyish slightly of subroun sandston (MADE of brown, rootlet tr Occasio	GROUND) brown mottled reddish brown clayey GRAVEL. Gravel is and ded fine to coarse of brick, qu	gular to uartzite and ed orangish h occasional odlet tracks.	-	(0.50) +3.27 (0.50) +3.27		
 1.00 - 2.00 	L						= = = = = = = = = = = = = = = = = = = =			
- 1.20 - 1.60 	ES 2						1.80-2.00 locally - soft -	(1.45)		
2.00 - 3.00	L			slightly s	istinctly thinly laminated brown sandy silty CLAY with dustings surfaces.	nish grey s of silt on		2.00 +1.32	X x X x X x X x	
- 2.50 - 2.60 	ES 3						-	(1.00)	X	
3.00 - 4.00	i.	No Recovery			COVERY. sampler smeared with grey s	ilty clay.		3.00 +0.32		
					END OF EXPLORATORY H	IOLE		4.00 -0.68	$\overline{}$	_//
Grandustar Estate					lated Department		-			
Groundwater Entries No. Depth Strike		abbreviations I	Depth Sealed (m) Depths (n		I SITE GI		Hard Boring Depths (m)	Duration (mi	ns) Tools used
Notes: For explanation see Key to Exploration reduced levels in metr	y Hole Records. A es. Stratum thick	All depths and ness given in	Project		CASTLE STREET IMPROVEMENTS - MAIN SITE GI			Borehole	WS402)
brackets in depth colu Scale 1:25	(c) ESG	ACCIS	Project No. Carried out for	A5085-15 Balfour Beatty	Limited				Sheet 1 of 1	4

Drilled Logged Checked	Spektral GS TC	16/12/2015	Equipment, Methods and Rema Competitor Dart 130 Carried out to facilitate the install Balfour Beatty.		(m) (m)	Diameter Casing Depth (mm) (m)	Ground Level Coordinates (m) National Grid		4.12 mOD E 509596.78 N 428440.38
Approve		16/12/2015			Ctuata Dagawintian				
	oles and			Date Time	Strata Description		Depth, Level	Legend	Backfill
	Depth	Type & No		Casing Water	Main	Detail	(Thickness)	-	
- - - - - 1. - -	70 - 1.00 00 - 2.00 25 - 1.60	L L ES 2	0.00-0.70 Hand excavated inspection pit.		Firm indistinctly thinly laminated brown mottled orangish brown and grey sandy CLAY with dustings of silt and fine sand on laminae surfaces Occasional thin laminae of orangish brown fine sand.		(0.80)		• • • • • • • • • • • • • • • • • • • •
	00 - 3.00	L			Soft, locally firm, indistinctly thinly laminated dark grey, mottled brown, silty CLAY with rare black organic material and rootlets <2mm. Soft indistinctly thinly laminated brown sandy CLAY.	2.50-2.60 firm —	2.05 +2.07 (0.55) 2.60 +1.52		
- - - - - - - -	00 - 4.00 50 - 4.00	L ES 3			Soft to firm indistinctly thinly laminated dark grey and greyish brown silty CLAY with frequent thin laminae (<3mm) of fine to medium greyish brown sand.		3.00 +1.12	×x ×x ×x ×x ×x	9H9
						3.80-4.00 very - sandy - 4.00-4.50 soft to- very soft - - - - 4.50-5.00 firm -	(2.00)		
- - - - - - - -					END OF EXPLORATORY HOLE	-	5.00 -0.88	X——X X———X	
	ater Entries				Depth Related Remarks		Hard Boring		
No. D	or explanation to Exploratory	of symbols and Hole Records. A so. Stratum thick	All depths and ness given in		Depths (m) Remarks CASTLE STREET IMPROVEMENTS - MAIN SITE GI		Depths (m) Borehole	Duration (min	ns) Tools used
Scale	1:25	(c) ESG 13/0	6 www.esg.co.uk AGS 04/2016 14:59:24 Carried	out for Balf	our Beatty Limited			Sheet 1 of 1	

Drilled Spektral Logged GS Checked TC Approved	16/12/2015 Cor Car	uipment, Methods and Re mpetitor Dart 130 rried out to facilitate the ins four Beatty.		(m) (m) (ometer, under instruction from	ameter Casing Depth (mm) (m)	Ground Level Coordinates (m) National Grid		4.42 mOD E 510042.65 N 428426.61
Samples and	Tests		Date Time	Strata Description				
Depth	Type & No	Records	Casing Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
0.00 - 1.00 - 0.10 - 1.00	L ES 1			Light brownish grey sandy GRAVEL with low cobble content. Gravel is subangular to subrounded fine to coarse of limestone, tarmac, concrete and fused slag. Cobbles are of concrete and fused slag. (MADE GROUND)		(1.10)		
1.00 - 2.00 1.10 - 1.20	L ES 2			Firm brownish grey sandy gravelly CLAY. Gravel is subangular to subrounded fine to coarse of brick, chalk and some shell fragments. (MADE GROUND)		1.10 +3.32		
- - - - -					-	(0.80)		
- 2.00 - 3.00	L			Firm indistinctly thinly laminated orangish brown, mottled grey, slightly sandy silty CLAY with rootlet tracks (<2mm) frequently infilled grey.		1.90 +2.52		
- 2.50 - 3.00	ES 3				2.60-2.65 black organic carbonaceous material 2.80 becoming stiff.	(1.10)	X———X X————X X———————————————————————	
- 3.00 - 4.00	L	No Recovery		NO RECOVERY. Base of sampler smeared with grey silty clay.	-	(1.00)	key	
_				END OF EXPLORATORY HOLE		4.00 +0.42	incorrect incorrect incorr	-//
Groundwater Entries No. Depth Strike (n			Depth Sealed (m)	Depth Related Remarks Depths (m) Remarks		Hard Boring Depths (m)	Duration (mi	ns) Tools used
lotes: For explanation of ee Key to Exploratory of educed levels in metre trackets in depth column Scale 1:25	Hole Records. All d	epths and s given in AGS	ct No. A50	CASTLE STREET IMPROVEMENTS - MAIN SITE GI 85-15 four Beatty Limited	WS404 Sheet 1 of 1			

Client ESG (Carcroft) Report No. 51018417 Contact Neil Cooke Sample Ref. 55011320 Date Drilled 02/12/2015 A63 Castle Street, Hull Contract Date Logged 02/12/2015

Date Reported 07/12/2015

Diameter 150mm Client Ref. CR2 - CH200m - A63 Central reserve, southern/westbound side of pedestrian guard rail.

Easting Coordinates 509076.9949 Orientation Vertical 428232.9833 **Northing Coordinates**

29 Rufford Court Warrington Cheshire WA1 4RF

Tel: 01925 286220

Strata Description & Depth Details

	Thickness	Depth	n (mm)		Dalamata de Alexano		Aggre	egate	DAI/ Manlan	
Layer	(mm)	From	То	Layer Description	Debonded @ lower interface	Voids	Size (mm)	Туре	PAK Marker test*	Layer Comments
1	28	0	28	Dense Bituminous Material (DBM)	No	High	6	CR	Slight Positive	Red close grain
2	30	28	58	Dense Bituminous Material (DBM)	No	Medium	6	CR	Slight Positive	
3	63	58	121	Dense Bituminous Material (DBM)	N/A	High	20	CR	Slight Positive	

Key

Materials Aggregates

B - Base CR - Crushed Rock SC - Surface Course GR - Gravel BC - Binder Course HST - Hardstone DBM - Dense Bituminous Material LST - Limestone

HRA - Hot Rolled Asphalt SL - Slag

PCC - Pre Coated Chippings SMA - Stone Mastic Asphalt

CONC - Concrete TAR - Tarbound

* PAK Marker test for presence of Coal Tar is NOT covered by the current scope of UKAS accreditation for this laboratory. Results are an indication only and not meant as a definitive test. ESG cannot be held responsible for decisions made on these results. More definitive tests are available.

Client ESG (Carcroft) Report No. 51018417 Contact Neil Cooke Sample Ref. 55011324 Date Drilled 03/12/2015 A63 Castle Street, Hull Contract Date Logged 03/12/2015 Date Reported

07/12/2015

Client Ref. CR3 - CH820m - A63 Central reserve, northern/eastbound side of pedestrian guard rail.

Orientation Vertical **Easting Coordinates** 509653.1537 428454.923 **Northing Coordinates**

29 Rufford Court Warrington Cheshire WA1 4RF

Tel: 01925 286220

Strata Description & Depth Details

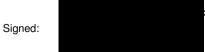
150mm

	Thickness	Depth	n (mm)		Dalamada d O lawa		Aggre	egate	PAK Marker	
Layer	(mm)	From	То	Layer Description	Debonded @ lower interface	Voids	Size (mm)	Туре	test*	Layer Comments
1	107	0	107	Concrete (CONC)	N/A	Medium	20	CR	Slight Positive	

Key

Diameter

Materials Aggregates


B - Base CR - Crushed Rock SC - Surface Course GR - Gravel BC - Binder Course HST - Hardstone DBM - Dense Bituminous Material LST - Limestone

HRA - Hot Rolled Asphalt SL - Slag

PCC - Pre Coated Chippings SMA - Stone Mastic Asphalt

CONC - Concrete TAR - Tarbound

* PAK Marker test for presence of Coal Tar is NOT covered by the current scope of UKAS accreditation for this laboratory. Results are an indication only and not meant as a definitive test. ESG cannot be held responsible for decisions made on these results. More definitive tests are available.

Client ESG (Carcroft) Report No. 51018417 Contact Neil Cooke Sample Ref. 55012619 Date Drilled 08/02/2016 A63 Castle Street, Hull Contract Date Logged 08/02/2016

Date Reported 09/02/2016

Client Ref. CR4 - CH950m - A63 Central reserve, southern/westbound side of pedestrian guard rail.

Easting Coordinates 509779.5984 428446.6125 **Northing Coordinates**

29 Rufford Court Warrington Cheshire WA14RF

Tel: 01925 286220

Strata Description & Depth Details

150mm

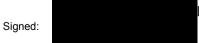
	Thickness	Depth	n (mm)		Dahardad Olama		Aggre	egate	DAK Madaa	
Layer	(mm)	From	То	Layer Description	Debonded @ lower interface	Voids	Size (mm)	Туре	PAK Marker test*	Layer Comments
1	140	0	140	Concrete (CONC)	N/A	Medium	20	CR	Negative	

Key

Diameter

Orientation Vertical

Materials Aggregates B - Base CR - Crushed Rock SC - Surface Course GR - Gravel


BC - Binder Course HST - Hardstone DBM - Dense Bituminous Material LST - Limestone

HRA - Hot Rolled Asphalt SL - Slag

PCC - Pre Coated Chippings SMA - Stone Mastic Asphalt

CONC - Concrete TAR - Tarbound

* PAK Marker test for presence of Coal Tar is NOT covered by the current scope of UKAS accreditation for this laboratory. Results are an indication only and not meant as a definitive test. ESG cannot be held responsible for decisions made on these results. More definitive tests are available.

Client ESG (Carcroft) Report No. 51018417 Neil Cooke Contact Sample Ref. 55011325 Date Drilled 03/12/2015 A63 Castle Street, Hull Contract Date Logged 03/12/2015

Date Reported 07/12/2015

Diameter 150mm CR5 - CH1150m - A63 Central reserve, southern/westbound side of pedestrian guard rail.

Orientation Vertical 428418.1917 **Northing Coordinates**

Client Ref. **Easting Coordinates** 509977.8146

29 Rufford Court Warrington Cheshire WA1 4RF

Tel: 01925 286220

Strata Description & Depth Details

	Thickness	Depth	n (mm)		Dalamada d @ Januar		Aggregate PAK Marker			
Layer	(mm)	From	То	Layer Description	Debonded @ lower interface	Voids	Size (mm)	Туре	test*	Layer Comments
1	23	0	23	Dense Bituminous Material (DBM)	No	High	6	CR	Slight Positive	
2	76	23	99	Concrete (CONC	N/A	High	20	CR	Slight Positive	
						·				

Key

Materials Aggregates B - Base CR - Crushed Rock SC - Surface Course GR - Gravel

BC - Binder Course HST - Hardstone DBM - Dense Bituminous Material LST - Limestone

HRA - Hot Rolled Asphalt SL - Slag

PCC - Pre Coated Chippings SMA - Stone Mastic Asphalt

CONC - Concrete TAR - Tarbound

* PAK Marker test for presence of Coal Tar is NOT covered by the current scope of UKAS accreditation for this laboratory. Results are an indication only and not meant as a definitive test. ESG cannot be held responsible for decisions made on these results. More definitive tests are available.

Signed:

Client ESG (Carcroft) Report No. 51018417 Contact Neil Cooke Sample Ref. 55011316 Date Drilled 01/12/2015 A63 Castle Street, Hull Contract Date Logged 01/12/2015

Date Reported 07/12/2015

Diameter 150mm Client Ref. EB3 - CH800m - A63 eastbound carriageway lar

Easting Coordinates 509626.1151 Orientation Vertical 428460.686 **Northing Coordinates**

29 Rufford Court Warrington Cheshire WA1 4RF

Tel: 01925 286220

Strata Description & Depth Details

	Thickness	Depth	n (mm)		Dalamata de Alexano		Aggre	egate	DAK Masilian	
Layer	(mm)	From	То	Layer Description	Debonded @ lower interface	Voids	Size (mm)	Туре	PAK Marker test*	Layer Comments
1	38	0	38	Stone Mastic Asphalt (SMA)	No	High	14	CR	Negative	
2	60	38	98	Dense Bituminous Material (DBM)	Yes	Medium	20	CR	Negative	
3	290	98	388	Concrete (CONC)	N/A	Low	10	CR	Negative	

Key

Materials Aggregates

B - Base CR - Crushed Rock SC - Surface Course GR - Gravel BC - Binder Course HST - Hardstone DBM - Dense Bituminous Material LST - Limestone

HRA - Hot Rolled Asphalt SL - Slag

SMA - Stone Mastic Asphalt PCC - Pre Coated Chippings

CONC - Concrete TAR - Tarbound

* PAK Marker test for presence of Coal Tar is NOT covered by the current scope of UKAS accreditation for this laboratory. Results are an indication only and not meant as a definitive test. ESG cannot be held responsible for decisions made on these results. More definitive tests are available.

Client ESG (Carcroft) Report No. 51018417 Contact Neil Cooke Sample Ref. 55011323 Date Drilled 03/12/2015 A63 Castle Street, Hull Contract Date Logged 03/12/2015

Date Reported 07/12/2015

150mm Diameter Client Ref. EB4 - CH1020m - A63 Eastbound carriageway lane 2

Easting Coordinates 509846.5033 Orientation Vertical 428444.4519 **Northing Coordinates**

29 Rufford Court Warrington Cheshire WA1 4RF

Tel: 01925 286220

Strata Description & Depth Details

	Thickness	Depth	n (mm)		5.1.1.0.1		Aggre	egate	DAKA	
Layer	(mm)	From	То	Layer Description	Debonded @ lower interface	Voids	Size (mm)	Туре	PAK Marker test*	Layer Comments
1	42	0	42	Stone Mastic Asphalt (SMA)	No	High	14	CR	Slight Positive	
2	66	42	108	Dense Bituminous Material (DBM)	Yes	High	20	CR	Slight Positive	
3	319	108	427	Concrete (CONC)	N/A	High	20	CR	Slight Positive	

Key

Materials Aggregates

B - Base CR - Crushed Rock SC - Surface Course GR - Gravel BC - Binder Course HST - Hardstone DBM - Dense Bituminous Material LST - Limestone

HRA - Hot Rolled Asphalt SL - Slag

SMA - Stone Mastic Asphalt PCC - Pre Coated Chippings

CONC - Concrete TAR - Tarbound

* PAK Marker test for presence of Coal Tar is NOT covered by the current scope of UKAS accreditation for this laboratory. Results are an indication only and not meant as a definitive test. ESG cannot be held responsible for decisions made on these results. More definitive tests are available.

Client ESG (Carcroft) Report No. 51018417 Contact Neil Cooke Sample Ref. 55011319 Date Drilled 01/12/2015 A63 Castle Street, Hull Contract Date Logged 01/12/2015

Date Reported 07/12/2015

Diameter 150mm Client Ref. WB1 - CH70m - A63 Westbound carriageway lane 1

Easting Coordinates 508966.0371 Orientation Vertical 428167.4176 **Northing Coordinates**

29 Rufford Court Warrington Cheshire WA1 4RF

Tel: 01925 286220

Strata Description & Depth Details

	Thickness	Depth	n (mm)		Dalamata de Alaman		Aggre	egate	DAK Madaan	
Layer	(mm)	From	То	Layer Description	Debonded @ lower interface	Voids	Size (mm)	Туре	PAK Marker test*	Layer Comments
1	40	0	40	Stone Mastic Asphalt (SMA)	No	High	14	CR	Slight Positive	
2	30	40	70	Dense Bituminous Material (DBM)	No	Medium	10	CR	Slight Positive	
3	155	70	225	Dense Bituminous Material (DBM)	Yes	Medium	32	CR	Slight Positive	
4	270	225	495	Concrete (CONC)	N/A	Medium	10	CR	Slight Positive	

Key

Materials Aggregates

B - Base CR - Crushed Rock SC - Surface Course GR - Gravel BC - Binder Course HST - Hardstone DBM - Dense Bituminous Material LST - Limestone

HRA - Hot Rolled Asphalt SL - Slag

SMA - Stone Mastic Asphalt PCC - Pre Coated Chippings

CONC - Concrete TAR - Tarbound

* PAK Marker test for presence of Coal Tar is NOT covered by the current scope of UKAS accreditation for this laboratory. Results are an indication only and not meant as a definitive test. ESG cannot be held responsible for decisions made on these results. More definitive tests are available.

Signed:

Client ESG (Carcroft) Report No. 51018417 Contact Neil Cooke Sample Ref. 55011318 Date Drilled 01/12/2015 A63 Castle Street, Hull Contract Date Logged 01/12/2015

Date Reported 07/12/2015

Diameter 150mm Client Ref. WB2 - CH150m - A63 Westbound carriageway lane 1

Orientation Vertical 428204.9824 **Northing Coordinates**

Easting Coordinates 509037.6797

29 Rufford Court Warrington Cheshire WA1 4RF

Tel: 01925 286220

Strata Description & Depth Details

	Thickness	Depth	ı (mm)		Debonded @ lower					
Layer	(mm)	From	То	Layer Description	interface	Voids	Size (mm)	Туре	test*	Layer Comments
1	60	0	60	Stone Mastic Asphalt (SMA)	No	Medium	14	CR	Positive	
2	70	60	130	Dense Bituminous Material (DBM)	No	Medium	32	CR	Positive	
3	100	130	230	Dense Bituminous Material (DBM)	Yes	Low	32	CR	Positive	
4	330	230	560	Concrete (CONC)	N/A	Medium	10	CR	Positive	

Key

Materials Aggregates

B - Base CR - Crushed Rock SC - Surface Course GR - Gravel BC - Binder Course HST - Hardstone DBM - Dense Bituminous Material LST - Limestone

HRA - Hot Rolled Asphalt SL - Slag

SMA - Stone Mastic Asphalt PCC - Pre Coated Chippings

CONC - Concrete TAR - Tarbound

^{*} PAK Marker test for presence of Coal Tar is NOT covered by the current scope of UKAS accreditation for this laboratory. Results are an indication only and not meant as a definitive test. ESG cannot be held responsible for decisions made on these results. More definitive tests are available.

Client ESG (Carcroft) Report No. 51018417 Contact Neil Cooke Sample Ref. 55011317 Date Drilled 01/12/2015 A63 Castle Street, Hull Contract Date Logged 01/12/2015

Date Reported 07/12/2015

Diameter 150mm Client Ref. WB3 - CH890m - A63 westbound carriageway la

Easting Coordinates 509716.3554 Orientation Vertical 428445.751 **Northing Coordinates**

29 Rufford Court Warrington Cheshire WA1 4RF

Tel: 01925 286220

Strata Description & Depth Details

	Thickness	Depth	ı (mm)		D		Aggre	egate	DAKAA	
Layer	(mm)	From	То	Layer Description	Debonded @ lower interface	Voids	Size (mm)	Туре	PAK Marker test*	Layer Comments
1	45	0	45	Stone Mastic Asphalt (SMA)	No	High	14	CR	Slight positive	
2	70	45	115	Dense Bituminous Material (DBM)	Yes	Medium	20	CR	Slight positive	
3	100	115	215	Concrete (CONC)	N/A	High	10	CR	Slight positive	

Key

Materials Aggregates B - Base CR - Crushed Rock

SC - Surface Course GR - Gravel BC - Binder Course HST - Hardstone DBM - Dense Bituminous Material LST - Limestone

HRA - Hot Rolled Asphalt SL - Slag

SMA - Stone Mastic Asphalt PCC - Pre Coated Chippings

CONC - Concrete TAR - Tarbound

* PAK Marker test for presence of Coal Tar is NOT covered by the current scope of UKAS accreditation for this laboratory. Results are an indication only and not meant as a definitive test. ESG cannot be held responsible for decisions made on these results. More definitive tests are available.

[x] J. Whitworth (Section Manager)

CH890m - A63

carriageway Lane 1.

A63 CASTLE STREET IMPROVEMENTS - GARISON ROAD, HULL

Easting

Northing

509716.3554 428445.751

ESG @

Exploratory Hole ID Location

Client ESG (Carcroft) Report No. 51018417 Contact Neil Cooke Sample Ref. 55012618 Date Drilled 08/02/2016 A63 Castle Street, Hull Contract Date Logged 08/02/2016

Date Reported 09/02/2016

Diameter 150mm Client Ref. WB4 - CH1100m - A63 Westbound carriageway lane 2.

Easting Coordinates 509924.8076 Orientation Vertical 428428.2499 Northing Coordinates

29 Rufford Court Warrington Cheshire WA14RF

Tel: 01925 286220

Strata Description & Depth Details

	Thickness	Depth	n (mm)		Dahardad Olama		Aggre	egate	DAK Marilan	
Layer	(mm)	From	То	Layer Description	Debonded @ lower interface	Voids	Size (mm)	Туре	PAK Marker test*	Layer Comments
1	50	0	50	Stone Mastic Asphalt (SMA)	No	High	14	CR	Slight Positive	
2	65	50	115	Dense Bituminous Material (DBM)	Yes	Medium	20	CR	Slight Positive	
3	310	115	425	Concrete (CONC)	N/A	Low	20	CR	Negative	

Key

Materials Aggregates B - Base CR - Crushed Rock

SC - Surface Course GR - Gravel BC - Binder Course HST - Hardstone DBM - Dense Bituminous Material LST - Limestone

HRA - Hot Rolled Asphalt SL - Slag

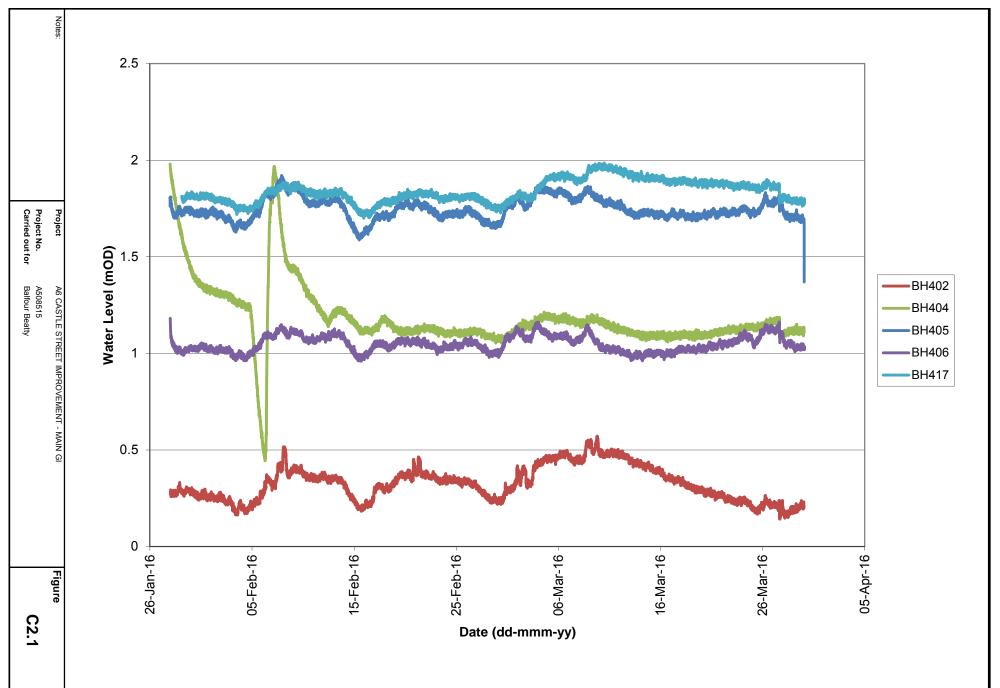
PCC - Pre Coated Chippings SMA - Stone Mastic Asphalt

CONC - Concrete TAR - Tarbound

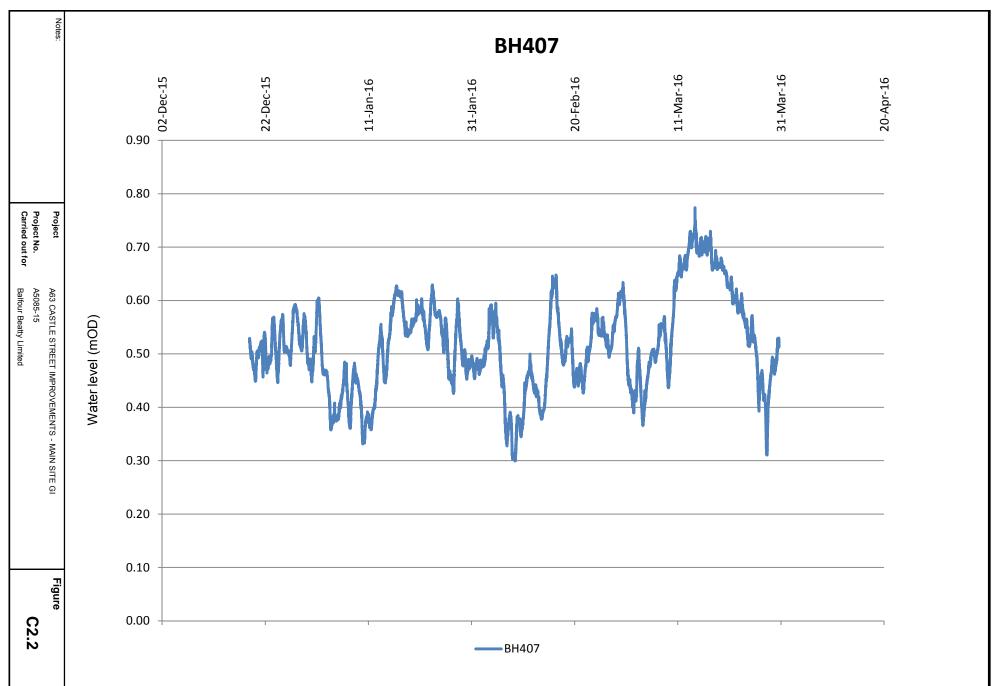
* PAK Marker test for presence of Coal Tar is NOT covered by the current scope of UKAS accreditation for this laboratory. Results are an indication only and not meant as a definitive test. ESG cannot be held responsible for decisions made on these results. More definitive tests are available.

APPENDIX C INSTRUMENTATION AND MONITORING

Installation Details	Table C1
Groundwater Monitoring	
Groundwater Level Summary (Diver data logger)	Figure C2.1
VWP Monitoring Data – Water Level (BH407)	Figure C2.2


Groundwater Installation Details

Instrument reference	Elevation (m OD)	Instrument type (see Notes)	Installation date	Pipe diameter (mm)	Instrumo	ent base	Response zone range (mbgl)	Pipe top details	Headworks	Remarks
lns	Ele	lns (se		Pipe ((mm)	m OD	m BGL		Pip		
BH402	2.64	SP	19/01/2016	50	-5.36	8.00	5.50 to 9.40	Gas tap	Flush cover	
BH403	2.98	EPIE	12/01/2016	-	-3.52	6.50	6.00 to 7.00	-	Flush cover	
BH404	2.91	SP	21/01/2016	50	-11.09	14.00	11.50 to 14.00	Gas tap	Flush cover	
BH405	3.16	SP	13/01/2016	50	-5.84	9.00	7.00 to 9.00	Gas tap	Flush cover	
BH406	3.33	SP	09/12/2015	50	-11.17	14.50	12.50 to 14.50	Gas tap	Flush cover	
BH407	3.48	EPIE	16/12/2015	ı	-5.02	8.50	8.00 to 9.00	-	Flush cover	
BH408	3.61	SP	09/12/2015	50	-7.89	11.50	9.50 to 11.50	Gas tap	Flush cover	
BH417	5.08	SP	15/12/2015	50	-3.92	9.00	7.00 to 9.00	Gas tap	Flush cover	
WS401	3.22	SP	16/12/2015	19	1.22	2.00	1.05 to 1.80	Gas tap	Flush cover	
WS402	3.32	SP	16/12/2015	19	0.62	2.70	1.70 to 2.70	Gas tap	Flush cover	
WS403	4.12	SP	16/12/2015	19	1.12	3.00	2.00 to 3.00	Gas tap	Flush cover	
WS404	4.42	SP	16/12/2015	19	1.92	2.50	1.50 to 2.50	Gas tap	Flush cover	


Carried out for

APPENDIX D CONE PENETRATION TESTING

Summary of Cone Magnetometer Tests

Cone Calibration Certificate

Cone Magnetometer Test Plots

Summary of Cone Penetration Tests

Cone Calibration Certificates

Cone Calibration Certificates

Key to Cone Penetration Test Records

Cone Penetration Test Plots

Table 1

Cone Calibration Certificates

Cone Calibration Certificates

Key CPT

Cone Penetration Test Plots

Table 1

CS-1214-002

See Table 1

Cone Test Plots

Cone Calibration Test Plots

Cone Calibration Test Plots

Summary of Cone Magnetometer Tests ESG

CPT No.	Depth of data (m)	Date	Easting	Northing	Elevation (mOD)	Remarks	No. of Sheets
BH404 MAG	11.74	01/12/2015	509249.01	428309.09	2.91	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214	1
BH405 MAG	11.73	02/12/2015	509285.25	428329.82	3.16	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214	1
BH406 MAG	11.74	02/12/2015	509308.11	428382.42	3.27	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214	1
BH407 MAG	0.92	01/12/2015	509335.46	428358.79	3.51	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214 Refused on thrust	NA
BH407A MAG	18.00	01/12/2015	509335.46	428358.79	3.51	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214 Second attempt at this location	1
BH408 MAG	11.02	01/12/2015	509360.27	428406.49	3.61	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214	1
BH417 MAG	1.63	14/12/2015	510050.55	428445.14	5.00	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214 Refused on thrust. Data not processed	NA
BH417A MAG	1.51	15/12/2015	510050.55	428445.14	5.00	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214 Second attempt at this location	NA
BH417B MAG	1.53	15/12/2015	510050.55	428445.14	5.00	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214 Third attempt at this location	NA
BH417C MAG	1.84	15/12/2015	510050.55	428445.14	5.00	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214 Fourth attempt at this location	NA
BH417D MAG	17.38	15/12/2015	510050.55	428445.14	5.00	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214 Fifth attempt at this location	1
WS02 MAG	2.10	17/12/2015	509513.92	428447.52	3.32	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214 Refused on thrust	1
WS04 MAG	0.88	16/12/2015	510041.25	428426.49	4.38	Test using combined magcone 15cm2 piezocone S15-CFIIP.1214 Refused on thrust. Data not processed	NA
WS04A MAG	5.78	16/12/2015	510041.25	428426.49	4.38	Test using combined magcone 15cm2 piezocone S15-CFIIP.1214 Second attempt at this location	1

Notes: A63 CASTLE STREET IMPROVEMENT - MAIN GI Table Project No. A5085-15 1 Carried out for Balfour Beatty Limited

Summary of Cone Magnetometer Tests ESG (

CPT No.	Depth of data (m)	Date	Easting	Northing	Elevation (mOD)	Remarks	No. of Sheets
CPT402 MAG	19.93	11/12/2015	508938.74	428179.31	2.62	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214	1
CPT403 MAG	20.66	12/12/2015	509210.00	428324.29	2.99	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214	1
CPT404 MAG	11.74	01/12/2015	509248.22	428308.61	2.86	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214	1
CPT406 MAG	15.23	07/12/2015	509269.95	428358.26	3.10	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214	1
CPT407 MAG	11.74	03/12/2015	509296.76	428352.59	3.26	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214	1
CPT408 MAG	0.13	09/12/2015	509360.33	428407.70	3.57	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214 Refused on thrust	NA
CPT408A MAG	0.33	09/12/2015	509360.33	428407.70	3.57	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214 Second attempt at this location	NA
CPT408B MAG	0.29	09/12/2015	509360.33	428407.70	3.57	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214 Third attempt at this location	NA
CPT409 MAG	10.92	03/12/2015	509393.19	428424.23	3.20	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214	1
CPT425 MAG	22.85	08/02/2016	509392.49	428411.52	2.92	Test using combined magcone 15cm ² piezocone S15-CFIIP.1214	1

Notes (unless indicated otherwise above)

- Tests carried out with 15cm² combined magcone without a friction reducer
- Piezocones fitted with polypropylene pore pressure filter located in the shoulder (u2) position
- Tests terminated at scheduled depth or maximum achievable depth (refusal)
- No backfilling to CPT holes
- Groundwater/collapse depths not recorded

Rijksstraatweg 22F 2171 AL Sassenheim

Tel. : +31 71 301 92 51

Fax : +31 71 301 92 52

E-mail : info@geopoint.nl

BTW : NL814690178.B01

IBAN : NL28 INGB0682301396

BIC : INGBNL2A

Cone Calibration Certificate

Certificate:

Instrument Type:

Model:

Serial number:

Calibration date:

Client:

Calibrated by:

Calibration instruments

Manufacturer:

HBM certificate no.:

Calibration conditions

Ambient temperature:

Atmospheric pressure:

Cone specifications

Cone base area:

Load tip resistance (nom.):

Friction sleeve area:

Load tip + local friction (nom.):

Load friction sleeve (nom.):

Load pore pressure (nom.):

Inclination (nom.):

Temperature compensation (all channels):

Maximum overload capacity (all channels):

Cone area ratio (a):

Max. Inaccuracy, relative to measurement value:

GS-1214-002

Electric Subtraction Cone

S15-CFIIP

1214

29-04-2015

Soil Mechanics

W. Volgering

Hottinger Baldwin Messtechnik GmbH

FL1461

19.9 °C

1017 mBar

1500 mm2

50 kN

20000 mm2

50 kN

22.5 kN

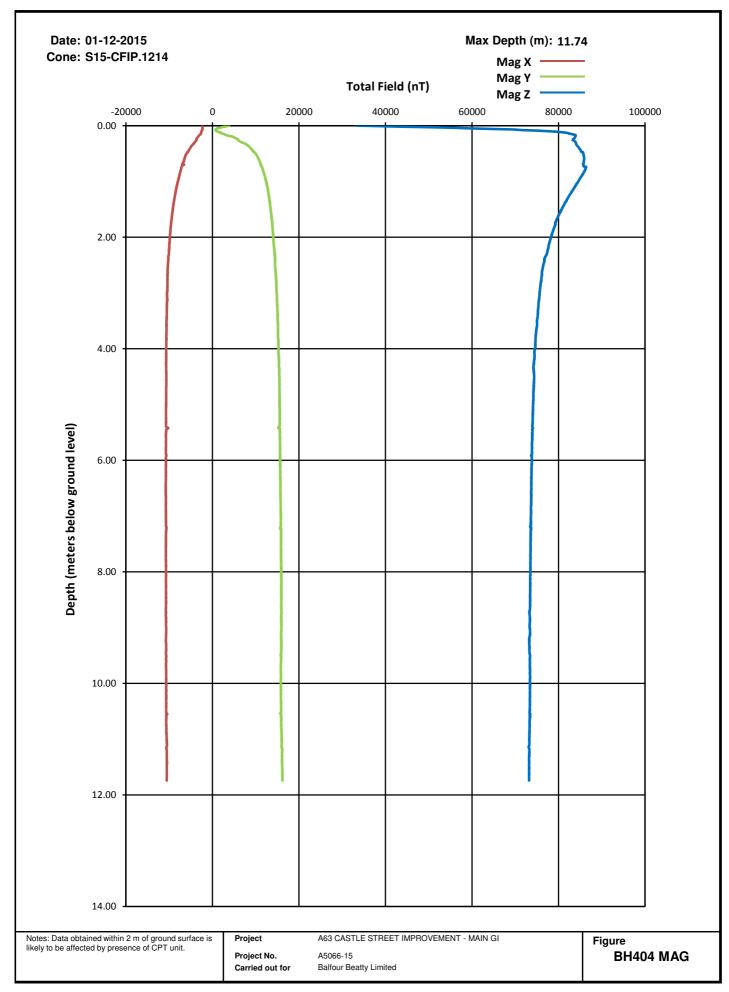
2 MPa

+/- 20 °

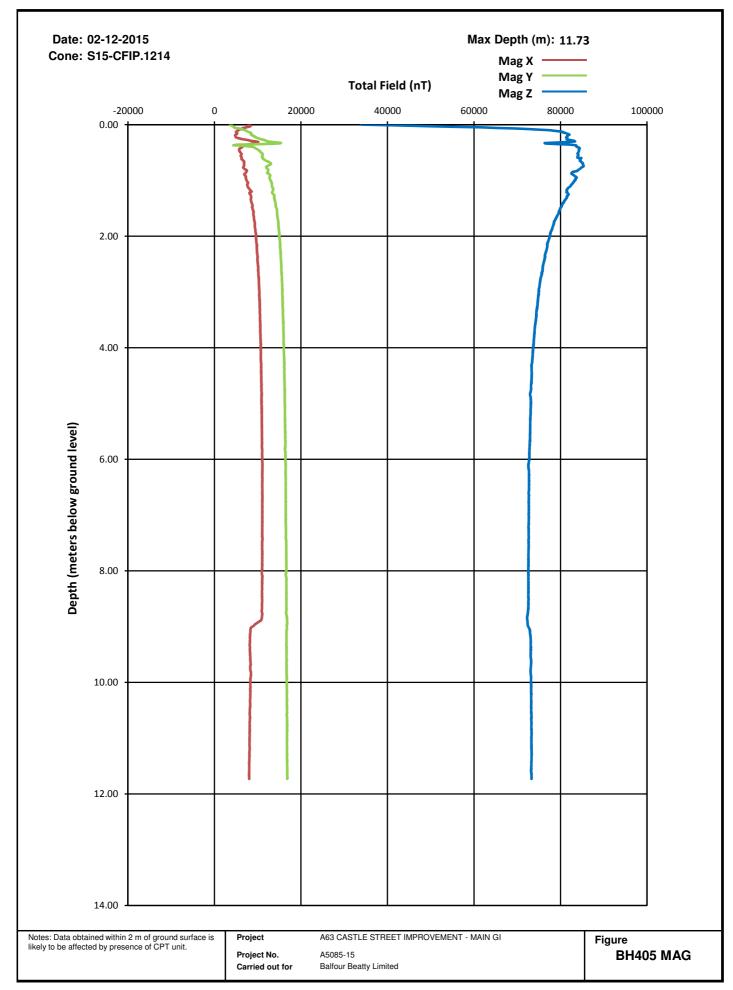
0...+40 °C 100 %

0.79

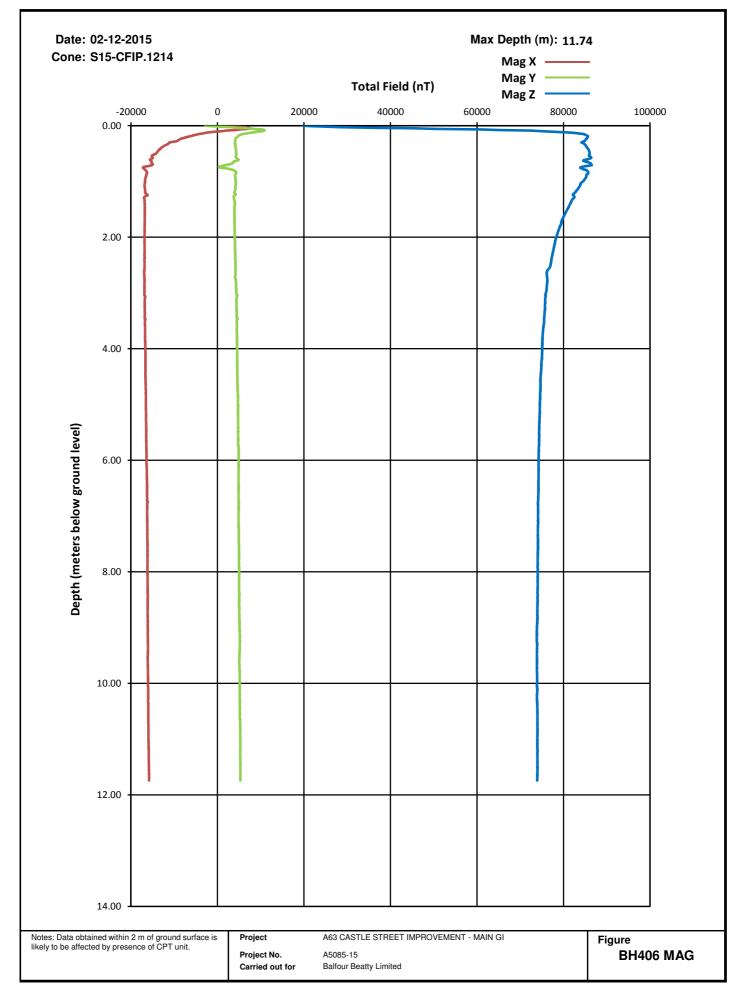
1.0 %


	Tip:		Sleeve:		Pore Pressure:		Inclinometer:		
	qc in kN	mV	fs in kN	mV	MPa	mV	Degrees	X (mV)	Y (mV)
Zero points:		0284		0223		0273			
	0	0	0	0	0	0	0	2394	2567
	5	0307	5	0321	0.4	1283	-20	0310	0557
	10	0616	10	0642	0.8	2563	20	4439	4603
	15	0926	15	0964	1.2	3840		6	
	20	1234	20	1286	1.6	5114			
	25	1544	25	1609	2.0	6385			
	30	1853	30	1932			_		
	35	2163	35	2255		Max. eror,	abs. qc:	35 kPa	
	40	2473	40	2578	1	Max. error	r, abs. fs:	2 kPa	
	45	2782	45	2902		Max. error	r, abs. u2:	10 kPa	
	50	3089	50	3223		Max. error	r, abs. I:	1 °	

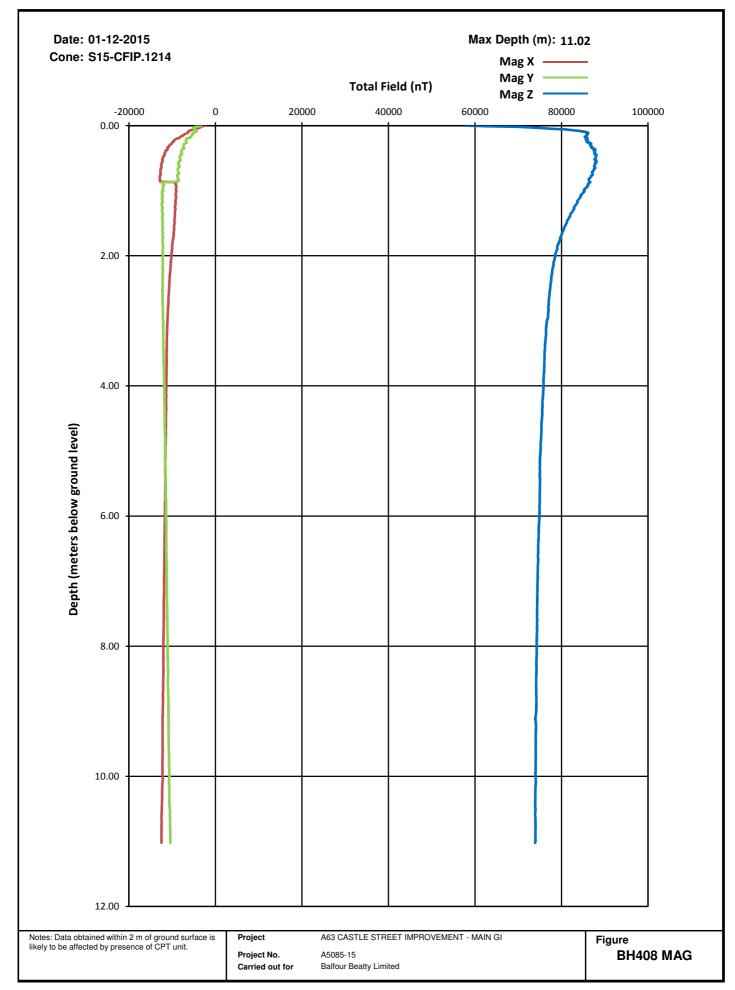
This calibration is compliant with GeoPoint Systems internal quality system, internal calibration procedures and meets the requirements of NEN2649, NEN5140, NORSOK G-001, ISSMFE and ASTM using calibration equipment traceable to (Inter-) National Standards.

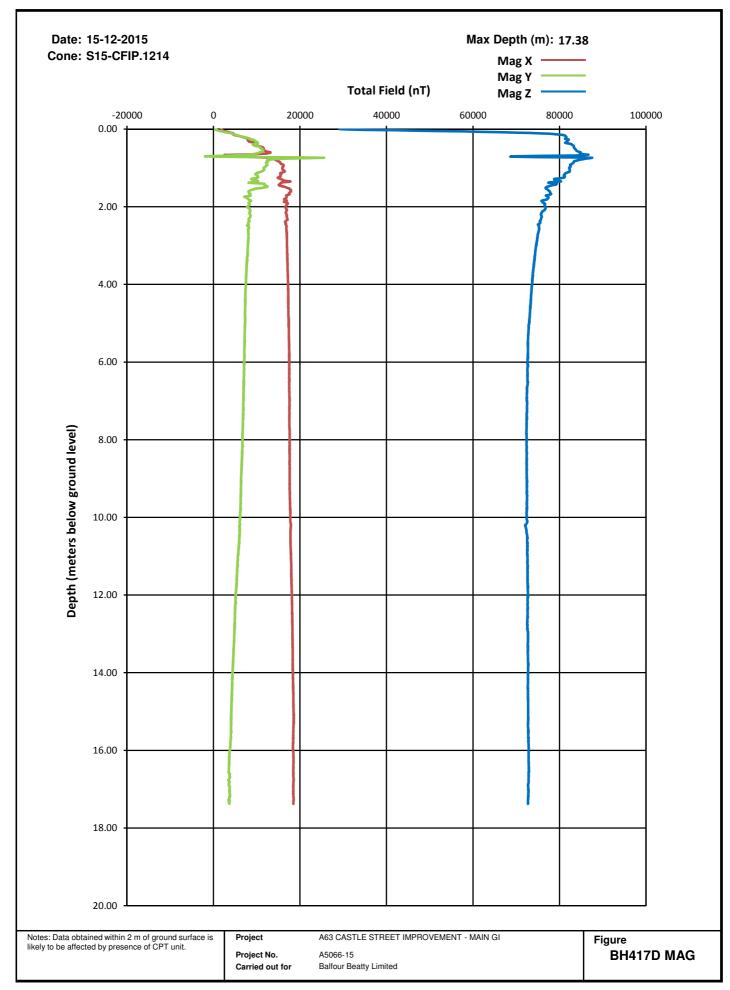

Approved by: B. van Eijk **Date:** 29-04-2015

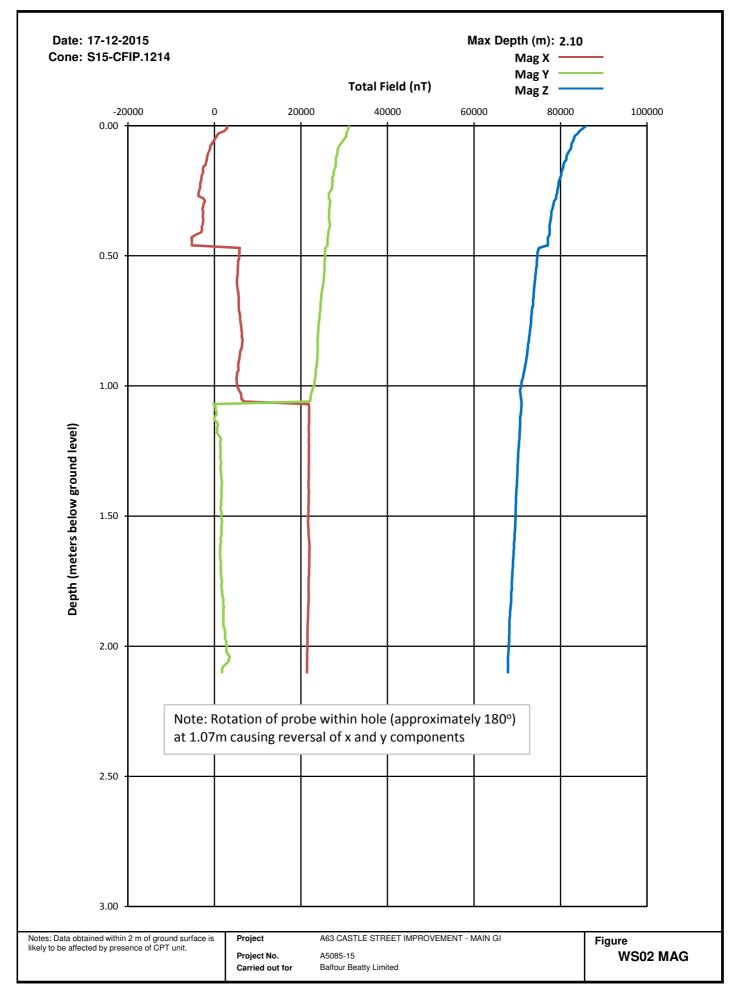
www.geopoint.nl www.geopoint.eu

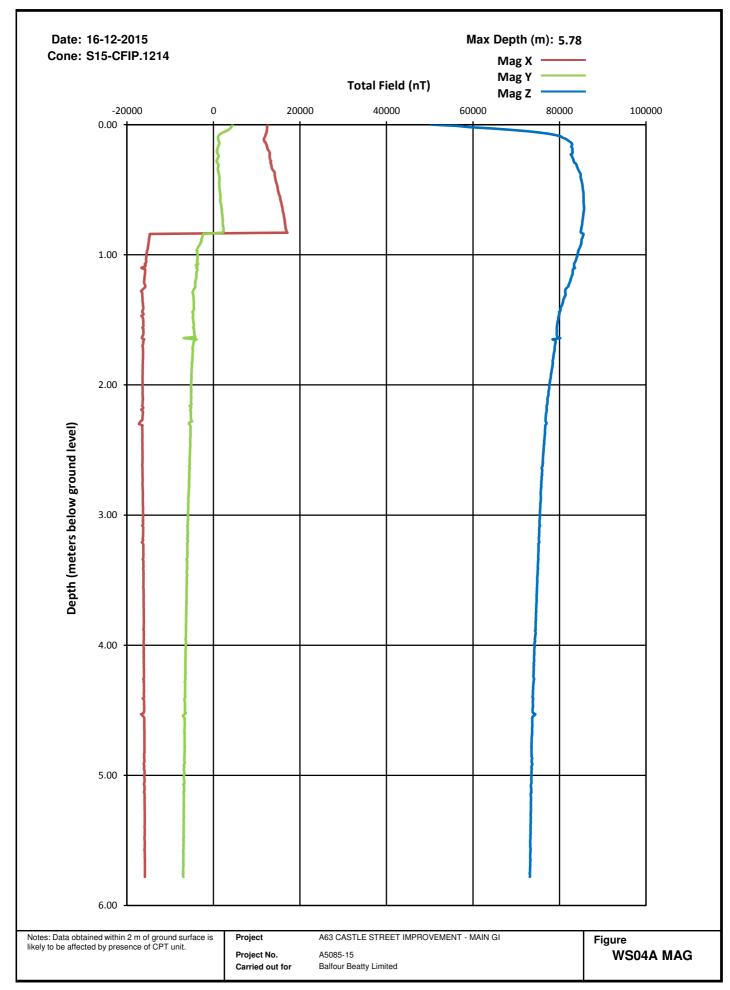


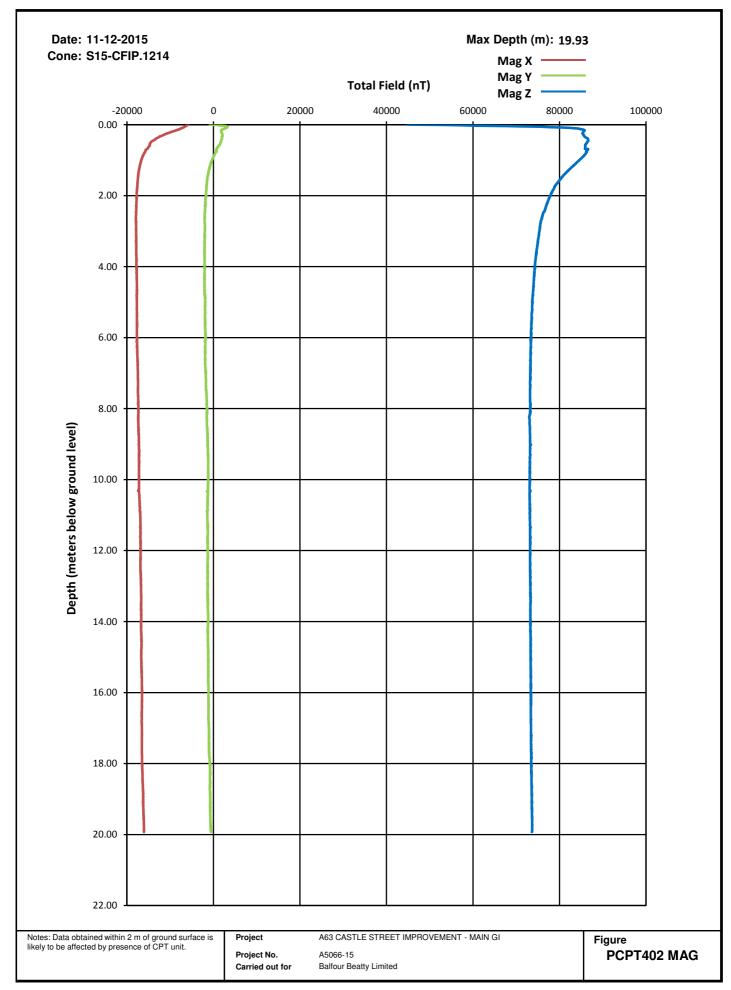


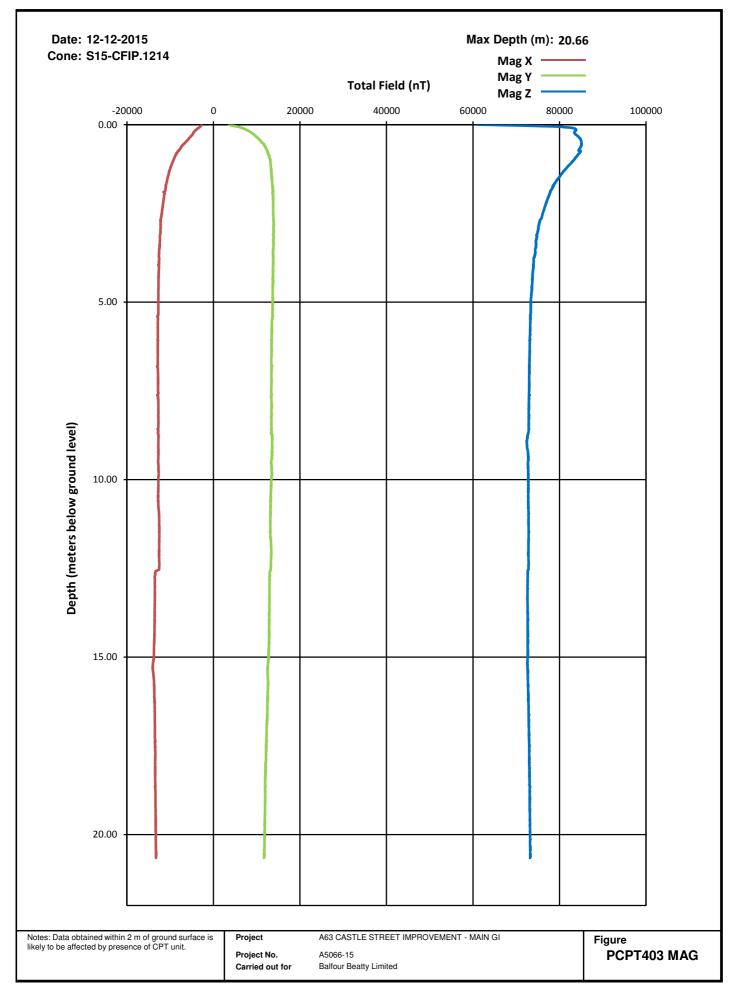


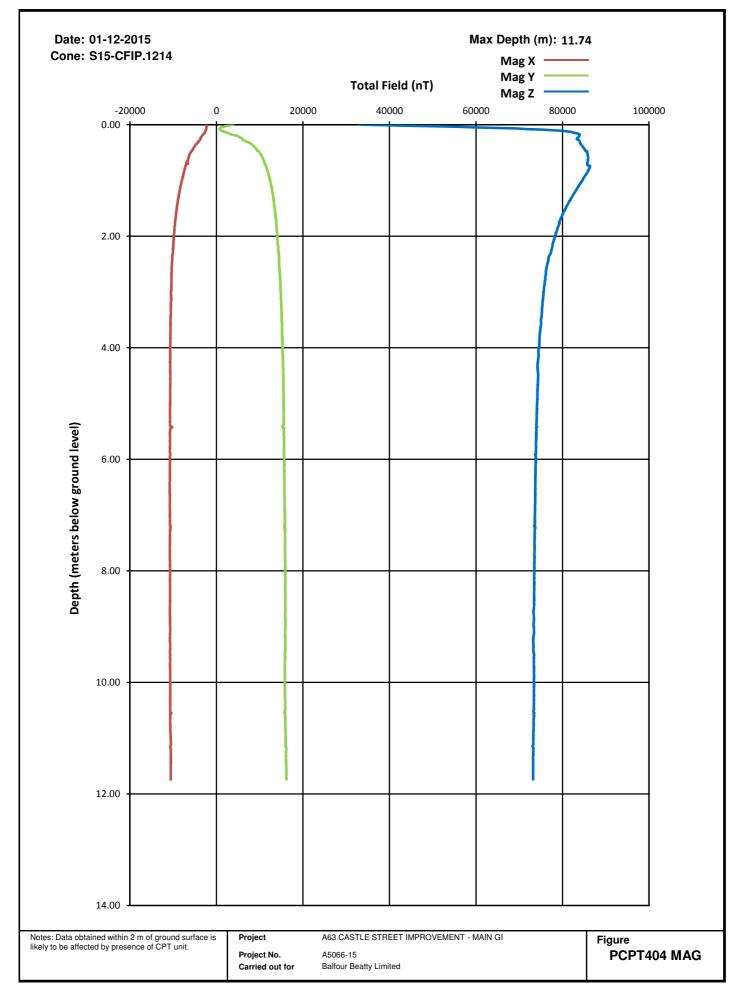


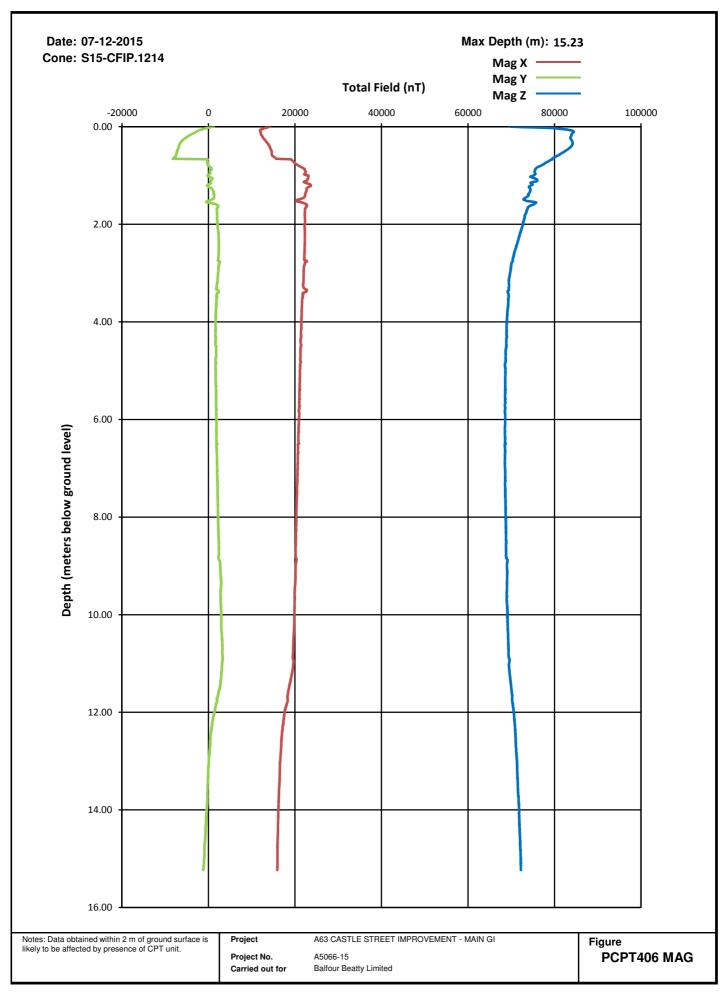


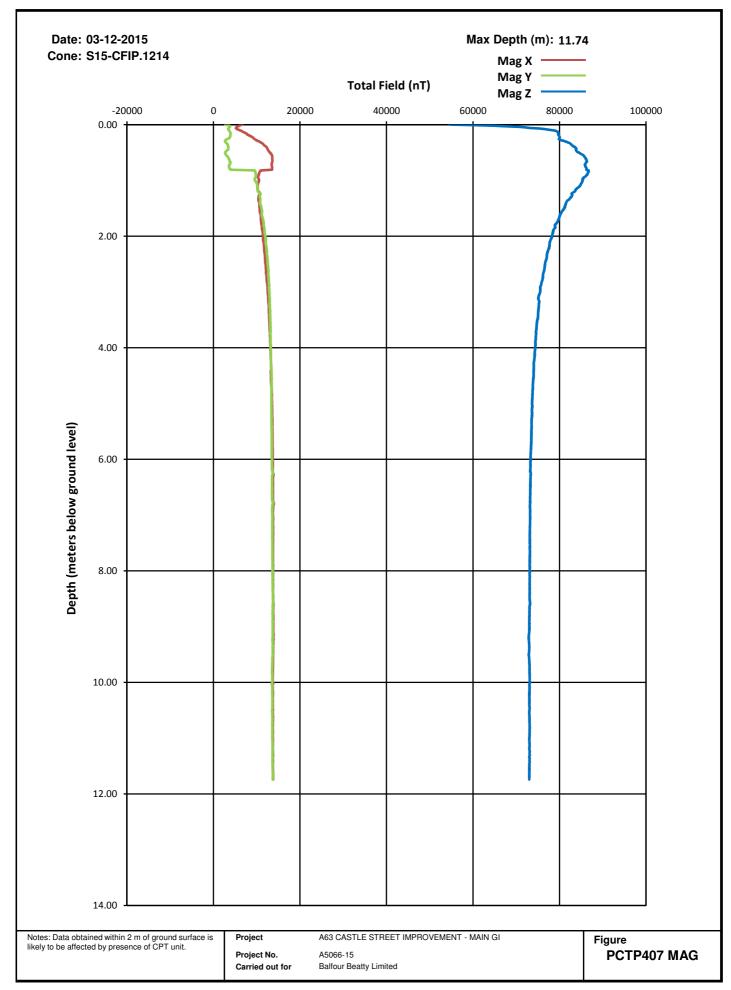


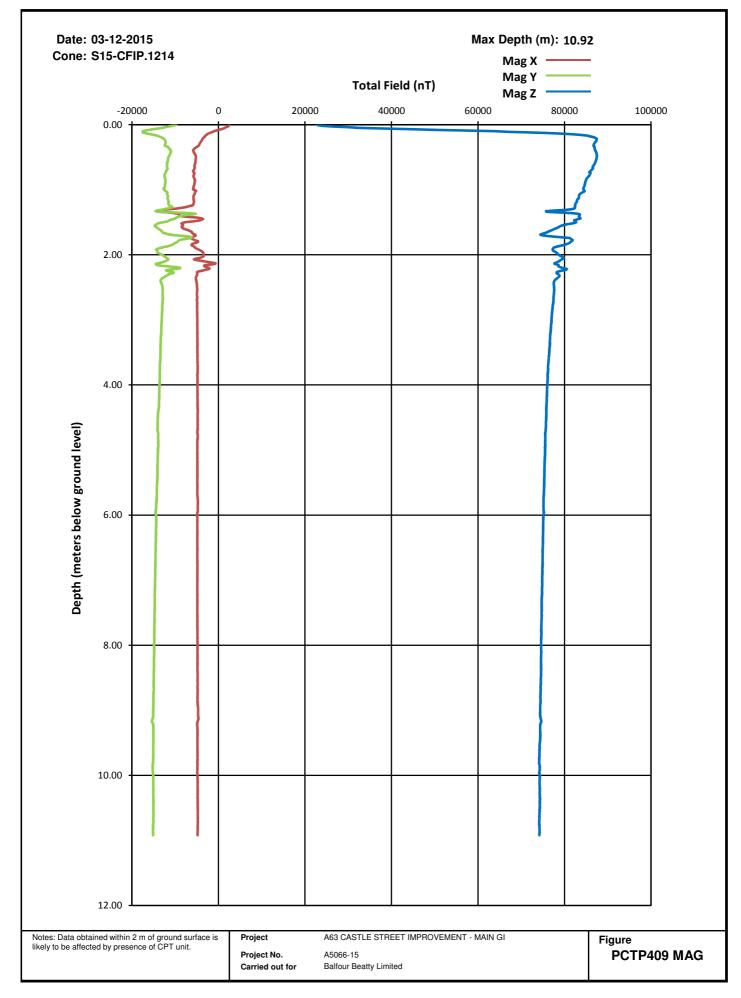


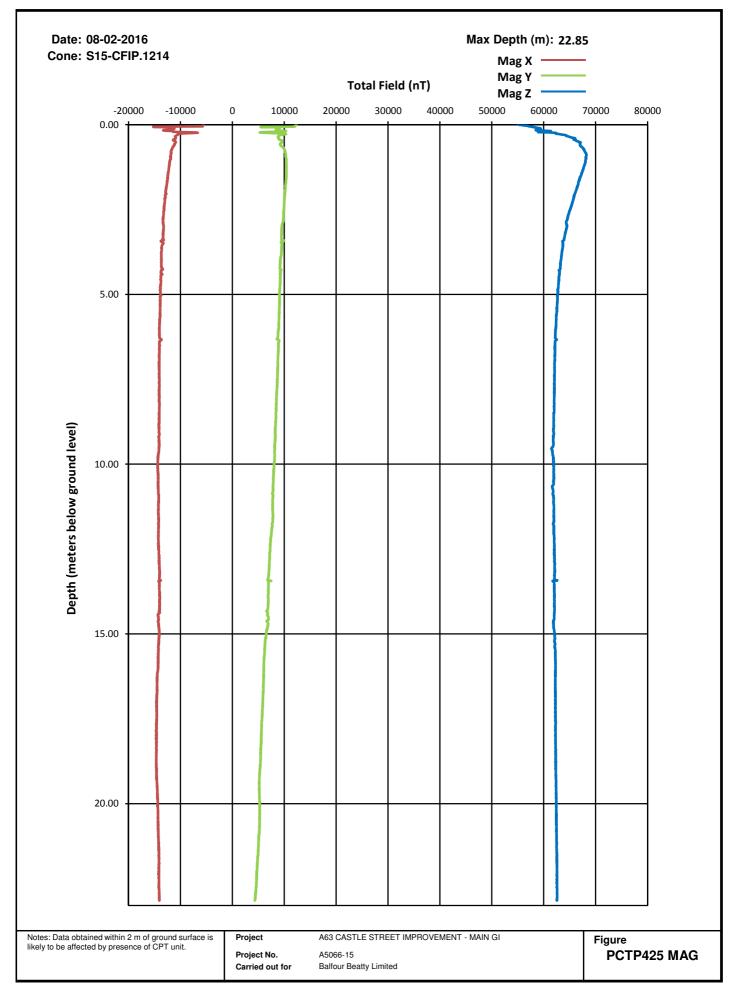












Summary of Cone Penetration Tests

CPT No.	Depth (m)	Date	Easting	Northing	Elevation (mOD)	Remarks	No. of Sheets
CPT401	-	-	-	-	-	Test delayed due to access restrictions	-
CPT402	17.19	16/12/2015	508938.74	428179.31	Test using 10cm² piezocone C10-CFIP.126 Dissipation tests at 5.06m & 15.99m Refusal on thrust		3
CPT403	20.89	15/12/2015	509210.00	428324.29	2.99	Test using 10cm ² piezocone C10-CFIP.126 Dissipation tests at 3.50m & 6.74m Refusal on thrust	3
CPT404	16.46	08/12/2015	509248.22	428308.61	2.86	Test using 10cm ² piezocone C10-CFIP.125 Dissipation tests at 4.50m & 7.50m Refusal on thrust	3
CPT405	22.70	08/12/2015	509286.03	428330.03	3.13	Test using 10cm ² piezocone C10-CFIP.125 Dissipation tests at 5.15m, 6.13m & 7.65m Refusal on thrust	3
CPT406	15.03	08/12/2015	509269.95	428358.26	3.10	Test using 10cm ² piezocone C10-CFIP.125 Dissipation tests at 4.99m, 5.50m, 9.00m & 11.44m Refusal on thrust	3
CPT407	15.03	10/12/2015	509296.76	428352.59	3.26	Test using 10cm ² piezocone C10-CFIP.126 Dissipation tests at 7.93m, 8.28m, 11.23m & 11.64m Refusal on thrust	3
CPT408	20.15	11/12/2015	509360.33	428407.70	3.57	Test using 10cm ² piezocone C10-CFIP.126 Dissipation tests at 10.56m, 11.75m & 14.11m Refusal on thrust	3
CPT409	22.98	04/12/2015	509393.19	428424.23	3.20	Test using 10cm ² piezocone C10-CFIP.125 Dissipation tests at 6.50m & 8.50m Refusal on thrust	3
CPT414	13.71	17/12/2015	510050.42	428447.08	4.93	Test using 10cm ² piezocone C10-CFIP.126 Dissipation tests at 4.01m & 6.56m Refusal on thrust	3
CPT425	13.15	09/02/2016	509392.49	428411.52	2.92	Test using 10cm ² piezocone C10-CFIP.126 Dissipation tests at 9.18m, 9.30m, 11.51m & 11.66m Refusal on thrust	3

Notes (unless indicated otherwise above)

- ⊘ Piezocones fitted with polypropylene pore pressure filter located in the tip (u1) position
- Tests with 10 cm² cone carried out with a friction reducer
- Tests terminated at maximum achievable depth (refusal)
- No backfilling to CPT holes
- Groundwater/collapse depths not recorded
- Inclinometer channel data not recorded for all CPTs

Notes:	Project	A63 CASTLE STREET IMPROVEMENT - MAIN GI	Table
	Project No.	A5085-15	2
	Carried out for	Balfour Beatty Limited	- 1

Rijksstraatweg 22F 2171 AL Sassenheim

+31 71 301 92 51 9 +31 71 301 92 52 E-mail : info@geopoint.nl BTW NL814690178,B01 IBAN * NL28 INGB0682301396

INGBNL2A

Cone Calibration Certificate

Certificate:

Instrument Type:

Model:

Serial number:

Calibration date:

Client:

Calibrated by:

Calibration instruments

Manufacturer:

HBM certificate no. :

Calibration conditions

Ambient temperature:

Atmospheric pressure: Cone specifications

Cone base area:

Load tip resistance (nom.): Friction sleeve area: Load local friction (nom.):

Load pore pressure (nom.):

Inclination (nom.):

Temperature compensation (all channels): Maximum overload capacity (all channels):

Cone area ratio (a):

Max. inaccuracy, relative to measurement value:

GS-125-006

Electric Compression Cone

C10-CFIP

125

03-07-2015

FGS

M. van Es

Hottinger Baldwin Messtechnik GmbH

FL1461

٥С 22.1

1026 mBar

1000 mm2 50 kΝ

15000 mm2 15 kΝ

2 **MPa**

20

٥С 0...+40 100 %

0.80 1.0

%

J.	Ti	p:	Sle	eve:	Pore Pressure:		Inclinometer:	
9	qc in kN	mV	fs in kN	mV	MPa	mV	Degrees	mV
Zero points:		0234		0253		0229		
	0	0	0	0	0	0	0	0085
	5	0385	1.50	0520	0.4	1303	5	0350
	10	0771	3.00	1040	0.8	2601	10	0880
	15	1157	4.50	1560	1.2	3898	15	1675
	20	1541	6.00	2084	1.6	5186	20	2207
	25	1925	7.50	2609	2	6467	25	2740
	30	2309	9.00	3130				
	35	2695	10.50	3651		Max. error	, abs. qc:	35 kPa

1 ° 50 3848 15.00 5224 Max. error, abs. I: internal quality system, internal calibration procedures and meets the requirements This calibration is compliant with GeoPoint Systems of NEN2649, NEN5140, NORSOK G-001, ISSMFE and ASTM using calibration equipment traceable to (Inter-) National Standards.

4177

4705

12.00

13.50

Approved by: B. van Eijk Date:

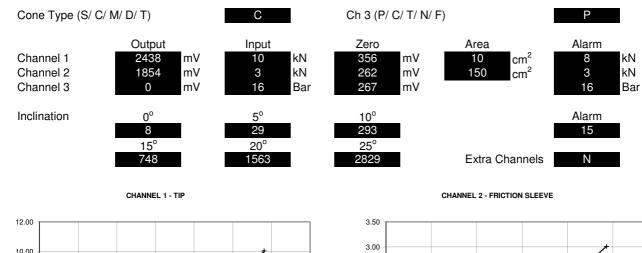
03-07-2015

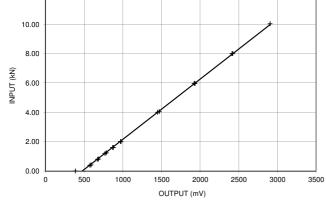
40

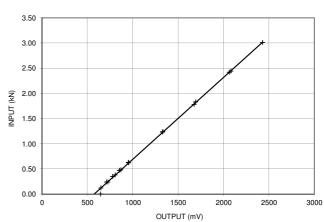
45

2 kPa

10 kPa


Max. error, abs. fs: Max. error, abs. u2:


3081


3465

Environmental Scientifics Group.					
CPT CONE					
Cone No. C10-CFIP.126			Date of Calibration	09/12/2015	
Manufacturer	Geopoint		Reference Standards	BS1377: Part 9:	: 1990
Compression/ Subtraction	Compression		Reference Kit	Pressure meter	N026123
	·			Vernier callipers Load cell	0001942 22541/2
Pore Pressure Channel (Y/N)	e Pressure Channel (Y/N) Y			Voltmeter	06402486
Cone end area ratio (by dimension measurement), a		0.8	Sleeve end area ratio (by dimer	nsion measurement), b	1.0

Note: Calibration Zero taken as no load in free air, Output taken as slope of linear regression line x maximum load.

0.50 0.50 0.00 1 1 1 1

OUTPUT (mV)

CHANNEL 3 - PRESSURE

Cone calibrated by: DkBowns Date: 09/12/2015

thorised for use by:

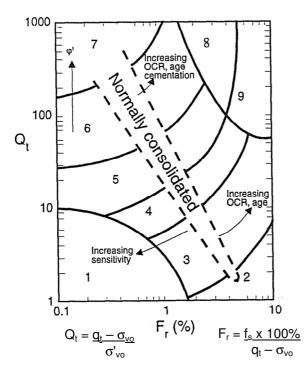
Manager

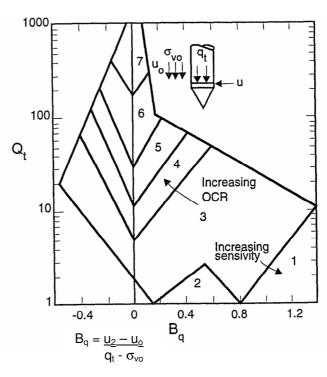
Key to Cone Penetration Test Records ESG

Parameter	Unit	Description	Equation		
Measured pa	arameters				
q _c	MPa	Cone resistance	Measured parameter		
fs	MPa	Sleeve friction	Measured parameter		
I	degrees	Inclination	Measured parameter		
u	MPa	Dynamic pore pressure (Piezocone only)	Measured parameter. Denoted as u ₁ and u ₂ for porture pressure filter locations on cone face and cone shoulded respectively.		
-	m, s	Penetration depth and corresponding time	Measured parameters		
Derived con	e paramete	rs			
R_{f}	%	Friction ratio	f _s / q _c . 100 %		
Qt	MPa	Corrected cone resistance (Piezocone only)	$q_c + (1 - a) \cdot u_2$ where $a =$ area ratio of cone = A_n/A_c $A_n = cross \ sectional \ areas \ of \ cone \ tip \ sha$ $A_c = projected \ area \ of \ cone \ tip$		
f _t	MPa	Corrected sleeve friction (Piezocone only)	$ \begin{array}{c} \left(f_s-\left(u_2.\;A_{sb}-u_3.\;A_{st}\right)\right)/\;A_s \\ \\ \text{where b = area ratio of friction sleeve} \\ \\ A_{sb} \text{ and } A_{st} \text{ are bottom and top cross} \\ \\ \text{sectional areas of friction sleeve} \end{array} $		
qе	MPa	Effective cone resistance (Piezocone only)	$q_t - u_2$		
q n	MPa	Net cone resistance $(Piezocone \ or \ using \ q_t = q_c)$	$q_t - \sigma_{vo} \qquad \qquad \text{where } \sigma_{vo} = \text{vertical total stress}$		
R _t '	%	Corrected friction ratio (Piezocone only)	f _t / q _t . 100 %		
Δυ	MPa	Excess pore pressure (Piezocone only)	$u - u_0$ where $u_0 =$ equilibrium pore water pressure		
Bq	-	Pore pressure ratio (Piezocone only)	$(u - u_0) / (q_t - \sigma_{vo}) = \Delta u/q_n$		
-	-	Dynamic pore pressure ratio (Piezocone only)	u/q _c		
Qt	-	Normalised cone resistance (Piezocone or using $q_t = q_c$)	$(q_t$ - $\sigma_{vo})$ / σ'_{vo} = q_n / σ'_{vo} where σ'_{vo} = vertical effective stress		
F _r	%	Normalised local friction (Piezocone or using $q_t = q_c$)	$f_s / (q_t - \sigma_{vo}) = f_s / q_n . 100 \%$		

Notes:	Project	A63 CASTLE STREET IMPROVEMENT – MAIN GI	
	Project No.	A5085-15	Key CPT
	Carried out for	Balfour Beatty	,
	Notes:	Project No.	Project No. A5085-15

Key to Cone Penetration Test Records ESG

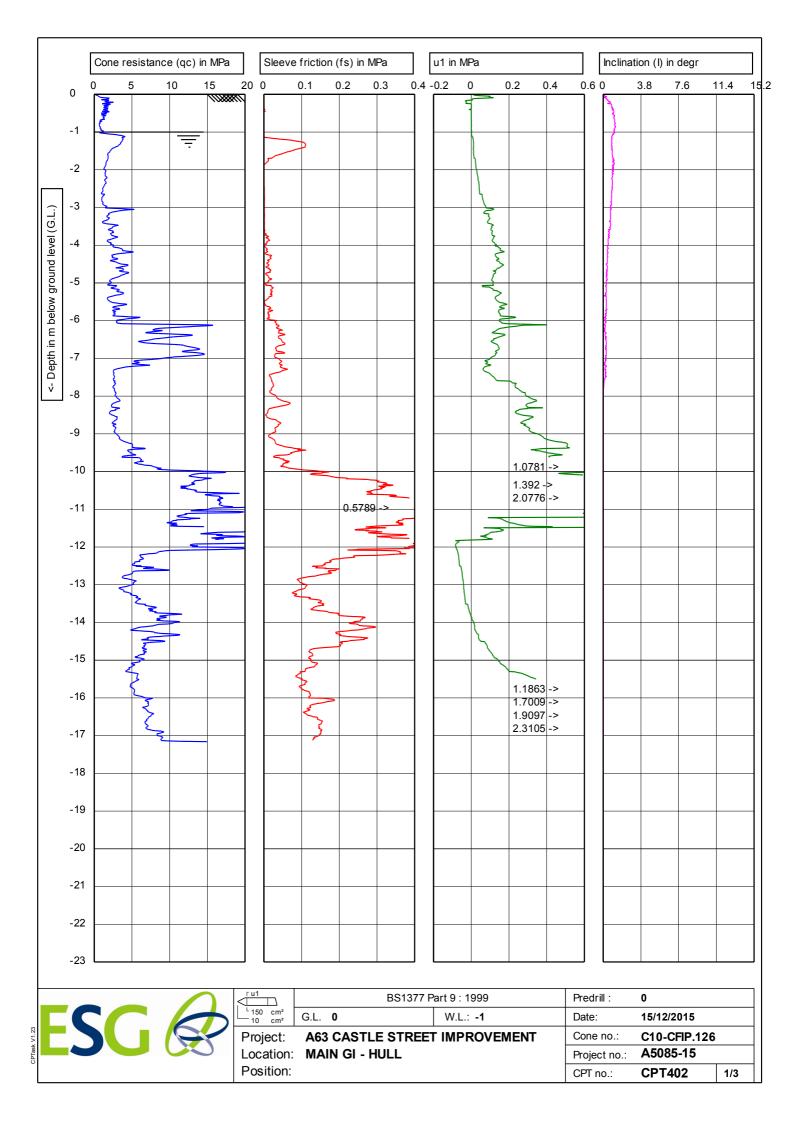

Parameter	Description	Remarks		
-	Soil Type	Classification after Robertson (1990) using normalised cone resistance, normalised friction ratio and pore pressure ratio (piezocone only), see Figure 1.		
s _u Undrained Shear		Interpretation for fine soils only – soil types 3 and 4.		
Su(min) and Su(max)	Strength (Clays)	Based on net cone resistance (corrected where pore pressure data available) and empirical cone factor		
		$= (q_c - \sigma_{vo}) / N_k$		
		Plots of minimum and maximum strength presented using N_k of 20 and 12.		
D _r	Relative Density	Interpretation for coarse soils only – soil types 5, 6 and 7.		
RD		After Baldi et al (1986) for moderately compressible, unaged, uncemented, silica sand		
		= $(1 / C_2)$. Ln $(q_c / C_0 (\sigma')^{\Lambda}C_1)$		
		For NC sands : $C_0 = 157$, $C_1 = 0.55$, $C_2 = 2.41$, $\sigma' = \sigma'_{vo}$		
		For OC sands : C_0 = 181, C_1 = 0.55, C_2 = 2.61, σ' = σ'_m and mean effective stress = σ'_m = (σ'_{vo} + 2 σ'_{ho}) / 3		
φ	Internal Friction	Interpretation for coarse soils only – soil types 5, 6 and 7.		
IFA	Angle	After Robertson and Campanella (1983) for uncemented, moderately incompressible, predominately silica sands		
		= Arctan (0.105 + 0.16 . Ln (q _c / σ' _{vo}))		

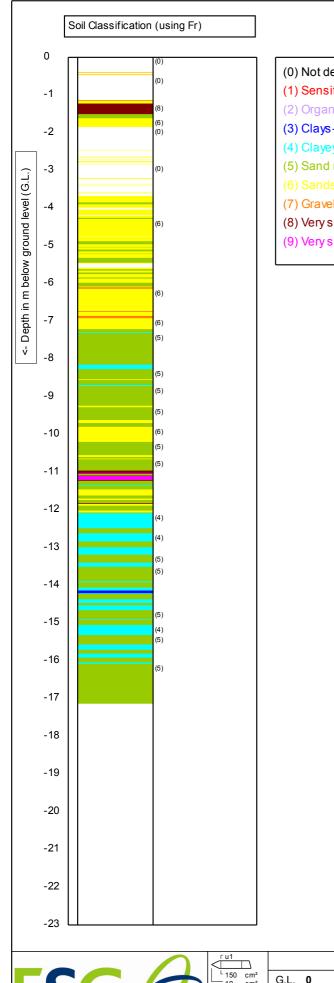

Notes:	Project	A63 CASTLE STREET IMPROVEMENT – MAIN GI	
	Project No.	A5085-15	Key CPT
	Carried out for	Balfour Beatty	

Key to Cone Penetration Test Records

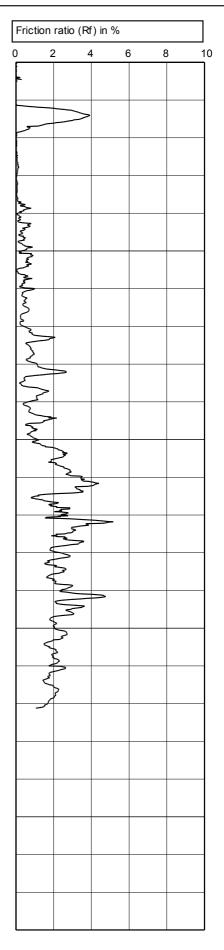
Soil Behaviour Type Interpretation

KEY TO SOIL BEHAVIOUR TYPES - after Robertson (1990)


ZONE	SOIL BEHAVIOUR TYPE	ZONE	SOIL BEHAVIOUR TYPE	ZONE	SOIL BEHAVIOUR TYPE
1	Sensitive fine grained	4	Silt mixtures: clayey silt to silty clay	7	Gravelly sand to sand
2	Organic soils – peats	5	Sand mixtures: silty sand to sandy silt	8	Very stiff sand to clayey sand
3	Clays: clay to silty clay	6	Sands: clean sand to silty sand	9	Very stiff fine grained


Notes:

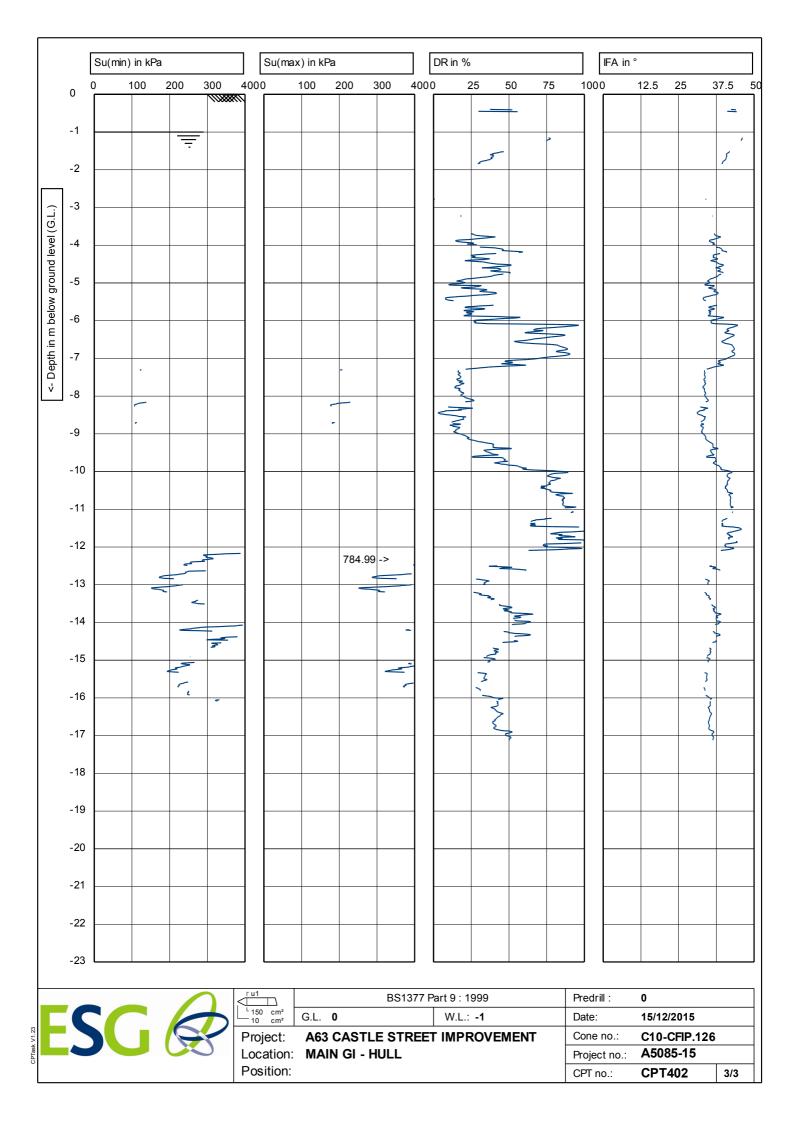
A63 CASTLE STREET IMPROVEMENT – MAIN GI

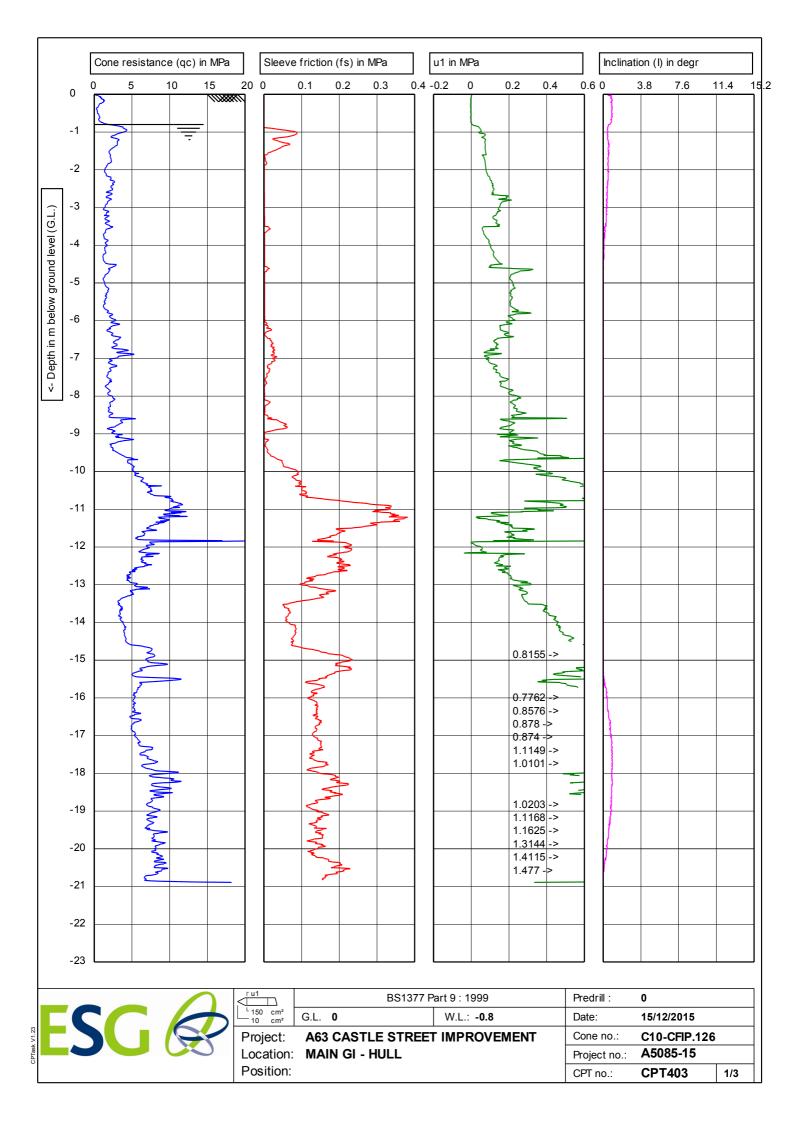

A5085-15
Balfour Beatty

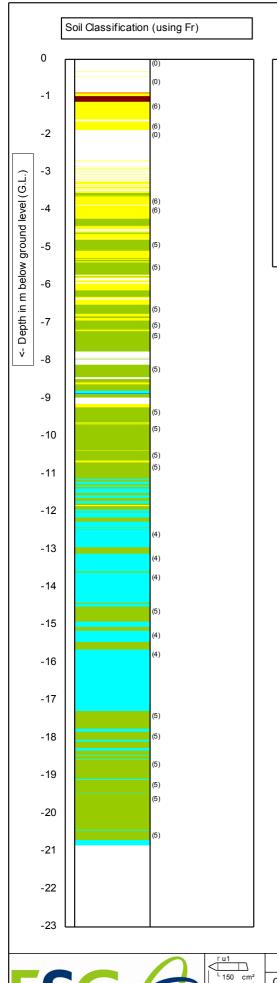
Key CPT

- (0) Not defined
- (1) Sensitive, fine grained
- (2) Organic soils-peats
- (3) Clays-clay to silty clay
- (4) Clayey silt to silty clay
- (5) Sand mixtures
- (7) Gravelly sand to sand
- (8) Very stiff sand to clayey sand
- (9) Very stiff fine grained

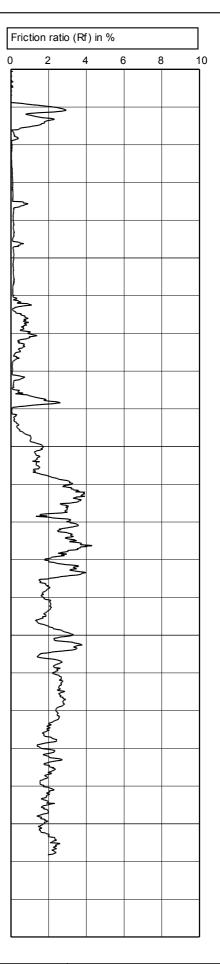
15/12/2015 C10-CFIP.126


2/3




	BS1377 P	Predrill:	0	
150 cm² 10 cm²	G.L. 0	W.L.: -1	Date:	15
Droigot:	A62 CASTLE STREET	Cone no :	<u></u>	

Project: A63 CASTLE STREET IMPROVEMENT Location:


A5085-15 **MAIN GI - HULL** Project no.: Position: CPT no.: **CPT402**

- (0) Not defined
- (1) Sensitive, fine grained
- (2) Organic soils-peats
- (3) Clays-clay to silty clay
- (4) Clayey silt to silty clay
- (5) Sand mixtures
- (7) Gravelly sand to sand
- (8) Very stiff sand to clayey sand
- (9) Very stiff fine grained

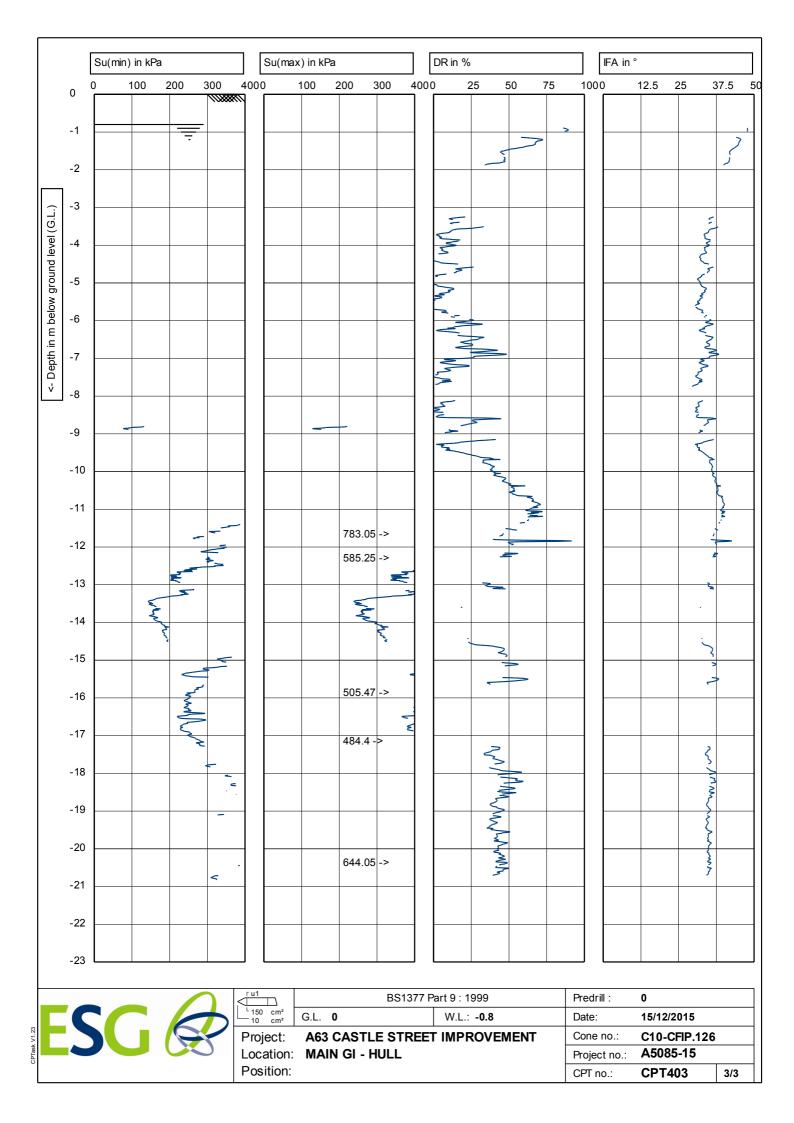
	C ui	\Box
>	150 10	cm²
	Proje	ect:

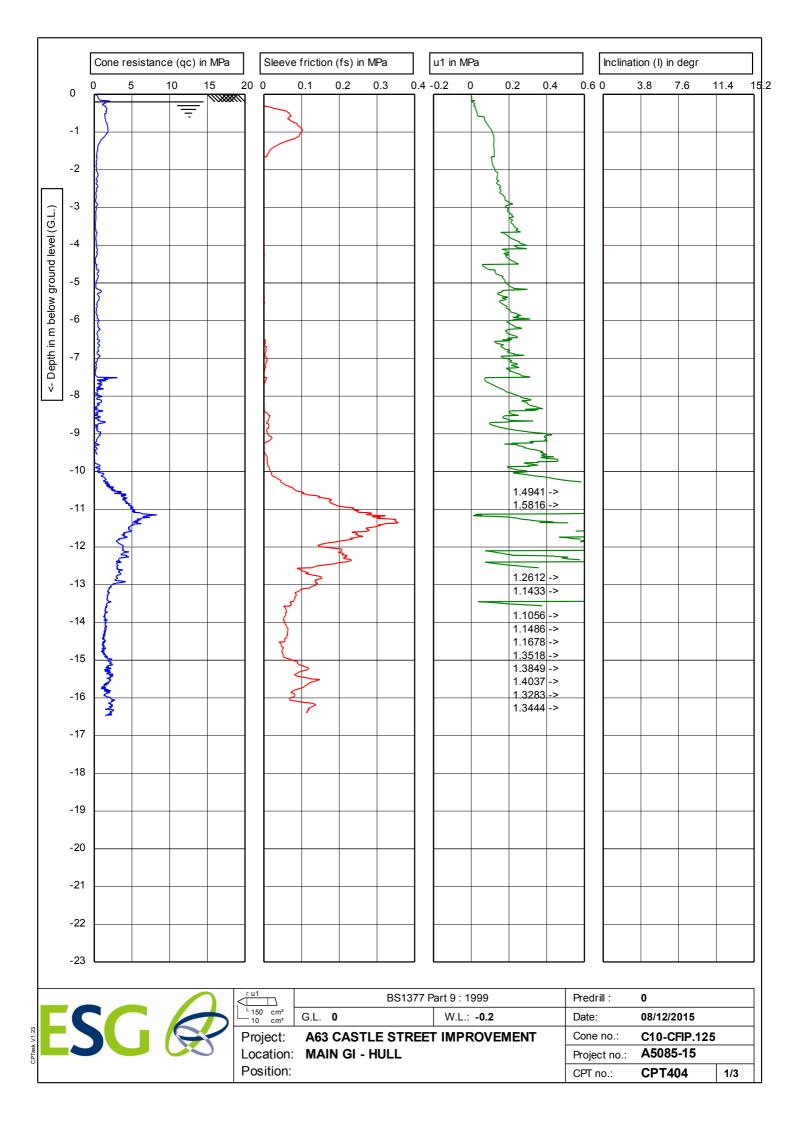
Position:

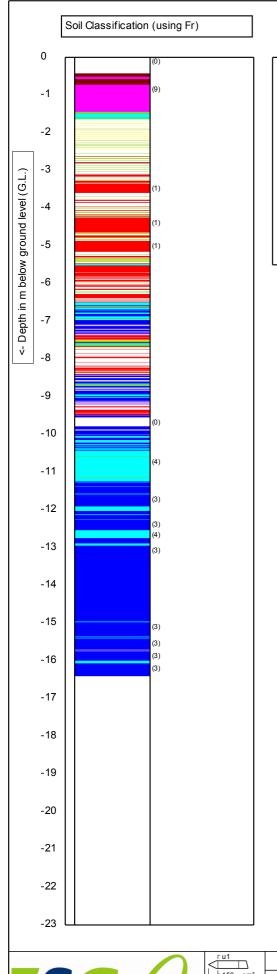
G.L. **0**

BS1377 Part 9: 1999

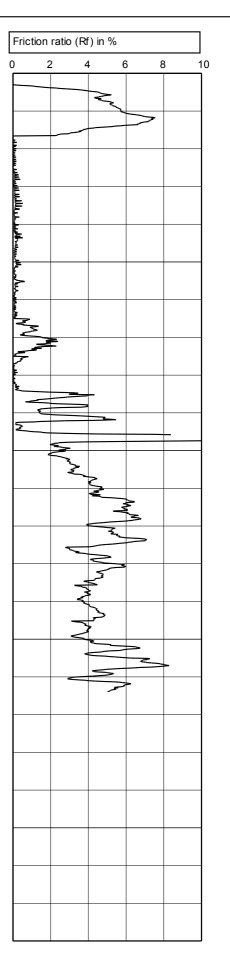
W.L.: -0.8


A63 CASTLE STREET IMPROVEMENT Location: MAIN GI - HULL

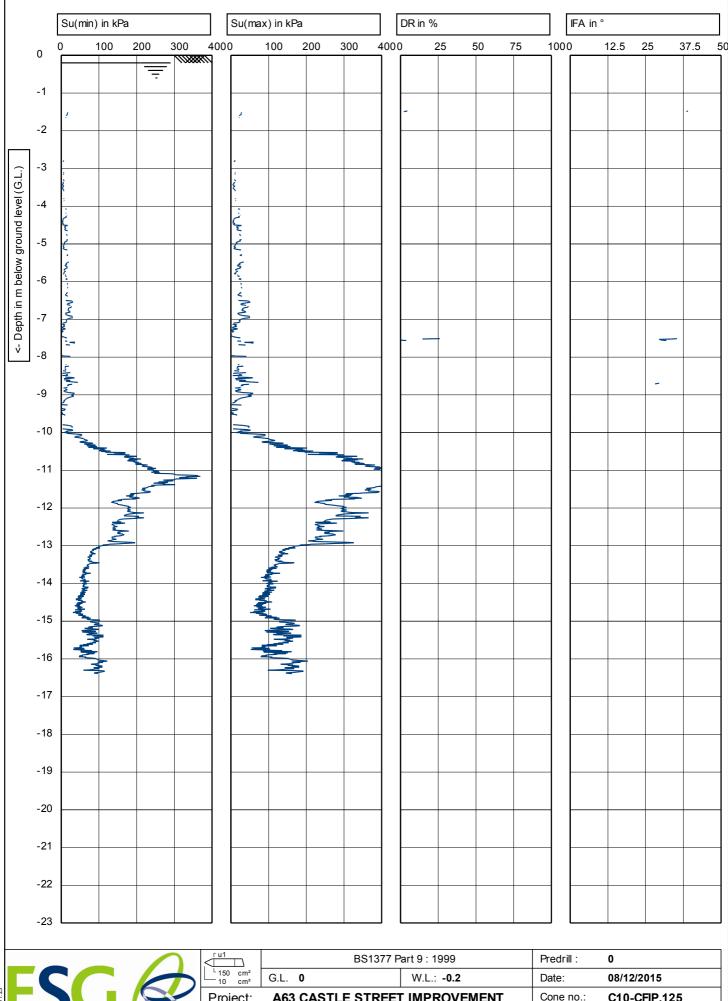

Predrill: 0 Date:


15/12/2015

Cone no.: C10-CFIP.126 A5085-15 Project no.:


CPT no.: **CPT403** 2/3

- (0) Not defined
- (1) Sensitive, fine grained
- (2) Organic soils-peats
- (3) Clays-clay to silty clay
- (4) Clayey silt to silty clay
- (5) Sand mixtures
- (6) Sands
- (7) Gravelly sand to sand
- (8) Very stiff sand to clayey sand
- (9) Very stiff fine grained

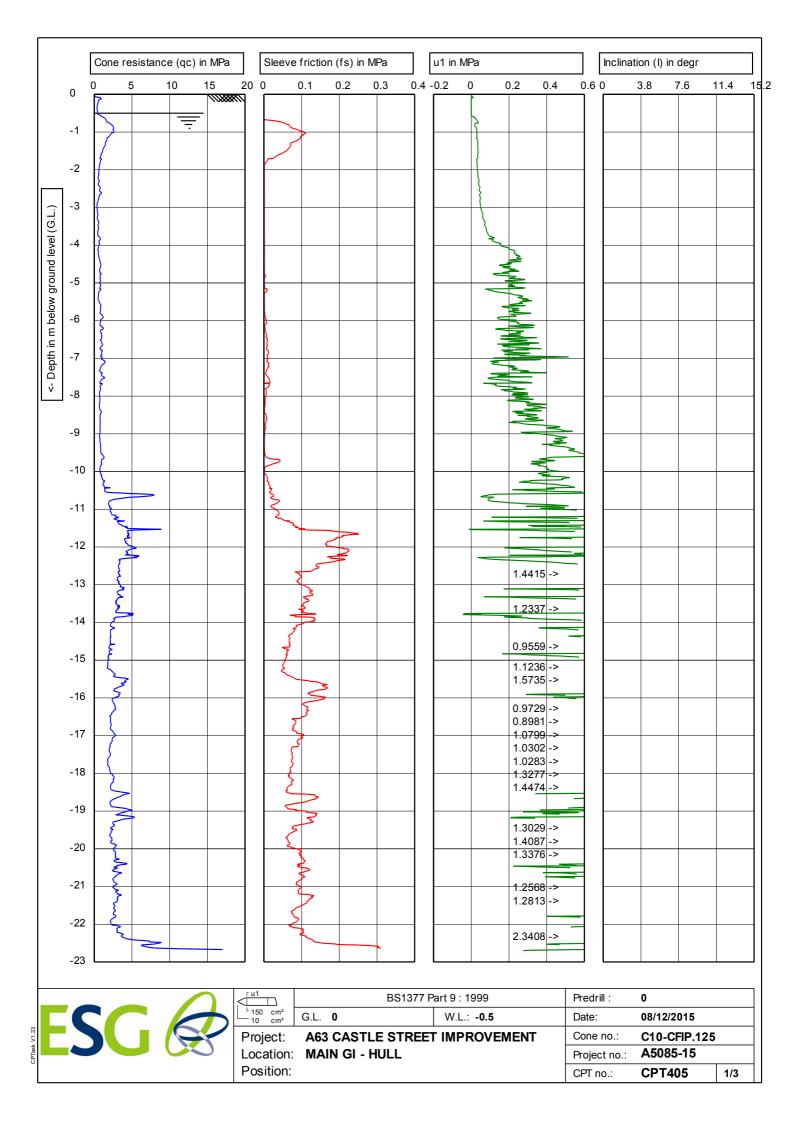

_ru1		BS1377	Predrill :	0	
	150 cm ² 10 cm ²	G.L. 0	W.L.: -0.2	Date:	08/12/2015
	Project:	A63 CASTLE STRE	ET IMPROVEMENT	Cone no.:	C10-CFIP.12

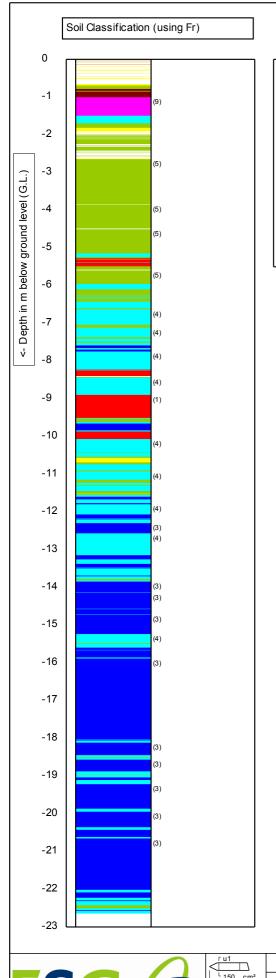
Project: A63 CASTLE STREET IMPROVEMENT Location: MAIN GI - HULL

Position:

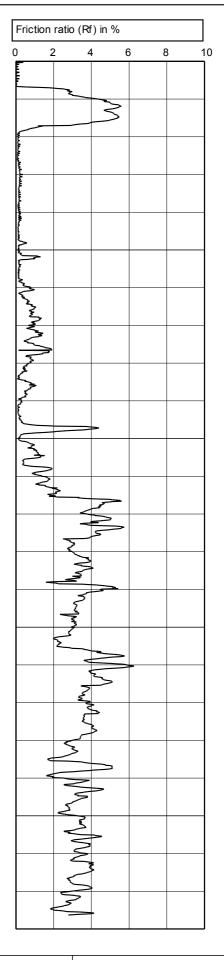
Project no.: **A5085-15**CPT no.: **CPT404**

2/3




	_ Tu1	BS1377 Part 9 : 1999		Predrill:	0
)	150 cm ² 10 cm ²	G.L. 0	W.L.: -0.2	Date:	08/12/2015
	Project:	ect: A63 CASTLE STREET IMPROVEMENT		Cone no.:	C10-CFIP.125

Location: MAIN GI - HULL


Position:

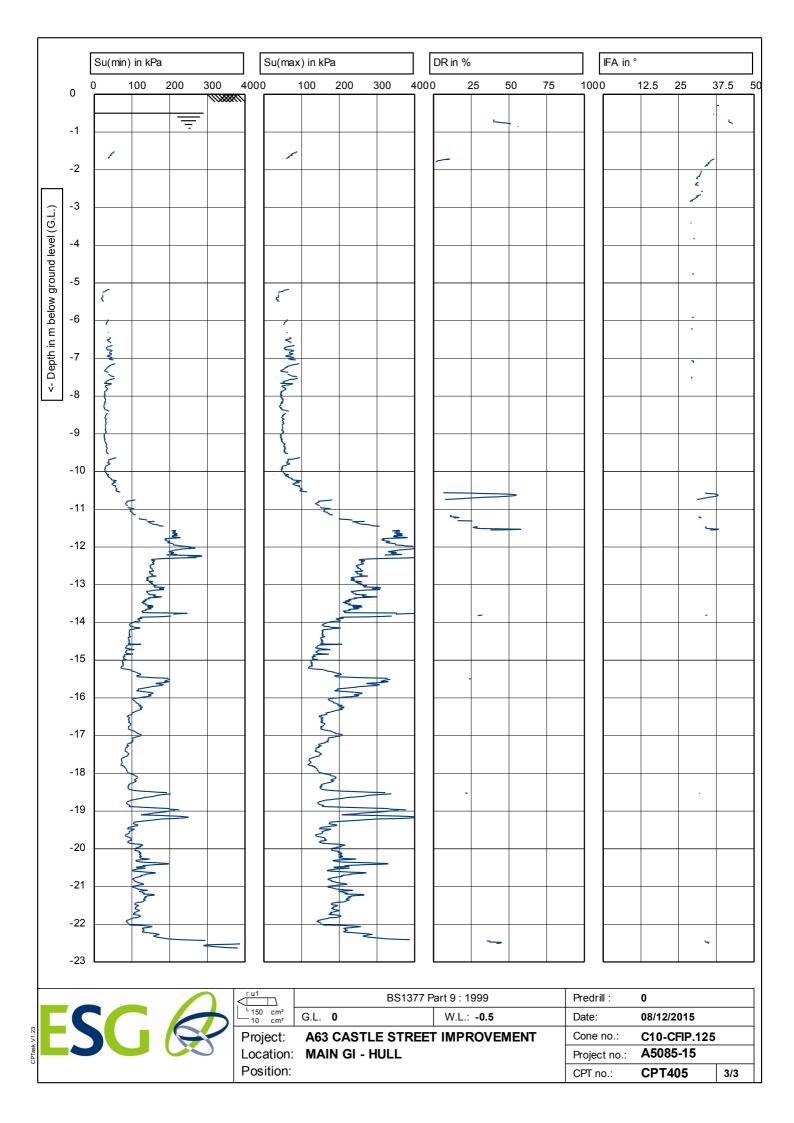
A5085-15 Project no.: **CPT404** CPT no.: 3/3

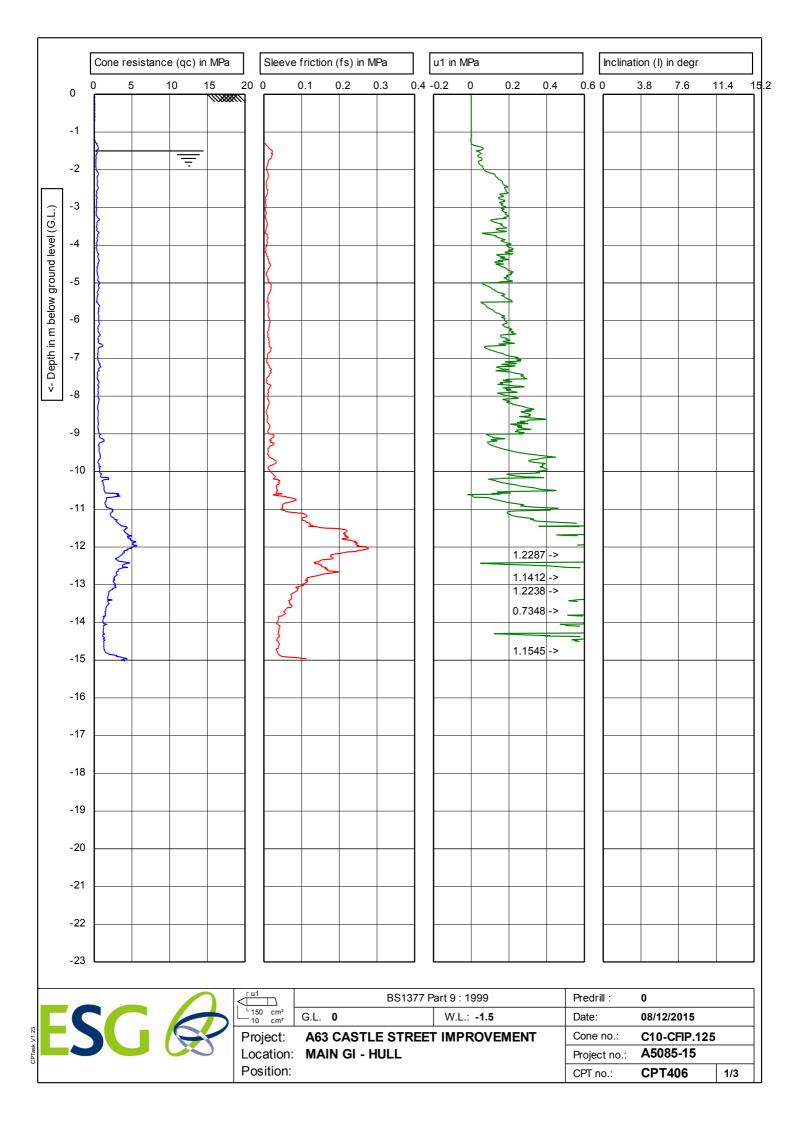
- (0) Not defined
- (1) Sensitive, fine grained
- (2) Organic soils-peats
- (3) Clays-clay to silty clay
- (4) Clayey silt to silty clay
- (5) Sand mixtures
- (7) Gravelly sand to sand
- (8) Very stiff sand to clayey sand
- (9) Very stiff fine grained

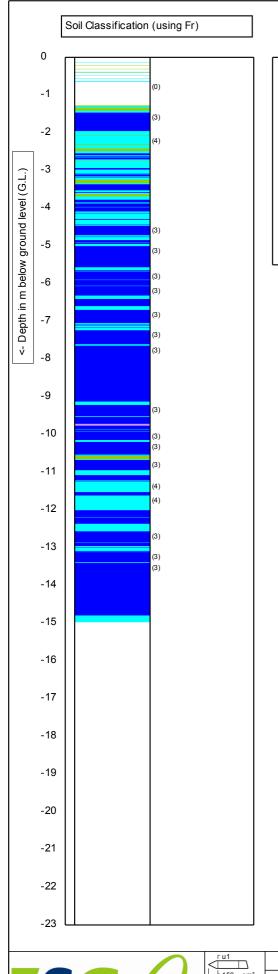
	ru1			
	^L 150	cm ²		
•	<u></u> 10	cm ²		
•				

Position:

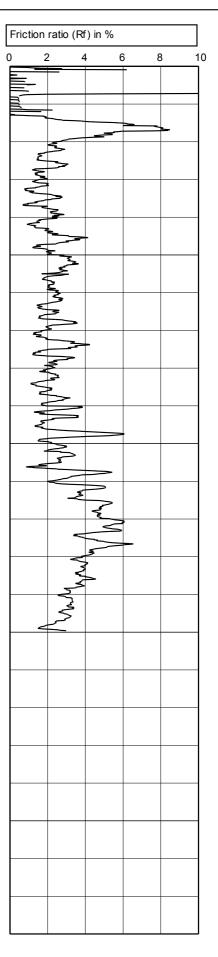
BS1377 Part 9: 1999 G.L. **0**


W.L.: -0.5


Predrill: 0 08/12/2015 Date:


Cone no.: Project no.: CPT no.:

C10-CFIP.125 A5085-15 **CPT405** 2/3


A63 CASTLE STREET IMPROVEMENT Project: Location: MAIN GI - HULL

- (0) Not defined
- (1) Sensitive, fine grained
- (2) Organic soils-peats
- (3) Clays-clay to silty clay
- (4) Clayey silt to silty clay
- (5) Sand mixtures
- (7) Gravelly sand to sand
- (8) Very stiff sand to clayey sand
- (9) Very stiff fine grained

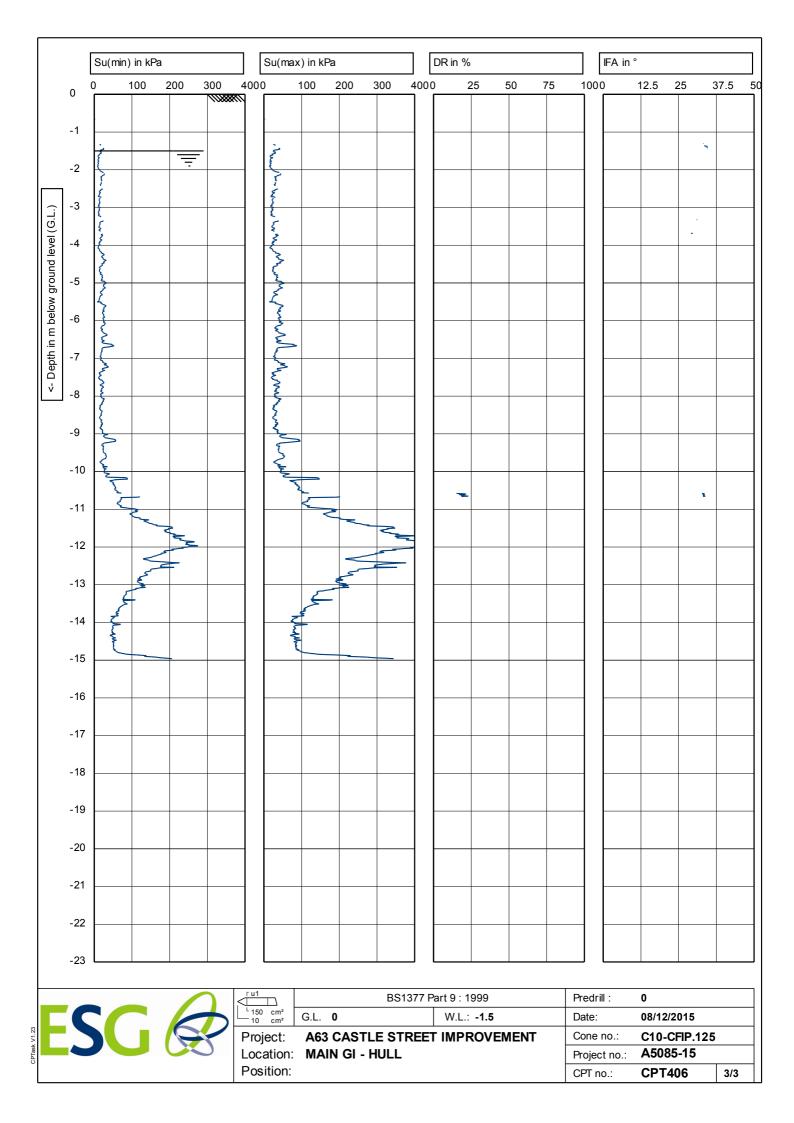
u1		
150 10	cm²	
Project:		

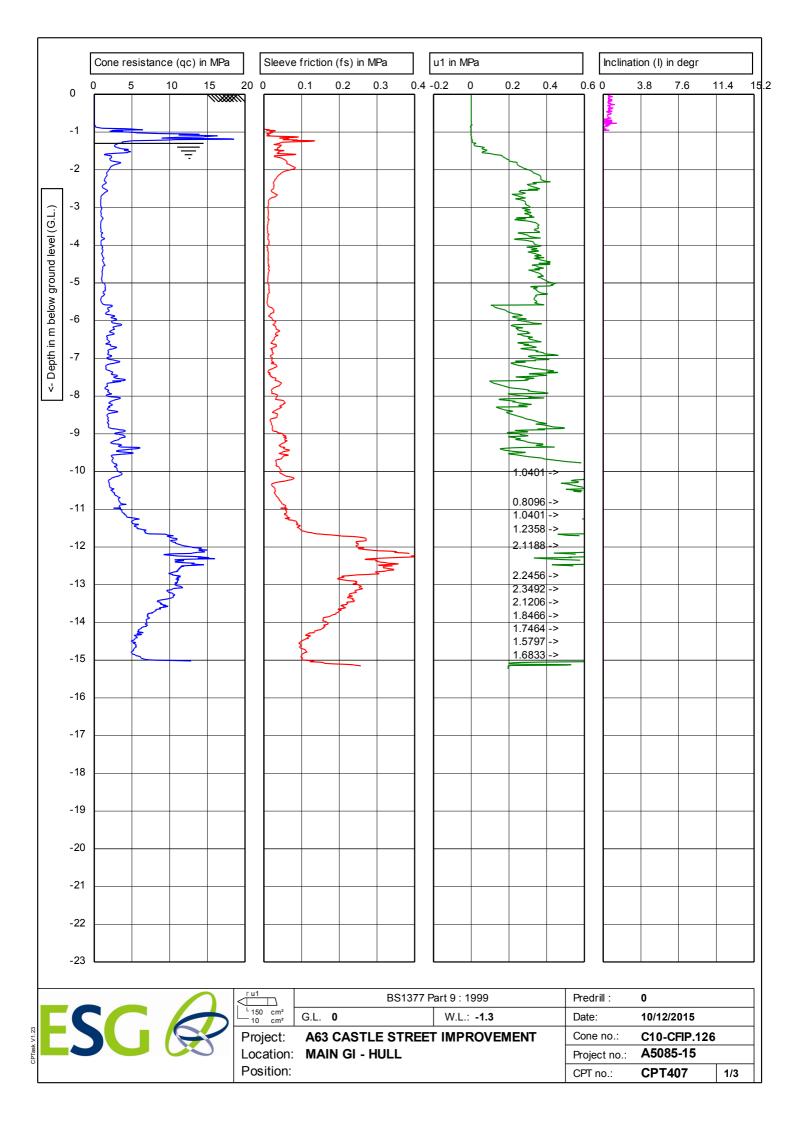
BS1377 Part 9: 1999 G.L. **0**

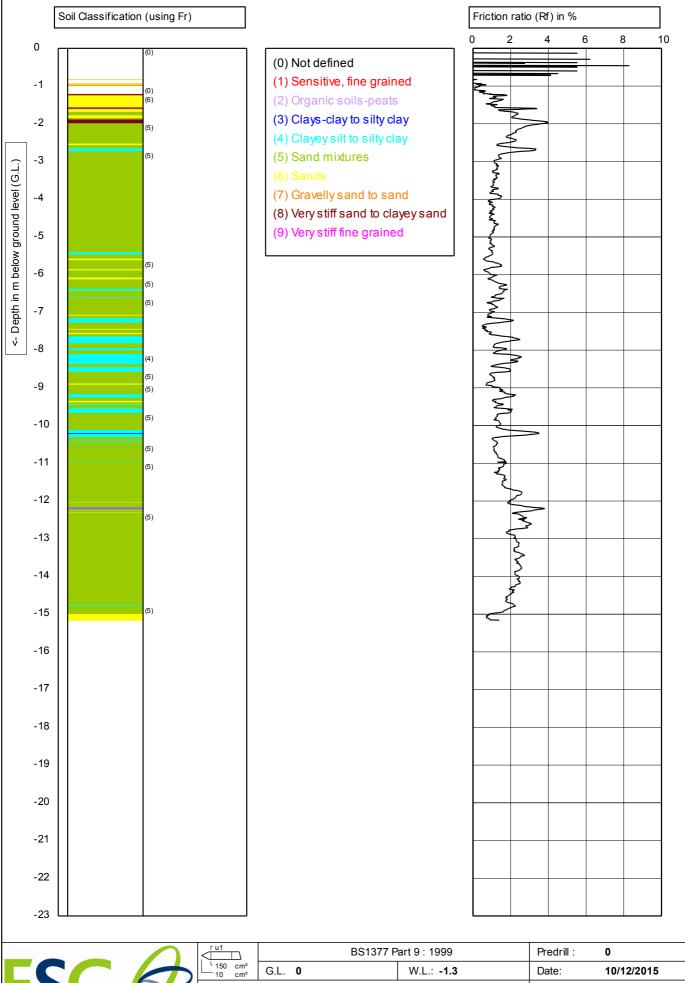
W.L.: -1.5

Predrill: 0 08/12/2015 Date:

Cone no.:


C10-CFIP.125 A5085-15


2/3


Location: MAIN GI - HULL Position:

A63 CASTLE STREET IMPROVEMENT

Project no.: CPT no.: **CPT406**

A63 CASTLE STREET IMPROVEMENT

MAIN GI - HULL

Cone no.:

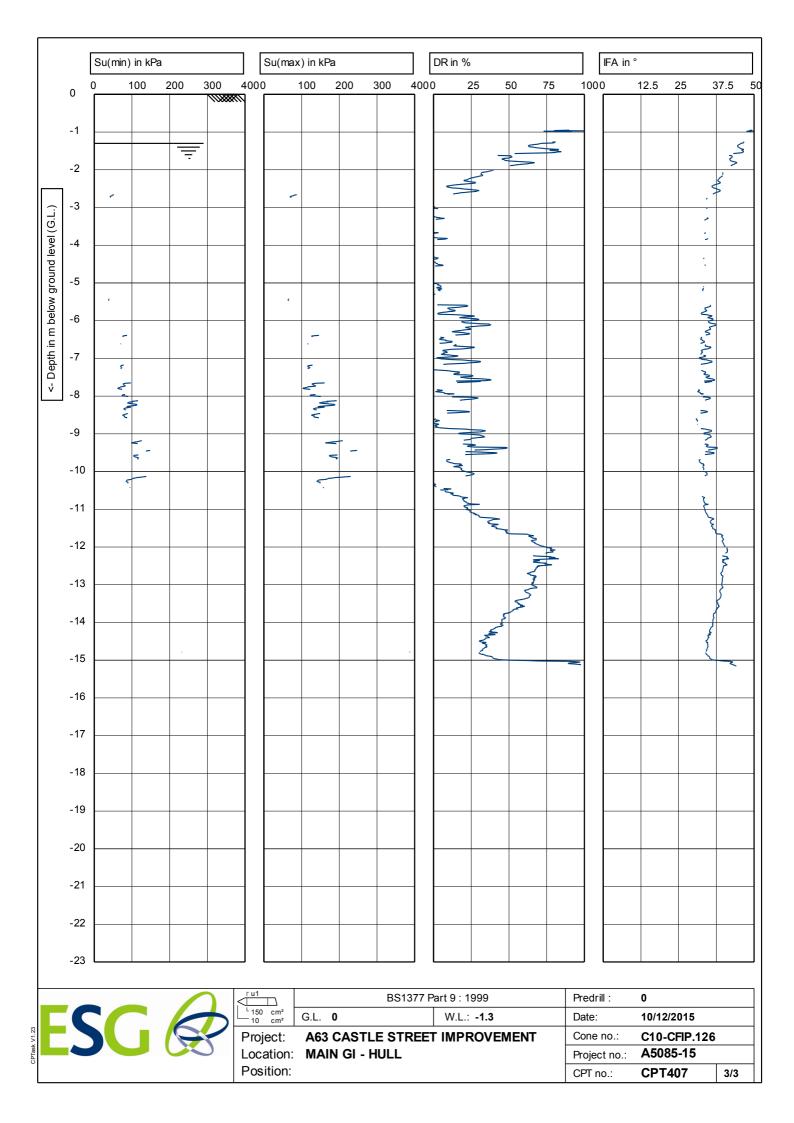
CPT no.:

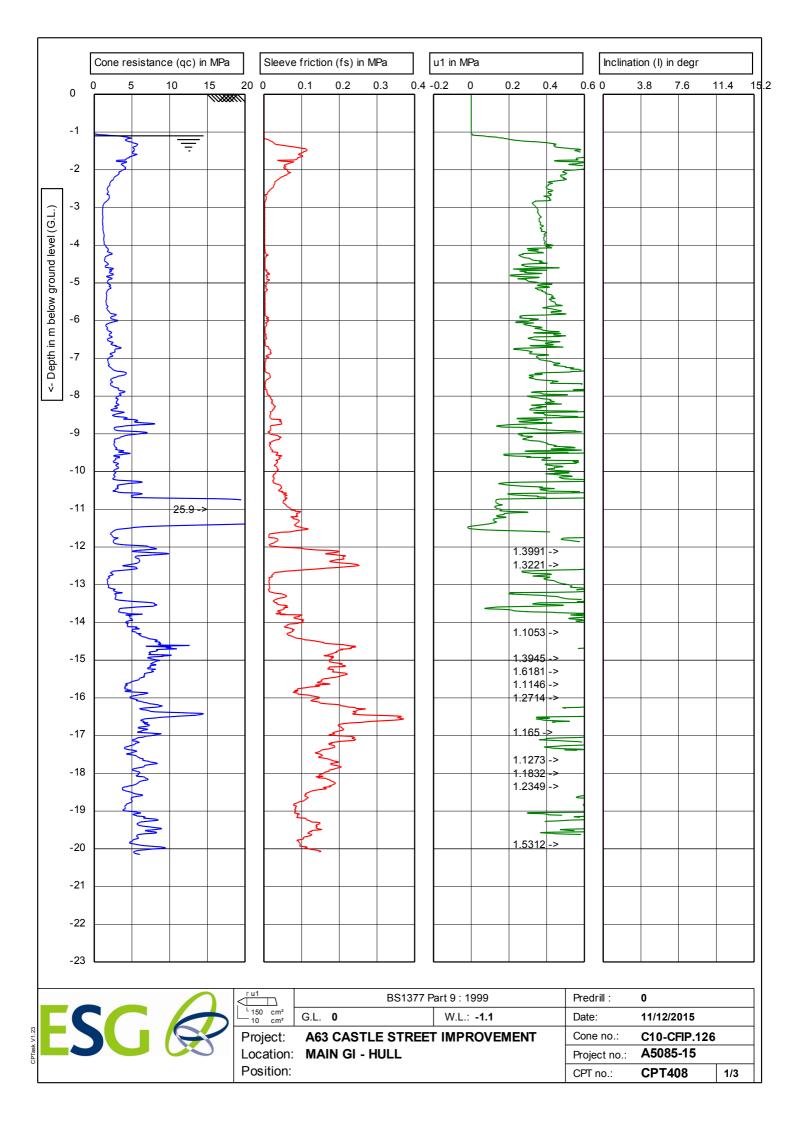
Project no.:

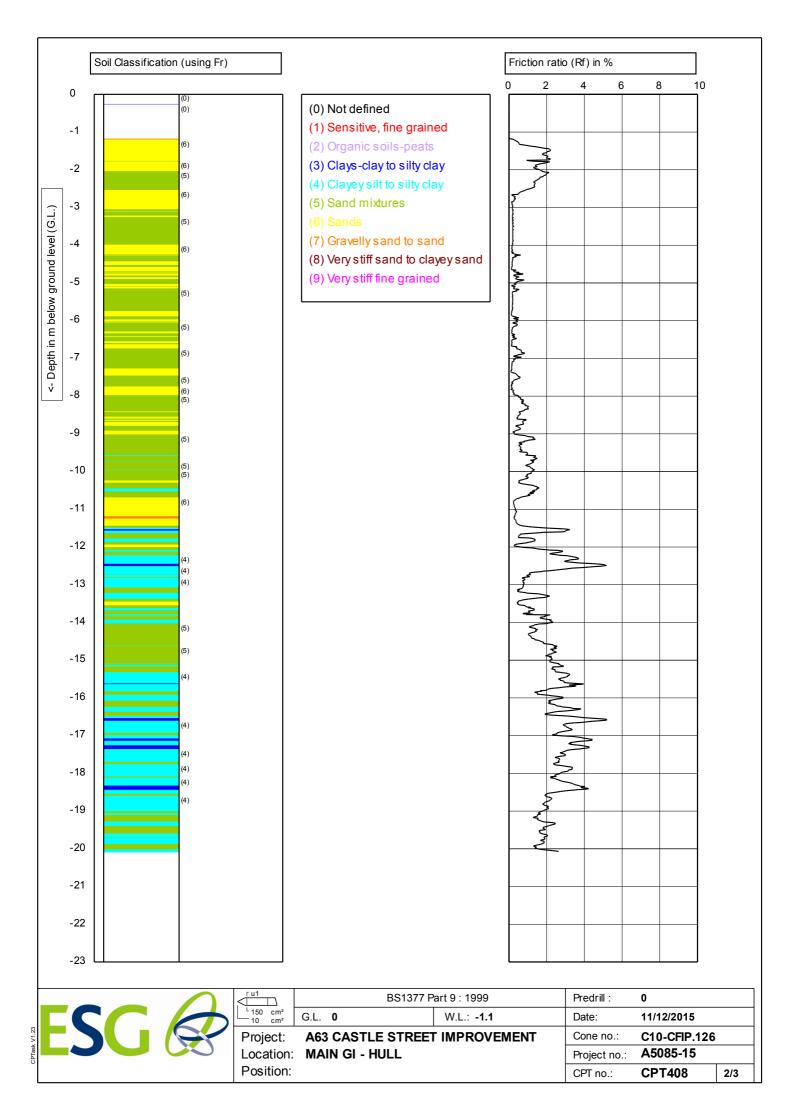
C10-CFIP.126

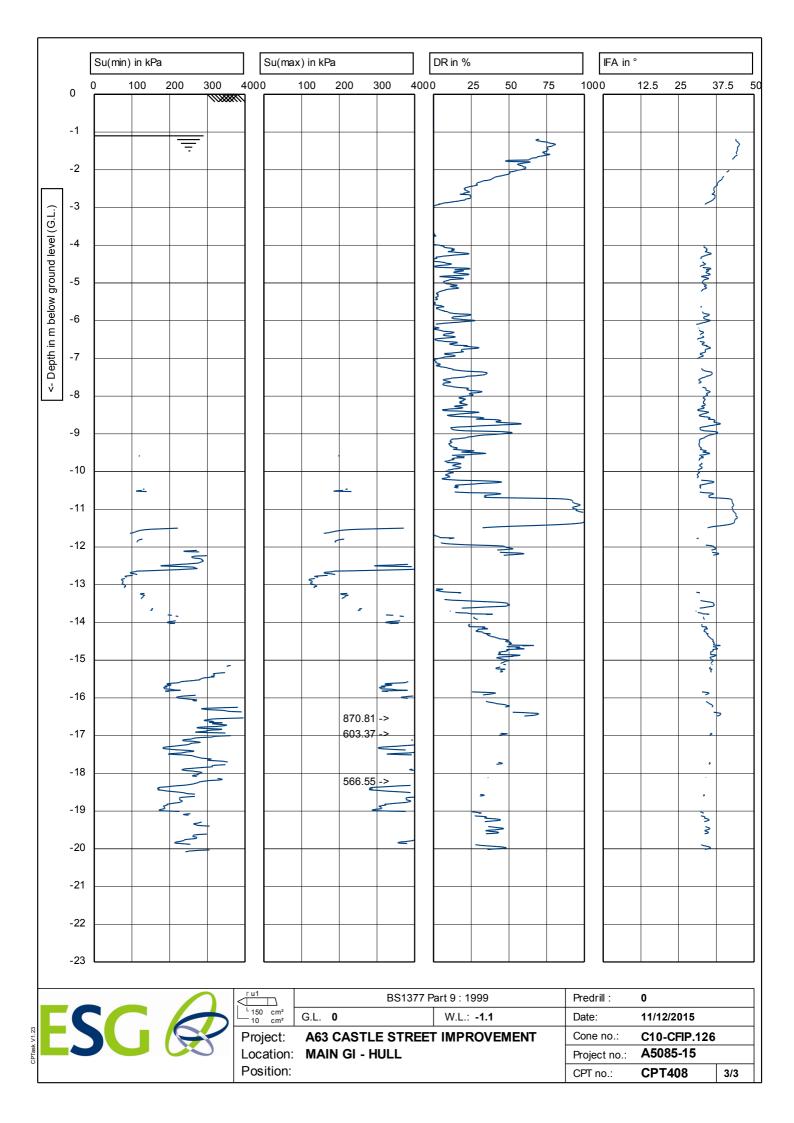
2/3

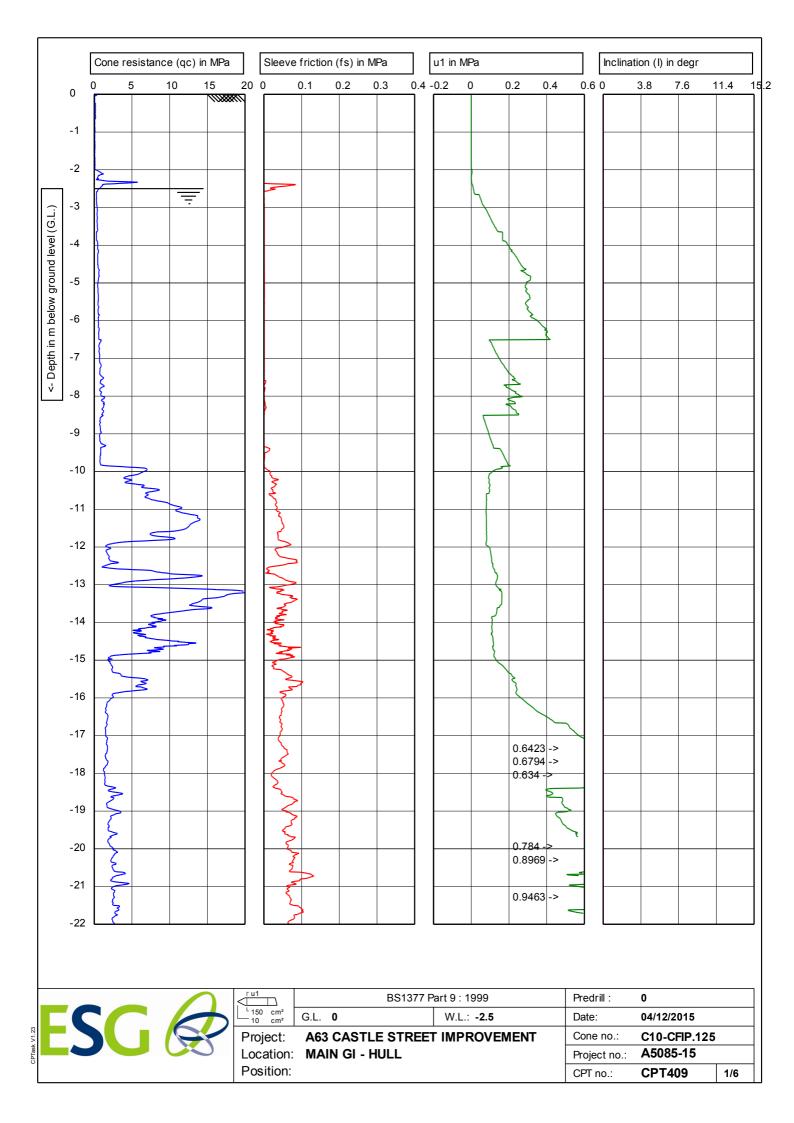
A5085-15

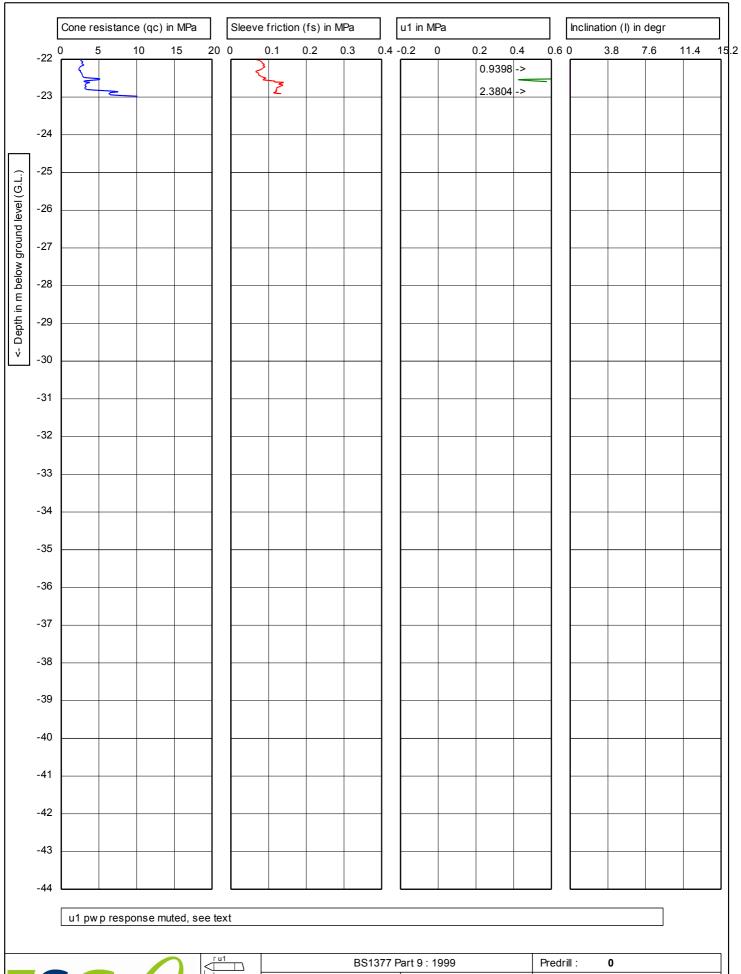

CPT407


Project:


Location:


Position:


CPTask V1.23



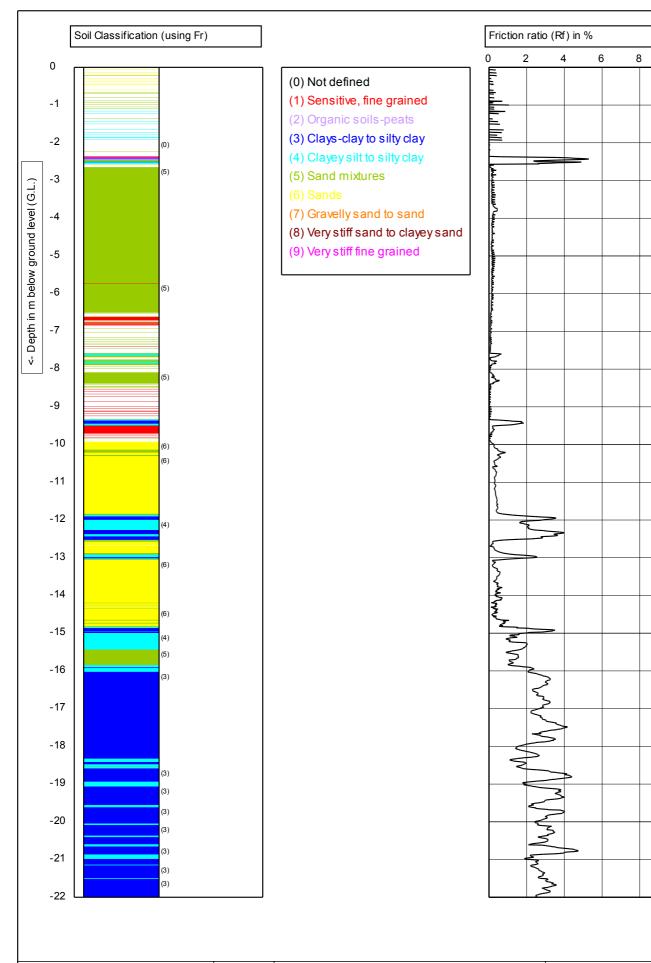
1	$\overline{}$
	150
	Pro

Position:

G.L.

W.L.: -2.5

Date:


04/12/2015

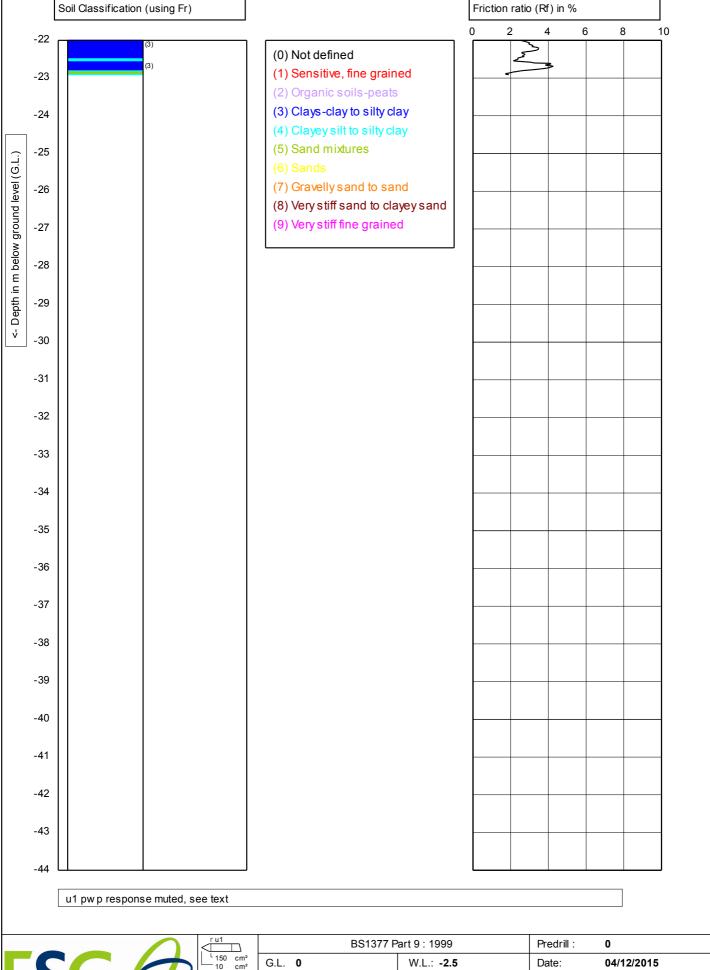
A63 CASTLE STREET IMPROVEMENT roject: Location:

MAIN GI - HULL

C10-CFIP.125 Cone no.: A5085-15 Project no.:

CPT409 CPT no.: 2/6

Position:


BS1377 Part 9 : 1999		Predrill:	0	
150 cm ² 10 cm ²	G.L. 0	W.L.: -2.5	Date:	04/12/2015
Project:	A63 CASTLE STREET IMPROVEMENT		Cone no.:	C10-CFIP.125
Location:	MAIN GI - HULL		Project no.:	A5085-15

CPT409

3/6

CPT no.:

10

A63 CASTLE STREET IMPROVEMENT

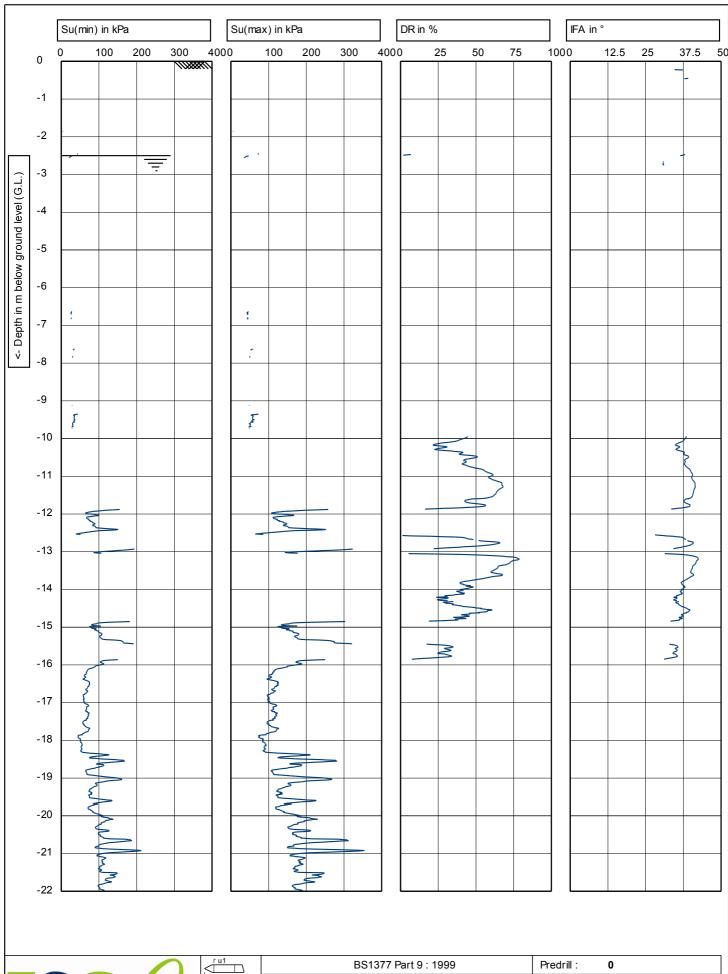
C10-CFIP.125

4/6

A5085-15

CPT409

Cone no.:

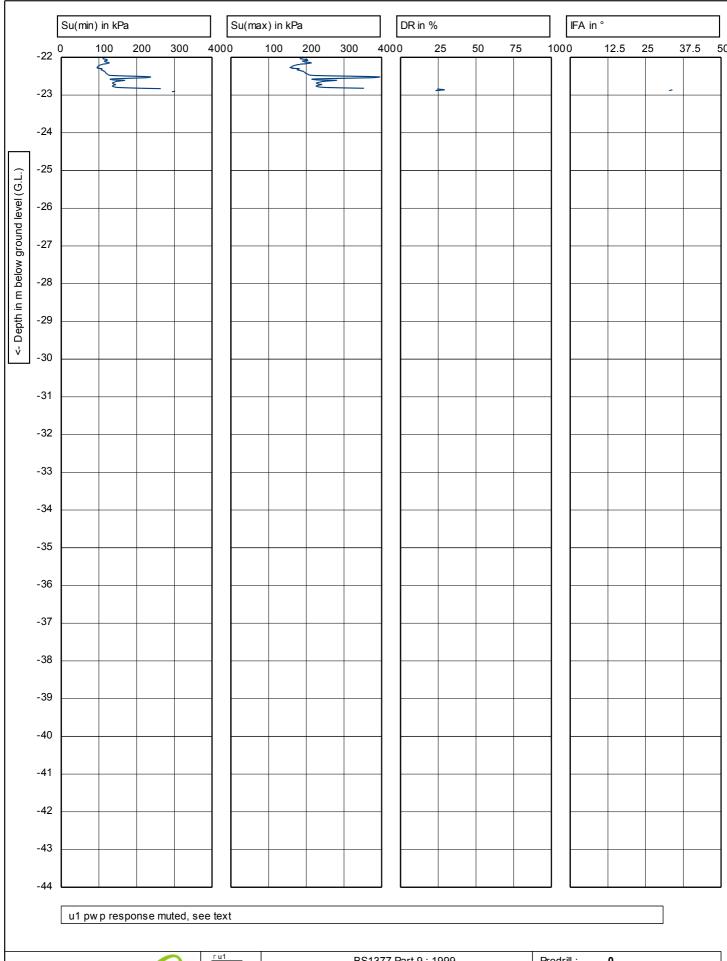

CPT no.:

Project no.:

Project:

Position:

Location: MAIN GI - HULL

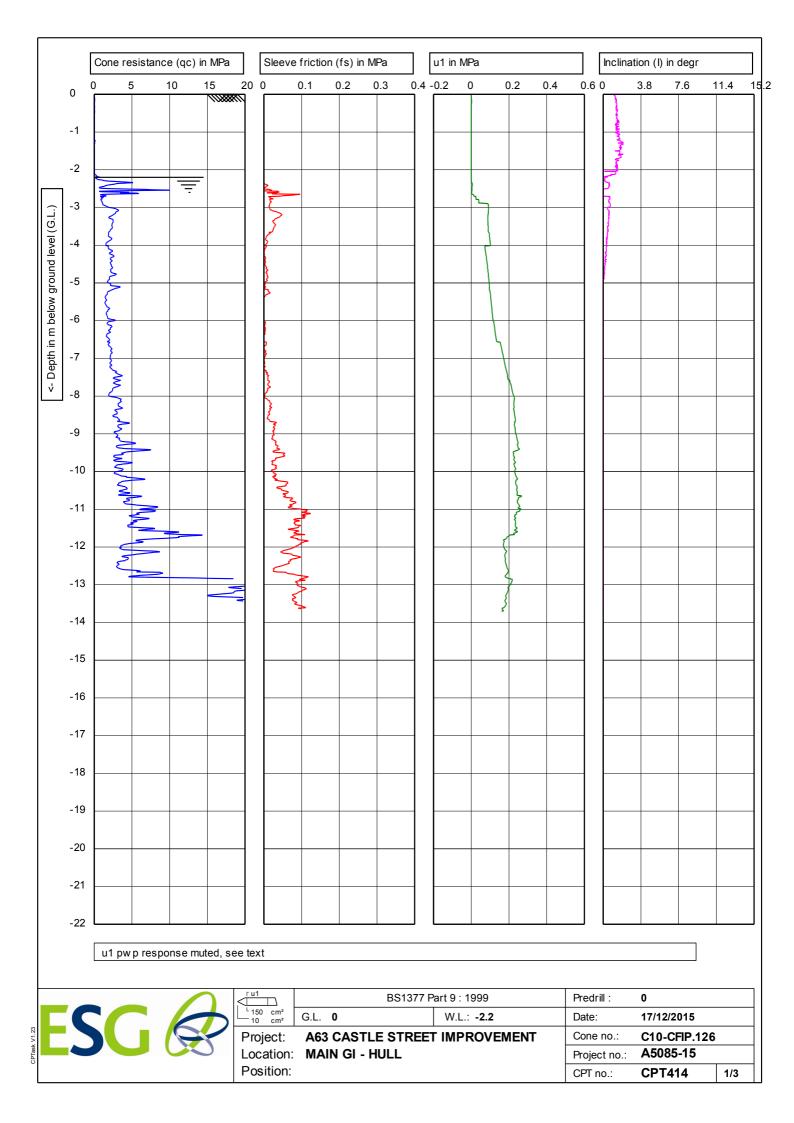

	T u1 L 150 cm ² 10 cm ²	BS1377 Part 9 : 1999			Predrill:	0
		G.L.	0	W.L.: -2.5	Date:	04/12/2015
	Project:	A63	A63 CASTLE STREET IMPROVEMENT			C10-CFIP.125

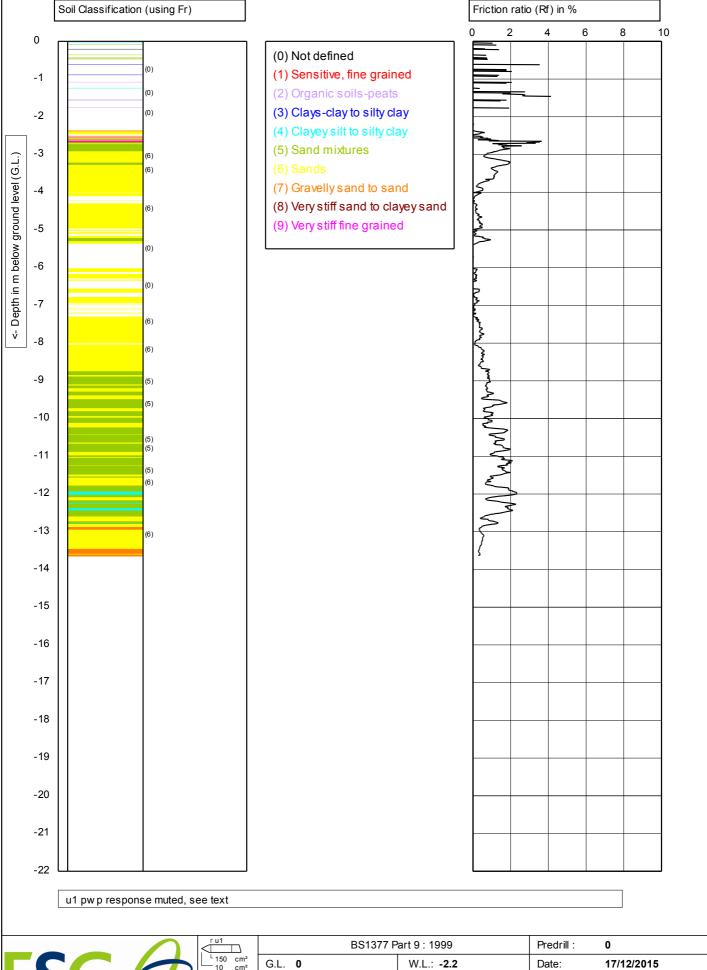
Location: MAIN GI - HULL Position:

 Cone no.:
 C10-CFIP.125

 Project no.:
 A5085-15

 CPT no.:
 CPT409
 5/6


_ u1	BS1377 P	Predrill:	0	
150 cm ² 10 cm ²	G.L. 0	W.L.: -2.5	Date:	04/12/2015
Project:	A63 CASTLE STREET IMPROVEMENT		Cone no.:	C10-CFIP.125


Location: MAIN GI - HULL

Position:

Project no.: **A5085-15**CPT no.: **CPT409**

6/6

A63 CASTLE STREET IMPROVEMENT

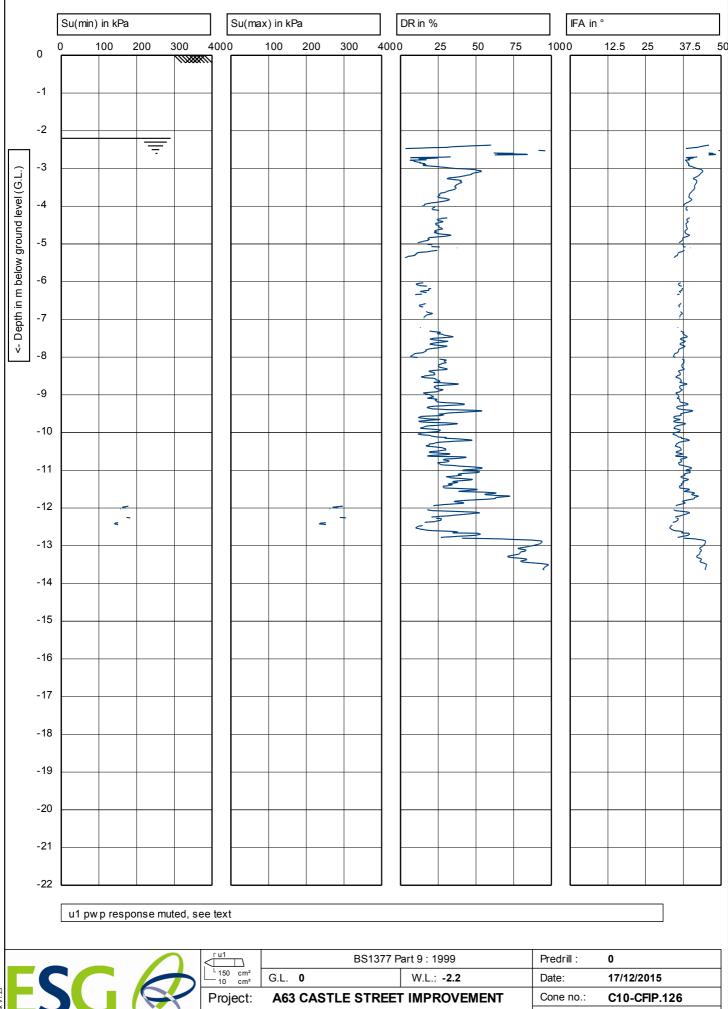
Cone no.:

CPT no.:

Project no.:

C10-CFIP.126

2/3

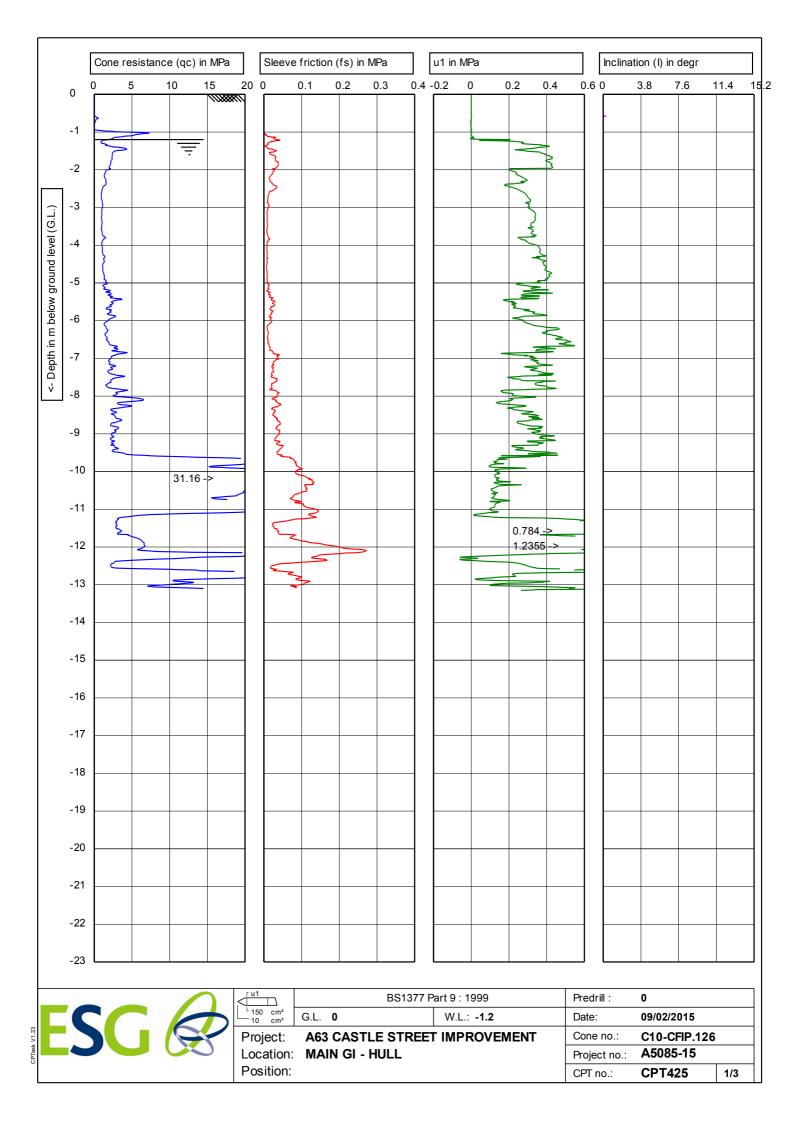

A5085-15

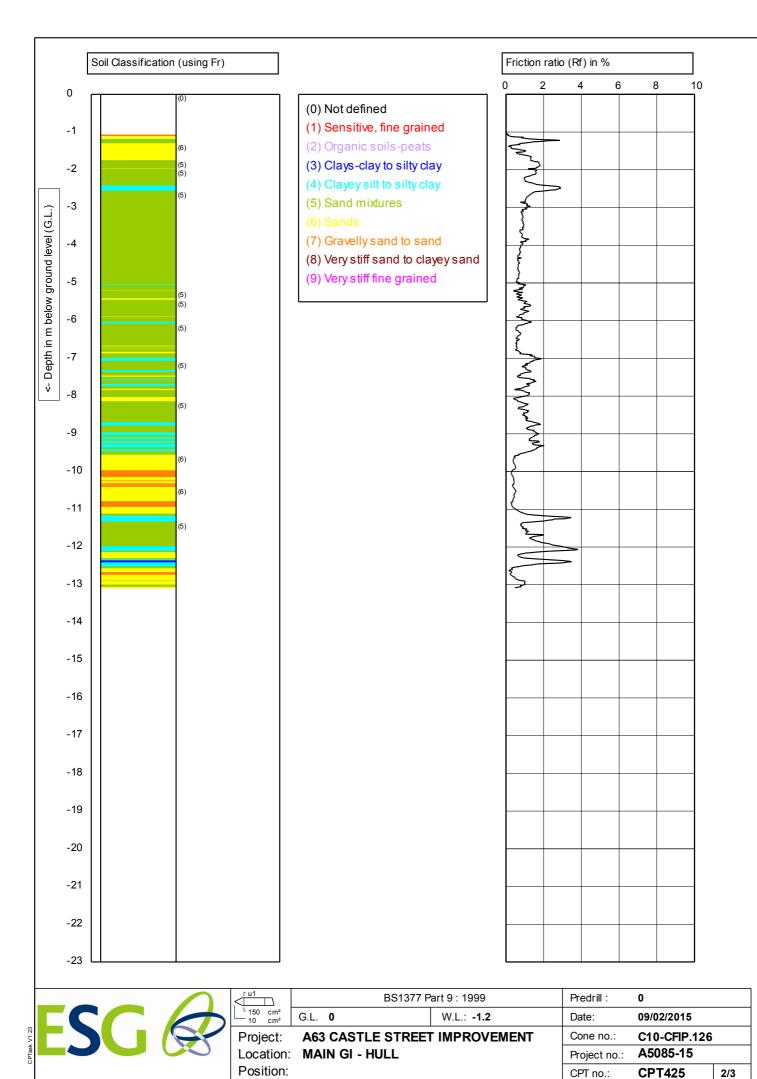
CPT414

Project:

Position:

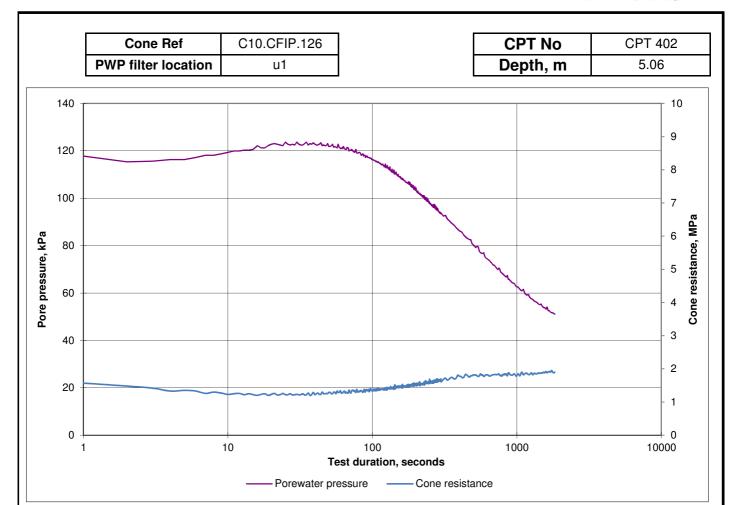
Location: MAIN GI - HULL

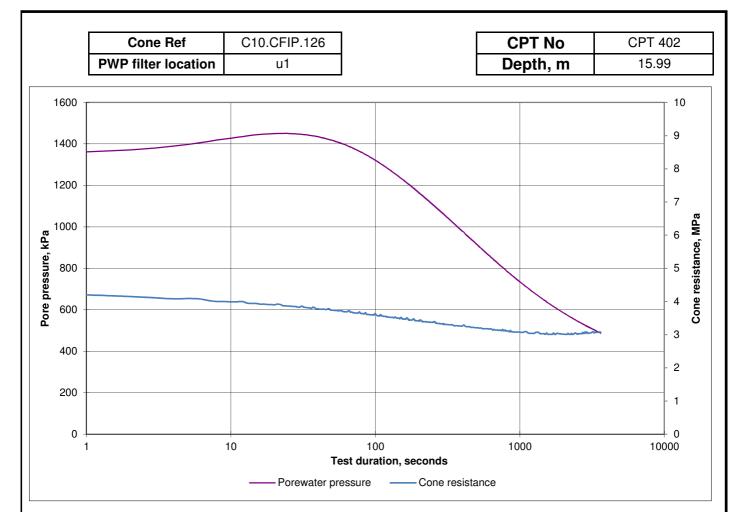


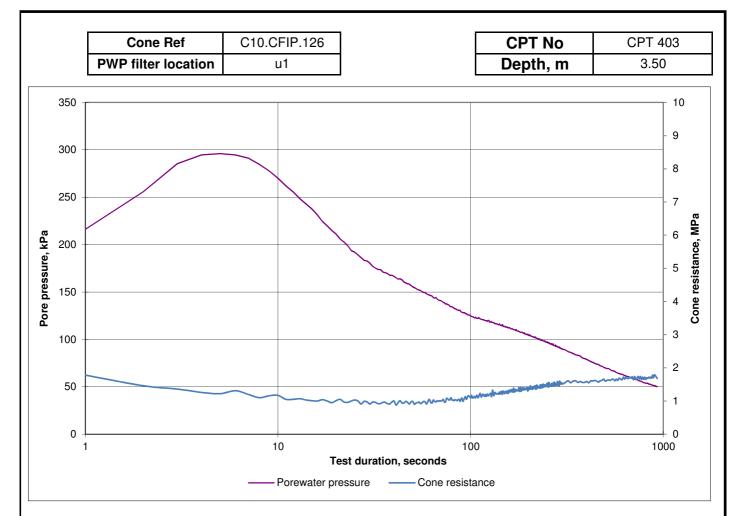

A5085-15

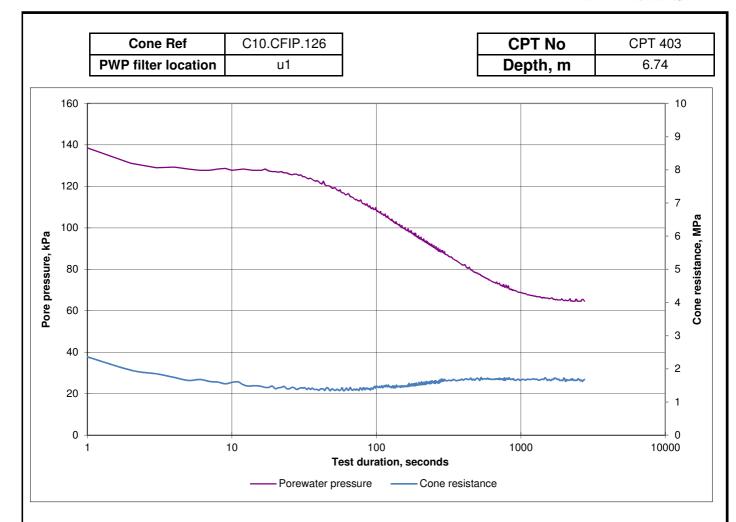
3/3

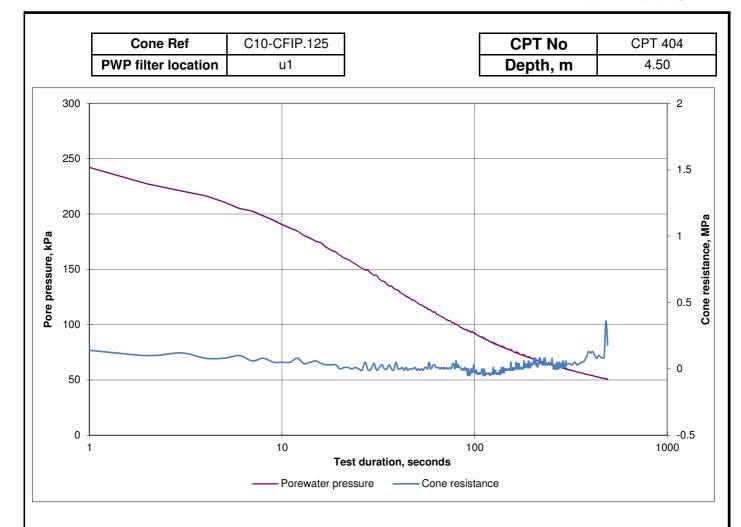
Location: **MAIN GI - HULL** Position:

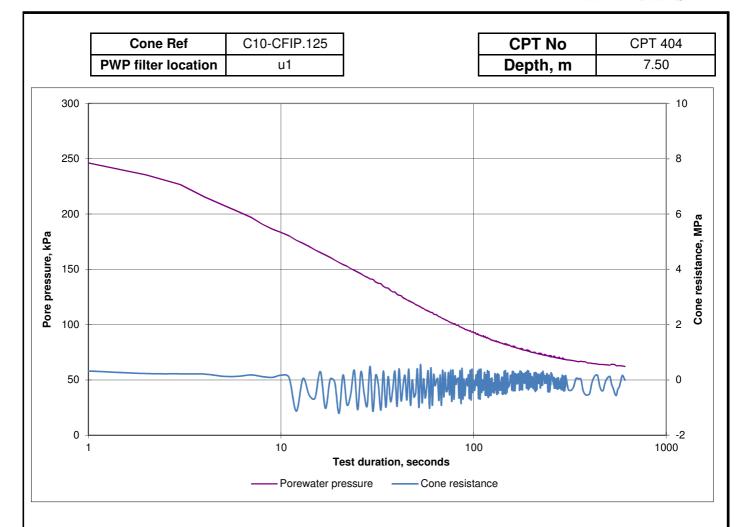

Project no.: **CPT414** CPT no.:

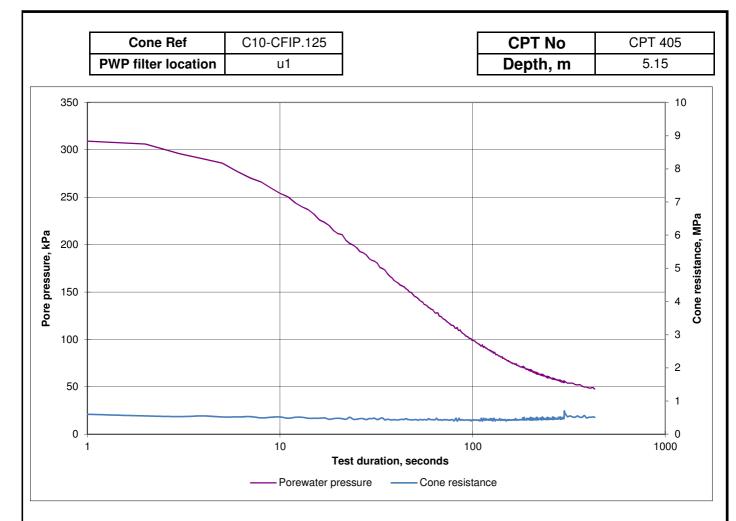


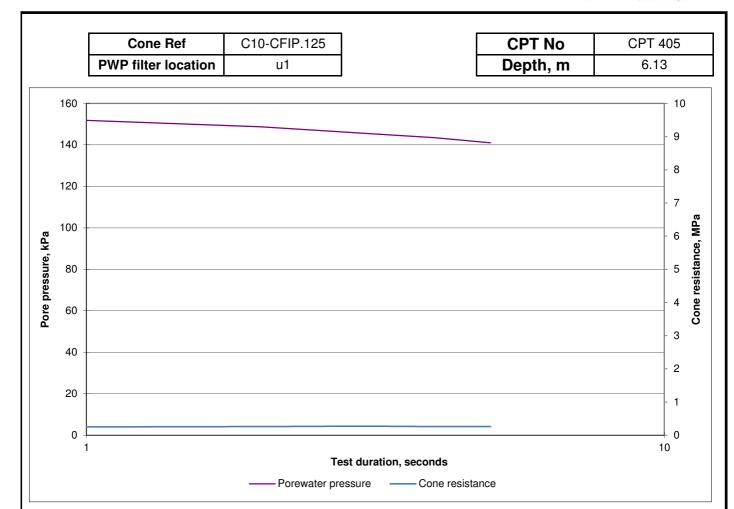




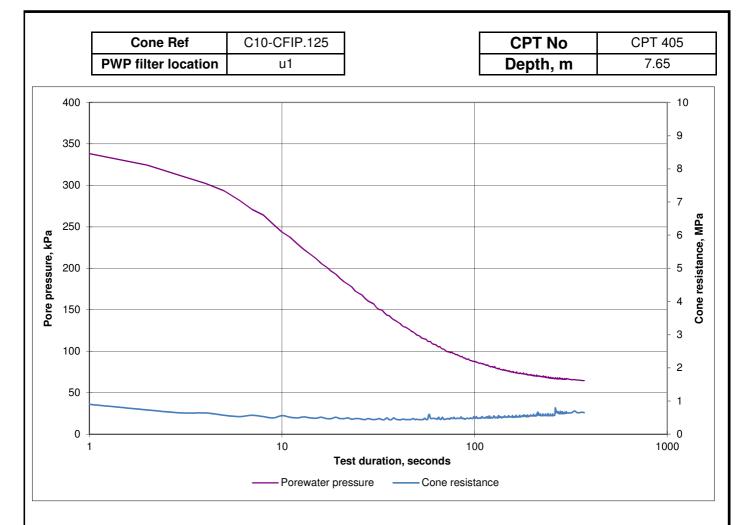




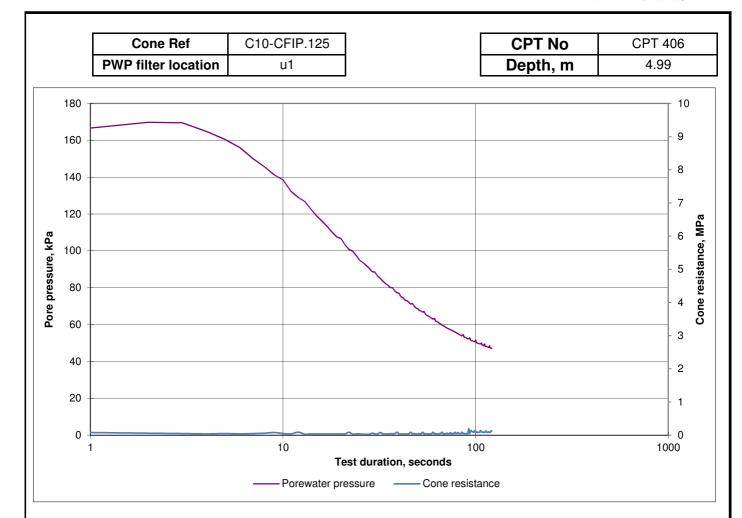


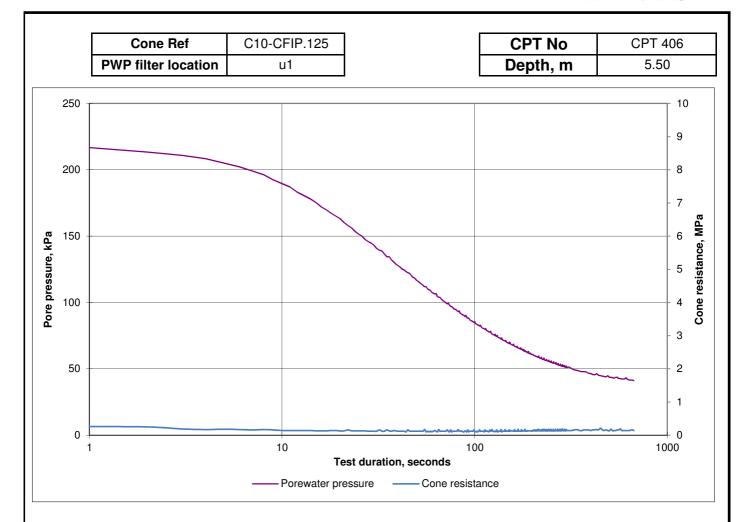


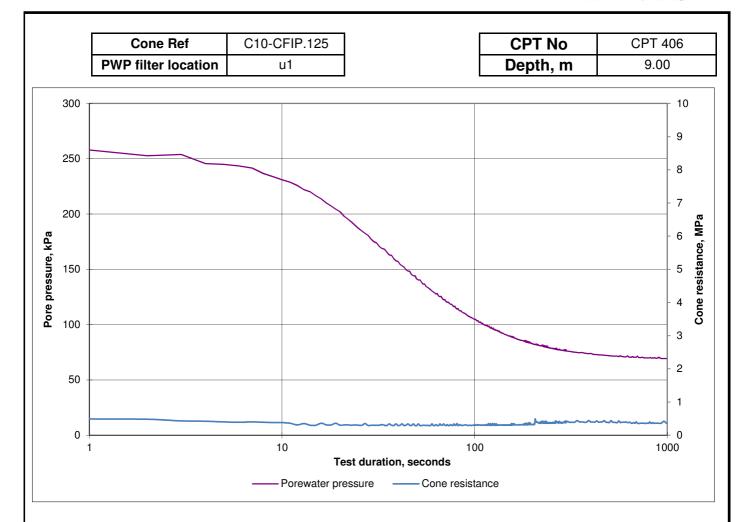
Carried out for

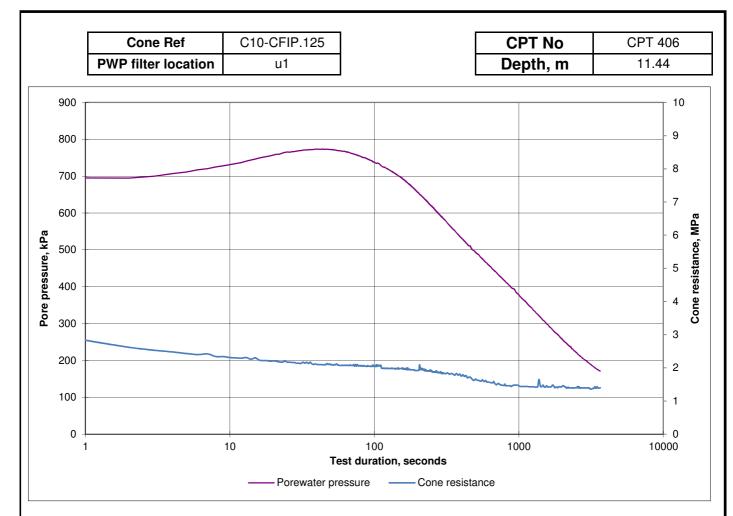

A5085-15

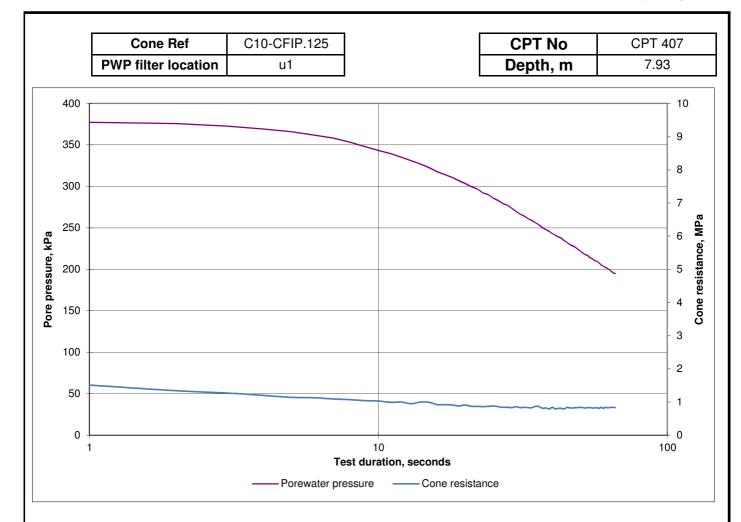
Balfour Beatty Limited

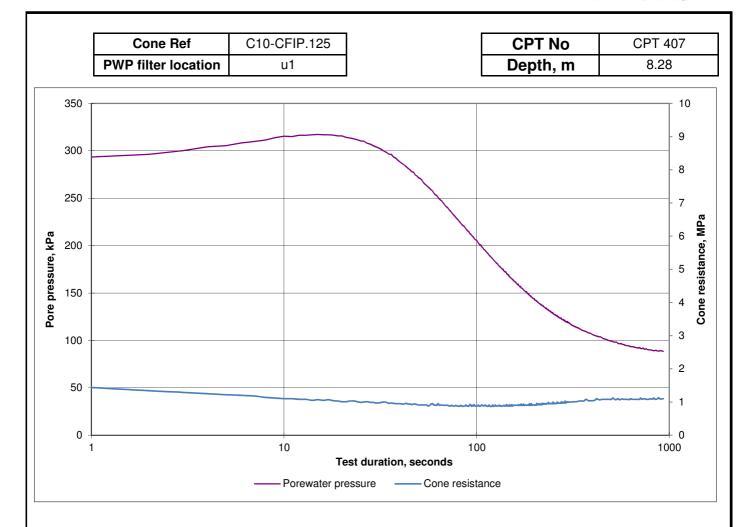


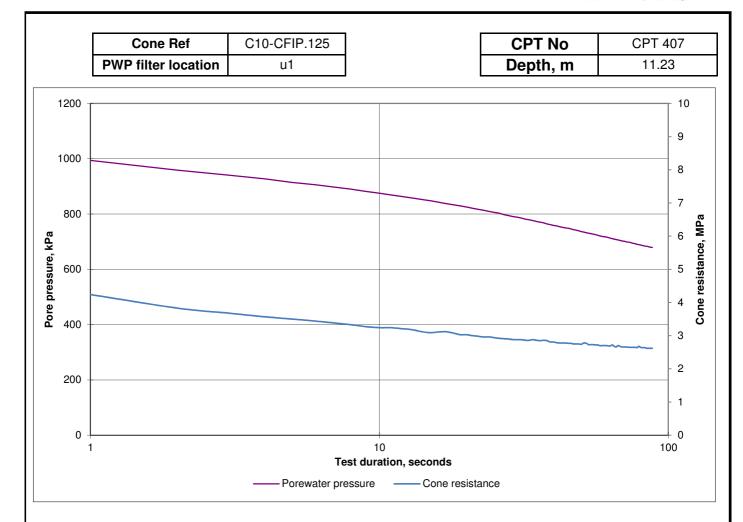


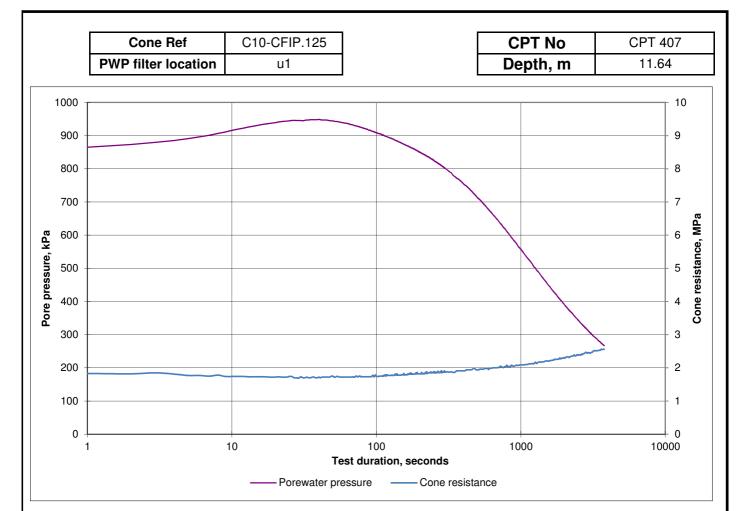


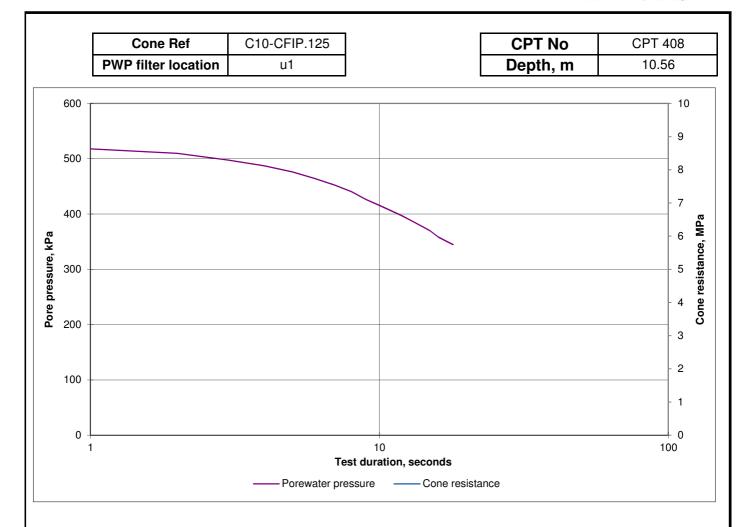


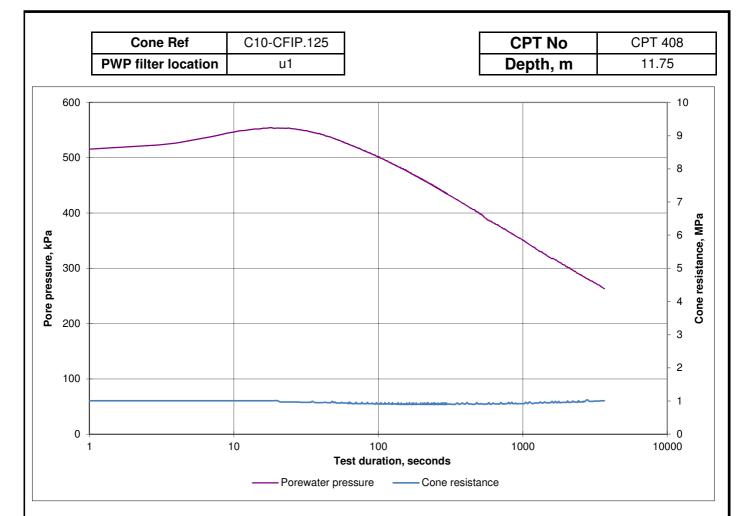


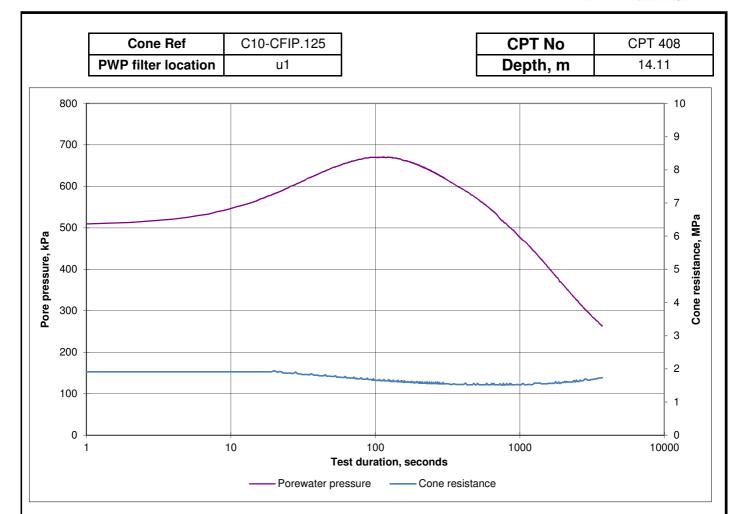


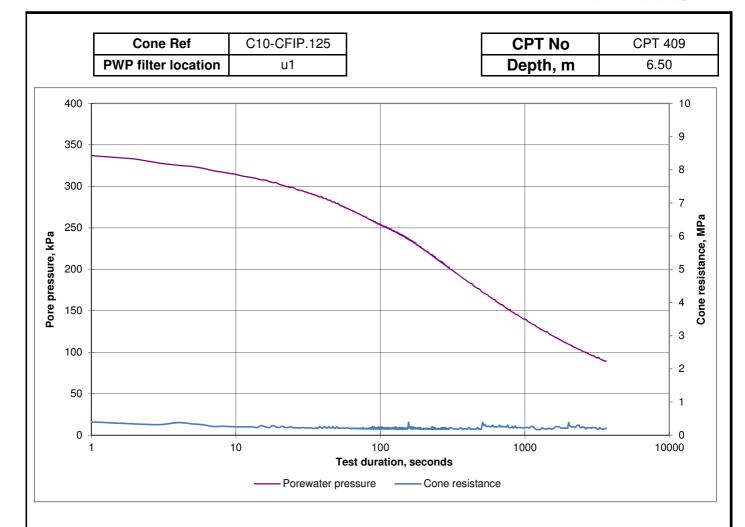


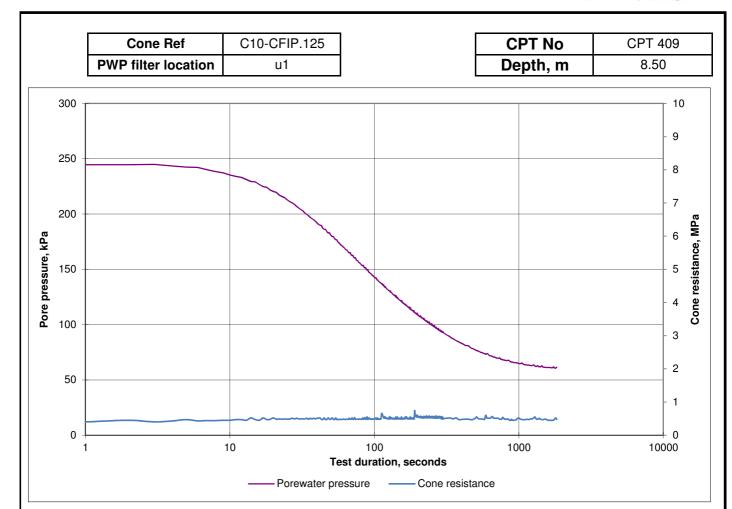


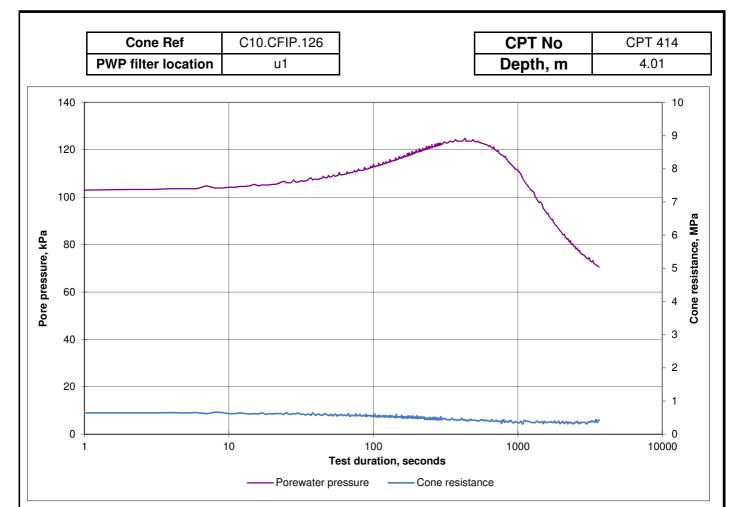


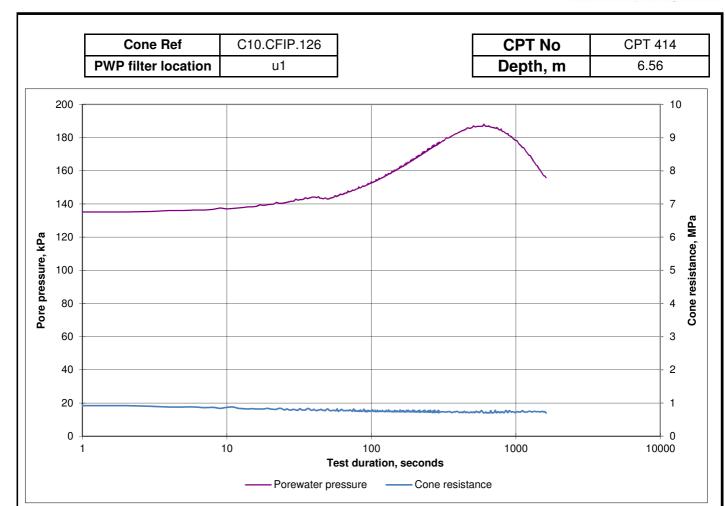


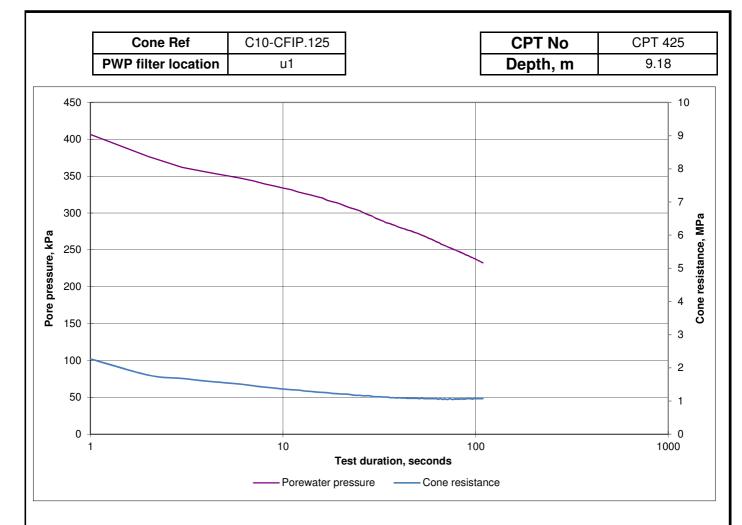


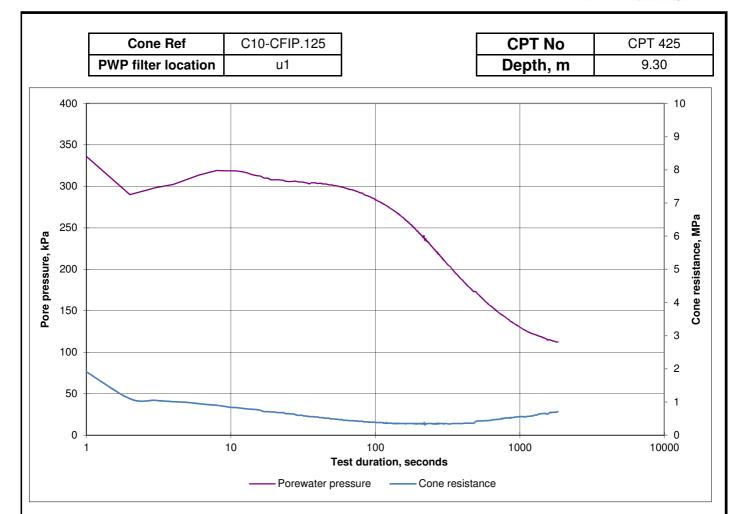


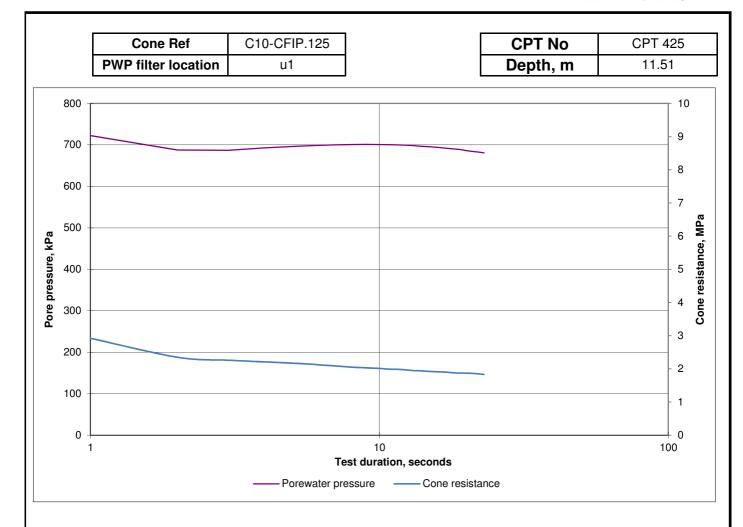


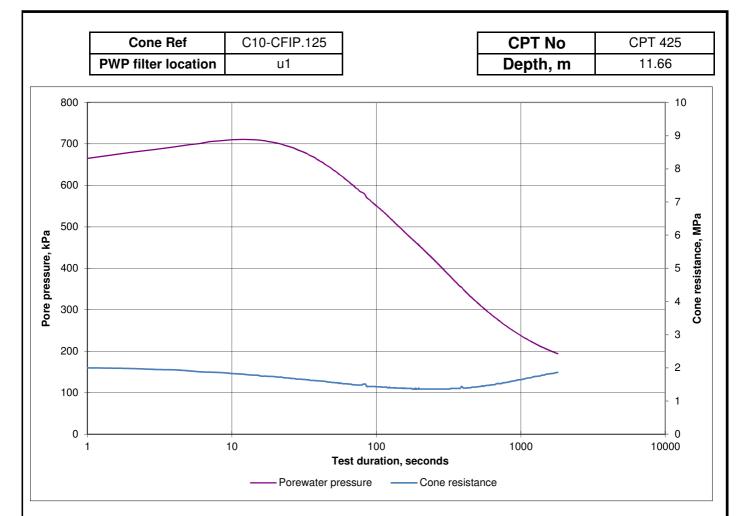








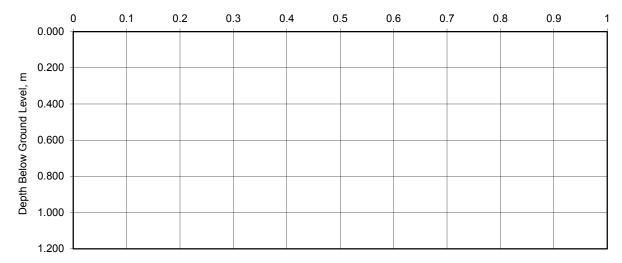




APPENDIX E DYNAMIC CONE PENETROMETER TESTING

DCP Plots

CR2, CR3, CR4, CR5, EB4, WB1, WB2, WB4 D01 to 12, 12a, 13 to 17


Date of Test: 03/12/2015 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks: Unable to find resistence, test abandoned.

							1		
Depth, mBGL	Cumulative Blows								

Cumulative Blows

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹

Notes:

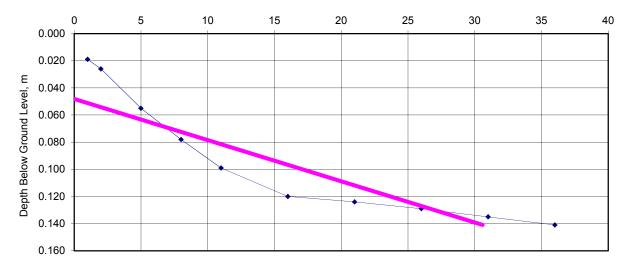
Project

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Hole

CR2

Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008) Project No. Carried out for A5085-15 Balfour Beatty Limited


Date of Test: 03/12/2015 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.019	1								
0.026	2								
0.055	5								
0.078	8								
0.099	11								
0.120	16								
0.124	21								
0.129	26								
0.135	31								
0.141	36								

Cumulative Blows

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.02	0.14	93

Notes:

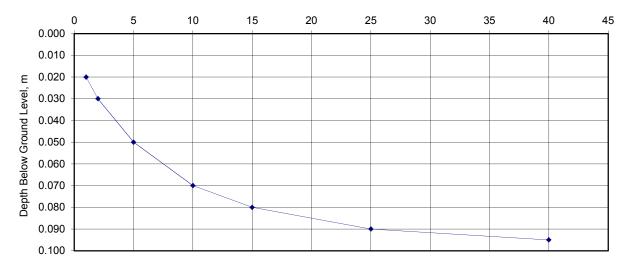
Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008) Project

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Project No. A5085-15
Carried out for Balfour Beatty Limited

Hole

CR3


Date of Test: 08/02/2016 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.020	1								
0.030	2								
0.050	5								
0.070	10								
0.080	15								
0.090	25								
0.095	40								

Cumulative Blows

CBR Values

Calculated using DMRB Vol 7,

Section 3, Part 2, HD29/08 (2008)

Top, mBGL	Base, mBGL	CBR, % ¹

Notes:

- 1

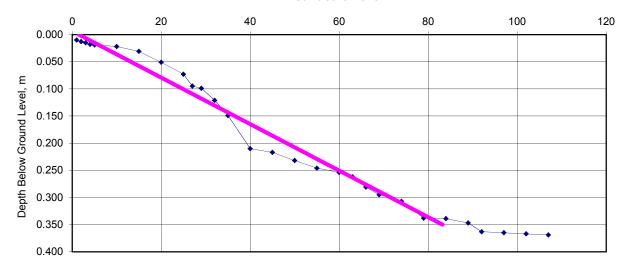
A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Project No. Carried out for

Project

A5085-15 Balfour Beatty Limited Hole

CR4


Date of Test: 03/12/2015 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.010	1	0.365	97						
0.013	2	0.367	102						
0.015	3	0.369	107						
0.018	4								
0.019	5								
0.022	10								
0.031	15								
0.051	20								
0.073	25								
0.095	27								
0.099	29								
0.121	32								
0.149	35								
0.210	40								
0.217	45								
0.232	50								
0.246	55								
0.254	60								
0.262	63								
0.281	66								
0.295	69								
0.307	74								
0.338	79								
0.339	84								
0.347	89								
0.363	92								

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.00	0.35	64

Notes:

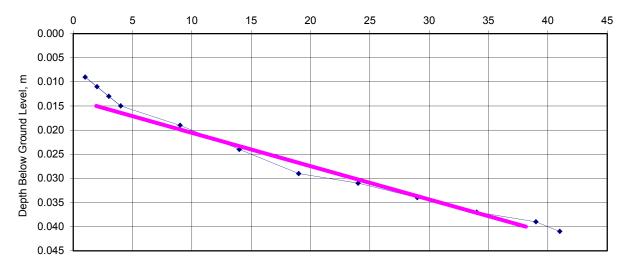
Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008) Project

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Project No. A5085-15
Carried out for Balfour Beatty Limited

Hole

CR5


Date of Test: 01/12/2015 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.009	1								
0.011	2								
0.013	3								
0.015	4								
0.019	9								
0.024	14								
0.029	19								
0.031	24								
0.034	29								
0.037	34								
0.039	39								
0.041	41								

Cumulative Blows

CBR Values

Calculated using DMRB Vol 7,

Section 3, Part 2, HD29/08 (2008)

Top, mBGL	Base, mBGL	CBR, % ¹
0.02	0.04	440

Notes:

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Project No. Carried out for

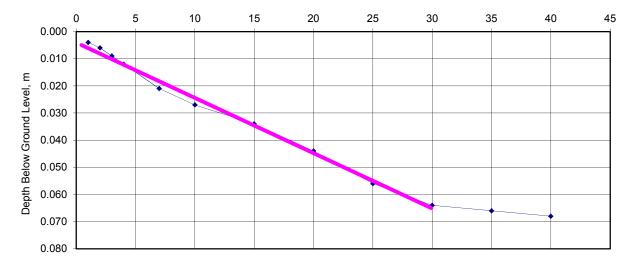
Project

lo. A5085-15

but for Balfour Beatty Limited

Hole

EB3


Date of Test: 03/12/2015 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.004	1								
0.006	2								
0.009	3								
0.012	4								
0.021	7								
0.027	10								
0.034	15								
0.044	20								
0.056	25								
0.064	30								
0.066	35								
0.068	40								

Cumulative Blows

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.01	0.07	140

Notes:

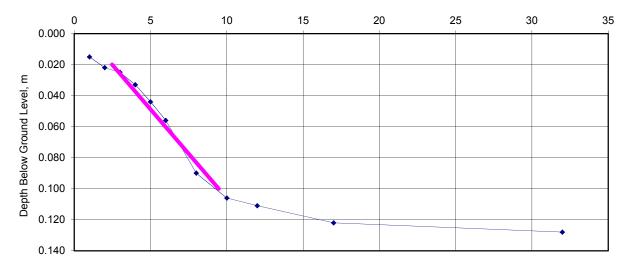
A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Hole

Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008) Project No. Carried out for

Project

A5085-15 Balfour Beatty Limited EB4


Date of Test: 01/12/2015 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.015	1								
0.022	2								
0.025	3								
0.033	4								
0.044	5								
0.056	6								
0.090	8								
0.106	10								
0.111	12								
0.122	17								
0.128	32								

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.02	0.10	22

Notes:

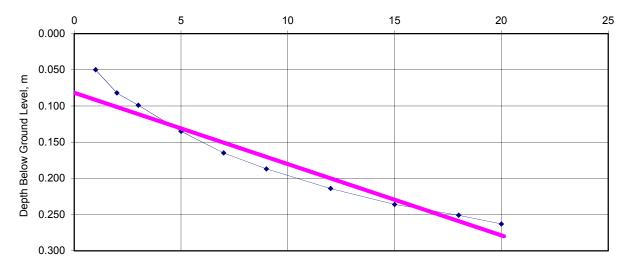
A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Hole

Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008) Project No. Carried out for

Project

A5085-15 Balfour Beatty Limited


Date of Test: 01/12/2015 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.050	1								
0.082	2								
0.099	3								
0.135	5								
0.165	7								
0.187	9								
0.214	12								
0.236	15								
0.251	18								
0.263	20								

Cumulative Blows

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.08	0.28	26

Notes:

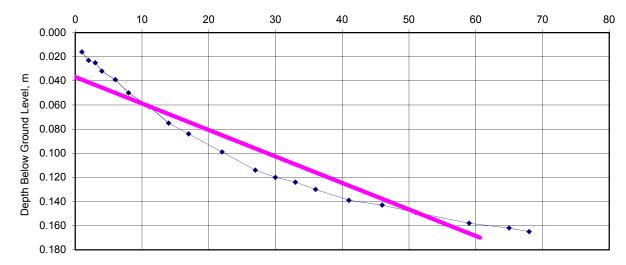
Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008) Project

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Project No. A5085-15

Carried out for Balfour Beatty Limited

Hole


Date of Test: 01/12/2015 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.016	1								
0.023	2								
0.025	3								
0.032	4								
0.039	6								
0.050	8								
0.061	11								
0.075	14								
0.084	17								
0.099	22								
0.114	27								
0.120	30								
0.124	33								
0.130	36								
0.139	41								
0.143	46								
0.149	51								
0.158	59								
0.162	65								
0.165	68								

Cumulative Blows

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.02	0.17	130

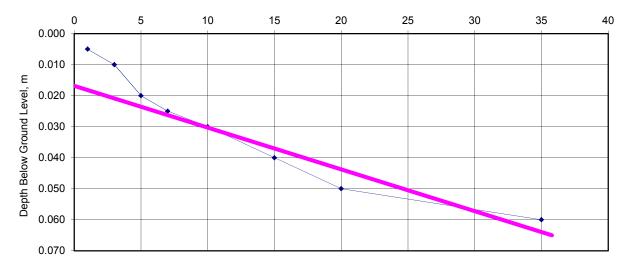
Notes:

Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008) Project

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Project No. A5085 Carried out for Balfour

A5085-15 Balfour Beatty Limited Hole


Date of Test: 08/02/2016 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.005	1								
0.010	3								
0.020	5								
0.025	7								
0.030	10								
0.040	15								
0.050	20								
0.060	35								

Cumulative Blows

CBR Values

Calculated using DMRB Vol 7,

Section 3, Part 2, HD29/08 (2008)

Top, mBGL	Base, mBGL	CBR, % ¹
0.02	0.07	220

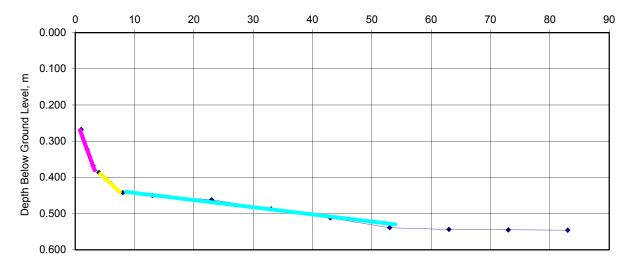
Notes:

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Project No.
Carried out for

Project

A5085-15 Balfour Beatty Limited Hole


Date of Test: Test Depth: 0.193 mBGL 14/01/2016

TRL DCP Method:

Refusal at 618mm Remarks:

Depth, mBGL	Cumulative Blows								
0.268	1								
0.323	2								
0.368	3								
0.387	4								
0.402	5								
0.417	6								
0.433	7								
0.442	8								
0.450	13								
0.462	23								
0.487	33								
0.512	43								
0.539	53								
0.544	63								
0.545	73								
0.546	83								

Cumulative Blows

CBR Values

Calculated using DMRB Vol 7,

Top, mBGL	Base, mBGL	CBR, % ¹		
0.27	0.38	5.4		
0.39	0.44	16		
0.44	0.53	140		

Notes:

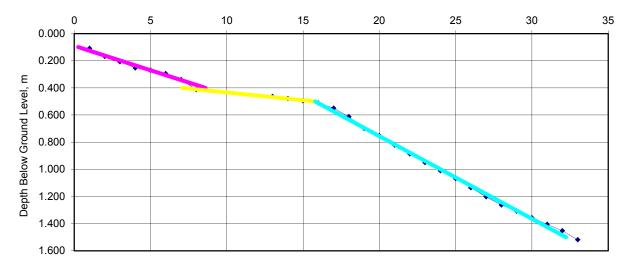
Section 3, Part 2, HD29/08 (2008)

A63 CASTLE STREET

Project No. Carried out for

Project

A5085-15 Balfour Beatty Limited Hole


Date of Test: 14/01/2016 Test Depth: 0.030 mBGL

Method: TRL DCP

Remarks:

Depth,	Cumulative								
mBGL	Blows								
0.108	1	1.405	31						
0.169	2	1.453	32						
0.207	3	1.519	33						
0.253	4								
0.270	5								
0.295	6								
0.339	7								
0.412	8								
0.463	13								
0.479	14								
0.494	15								
0.512	16								
0.549	17								
0.612	18								
0.698	19								
0.752	20								
0.822	21								
0.886	22								
0.950	23								
1.010	24								
1.068	25								
1.135	26								
1.202	27								
1.263	28								
1.307	29								
1.357	30								

Cumulative Blows

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.10	0.40	6.8
0.40	0.50	23
0.50	1.50	3.9

Notes:

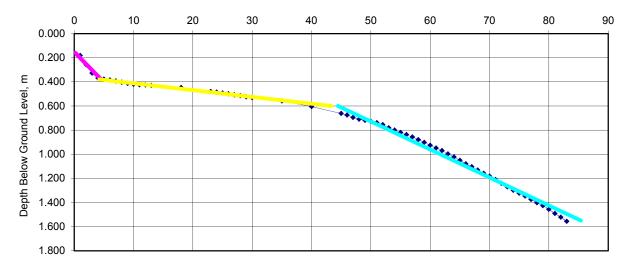
Calculated using DMRB Vol 7,
Section 3, Part 2, HD29/08 (2008)

Project No. A5085

Carried out for

A63 CASTLE STREET
A5085-15
Balfour Beatty Limited

Hole


Date of Test: 14/01/2016 Test Depth: 0.051 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.181	1	0.695	47	1.271	73				
0.259	2	0.709	48	1.298	74				
0.328	3	0.719	49	1.323	75				
0.369	4	0.728	50	1.346	76				
0.378	5	0.739	51	1.374	77				
0.384	6	0.754	52	1.402	78				
0.392	7	0.781	53	1.426	79				
0.403	8	0.800	54	1.456	80				
0.413	9	0.820	55	1.491	81				
0.420	10	0.837	56	1.521	82				
0.424	11	0.857	57	1.556	83				
0.426	12	0.879	58						
0.429	13	0.902	59						
0.447	18	0.926	60						
0.480	23	0.948	61						
0.486	24	0.970	62						
0.492	25	0.997	63						
0.499	26	1.022	64						
0.508	27	1.050	65						
0.515	28	1.079	66						
0.524	29	1.104	67						
0.530	30	1.131	68						
0.558	35	1.158	69						
0.605	40	1.182	70						
0.662	45	1.210	71						
0.675	46	1.241	72						

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.16	0.38	4.7
0.38	0.60	48
0.60	1.55	10

Notes:

Calculated using DMRB Vol 7,

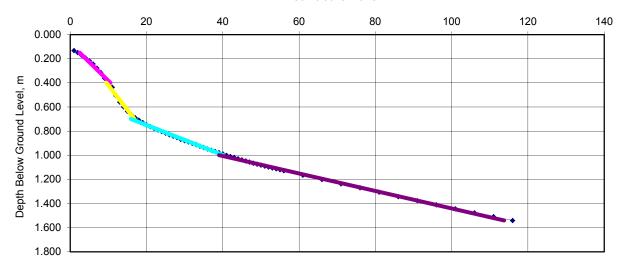
Section 3, Part 2, HD29/08 (2008)

A63 CASTLE STREET

Project

Project No. A5085-15
Carried out for Balfour Beatty Limited

Hole


Date of Test: 14/01/2016 Test Depth: 0.071 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.133	1	0.842	27	1.106	53				
0.150	2	0.854	28	1.113	54				
0.172	3	0.869	29	1.121	55				
0.194	4	0.879	30	1.129	56				
0.218	5	0.890	31	1.166	61				
0.244	6	0.902	32	1.202	66				
0.279	7	0.913	33	1.238	71				
0.314	8	0.926	34	1.271	76				
0.362	9	0.937	35	1.307	81				
0.397	10	0.948	36	1.344	86				
0.438	11	0.959	37	1.377	91				
0.507	12	0.969	38	1.411	96				
0.559	13	0.979	39	1.445	101				
0.600	14	0.990	40	1.477	106				
0.637	15	1.001	41	1.509	111				
0.664	16	1.010	42	1.541	116				
0.689	17	1.019	43						
0.710	18	1.029	44						
0.730	19	1.038	45						
0.748	20	1.048	46						
0.764	21	1.057	47						
0.778	22	1.066	48						
0.790	23	1.074	49						
0.804	24	1.082	50						
0.817	25	1.090	51						
0.830	26	1.098	52						

Cumulative Blows

CBR Values

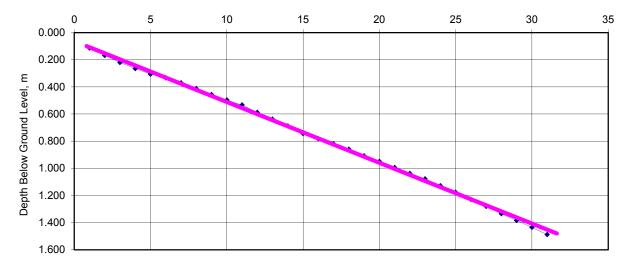
Top, mBGL	Base, mBGL	CBR, % ¹		
0.15	0.40	8		
0.40	0.70	5.9		
0.70	1.00	21		
1.00	1.54	37		

Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008)

Notes:

Project A63 CASTLE STREET
Project No. A5085-15
Carried out for Balfour Beatty Limited

Hole


Date of Test: 14/01/2016 Test Depth: 0.032 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.114	1	1.280	27						
0.168	2	1.335	28		+				
0.220	3	1.384	29		+				
0.265	4	1.435	30						
0.306	5	1.488	31		†				
0.334	6				1				
0.370	7								
0.412	8								
0.456	9				1				
0.496	10				1				
0.533	11								
0.588	12								
0.638	13								
0.689	14								
0.744	15								
0.783	16								
0.820	17								
0.860	18								
0.908	19								
0.949	20								
0.994	21								
1.037	22								
1.078	23								
1.128	24								
1.177	25								
1.228	26								

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.10	1.48	5.4

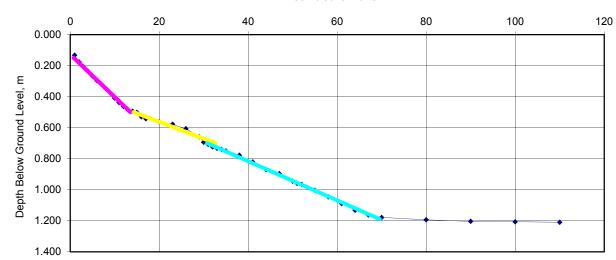
Notes:

Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008) Project

A63 CASTLE STREET

Project No.
Carried out for

A5085-15 Balfour Beatty Limited Hole


Date of Test: 14/01/2016 Test Depth: 0.062 mBGL

Method: TRL DCP

Remarks: Refusal at 1282mmbgl

Depth, mBGL	Cumulative Blows								
0.133	1	0.750	35						1
0.177	2	0.778	38						
0.208	3	0.821	41		1				
0.237	4	0.871	44						
0.268	5	0.896	47						
0.297	6	0.945	50						
0.320	7	0.959	51						
0.348	8	0.967	52						
0.376	9	1.004	55						
0.409	10	1.046	58						
0.438	11	1.089	61						
0.464	12	1.133	64						
0.487	13	1.163	67						
0.494	14	1.179	70						
0.501	15	1.194	80						
0.530	16	1.204	90						
0.543	17	1.207	100						
0.562	20	1.210	110						
0.578	23								
0.607	26								
0.660	29								
0.694	30								
0.708	31								
0.724	32								
0.733	33								
0.741	34								

Cumulative Blows

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.15	0.50	9.1
0.50	0.70	24
0.70	1.19	20

Notes:

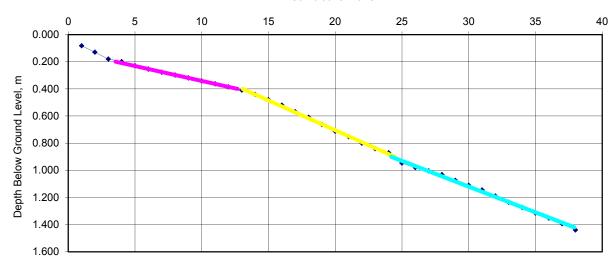
Calculated using DMRB Vol 7,
Section 3, Part 2, HD29/08 (2008)

Project No.
Carried out for

A63 CASTLE STREET A5085-15

Balfour Beatty Limited

Hole


Date of Test: 14/01/2016 Test Depth: 0.033 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.082	1	1.004	27						
0.130	2	1.032	28						
0.180	3	1.074	29						
0.199	4	1.111	30						
0.230	5	1.145	31						
0.255	6	1.190	32						
0.277	7	1.235	33						
0.298	8	1.273	34						
0.319	9	1.314	35						
0.342	10	1.352	36						
0.363	11	1.393	37						
0.385	12	1.440	38						
0.409	13								
0.441	14								
0.480	15								
0.520	16								
0.568	17								
0.609	18								
0.663	19								
0.712	20								
0.752	21								
0.801	22								
0.840	23								
0.870	24								
0.947	25								
0.980	26								

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹		
0.20	0.40	11		
0.40	0.90	5.5		
0.90	1.42	6.4		

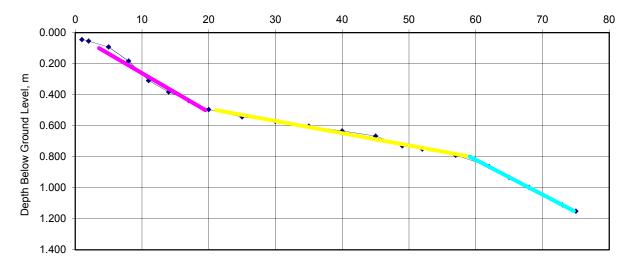
Notes:

Calculated using DMRB Vol 7,
Section 3, Part 2, HD29/08 (2008)

Project

A63 CASTLE STREET

Project No. Carried out for A5085-15 Balfour Beatty Limited Hole


Date of Test: 03/12/2015 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.045	1								
0.055	2								
0.093	5								
0.184	8								
0.309	11								
0.383	14								
0.438	17								
0.496	20								
0.544	25								
0.573	30								
0.603	35								
0.634	40								
0.667	45								
0.730	49								
0.751	52								
0.790	57								
0.863	62								
0.934	65								
0.999	68								
1.111	73								
1.151	75								

Cumulative Blows

CBR Values

Calculated using DMRB Vol 7,

Section 3, Part 2, HD29/08 (2008)

Top, mBGL	Base, mBGL	CBR, % ¹		
0.10	0.50	10		
0.50	0.80	34		
0.80	1.15	11		

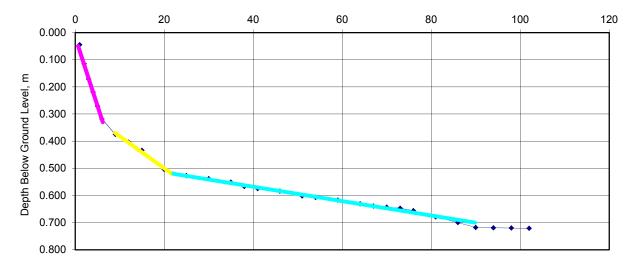
Notes:

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Project No.
Carried out for

Project

A5085-15 Balfour Beatty Limited Hole


Date of Test: 03/12/2015 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.045	1	0.718	90						
0.115	2	0.719	94						
0.171	3	0.720	98						
0.219	4	0.721	102						
0.271	5								
0.318	6								
0.375	9								
0.404	12								
0.434	15								
0.504	20								
0.527	25								
0.538	30								
0.551	35								
0.567	38								
0.575	41								
0.584	46								
0.602	51								
0.607	54								
0.617	59								
0.631	64								
0.639	67								
0.643	70								
0.647	73								
0.656	76								
0.679	81								
0.700	86								

Cumulative Blows

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.05	0.33	4.7
0.37	0.52	22
0.52	0.70	100

Notes:

A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

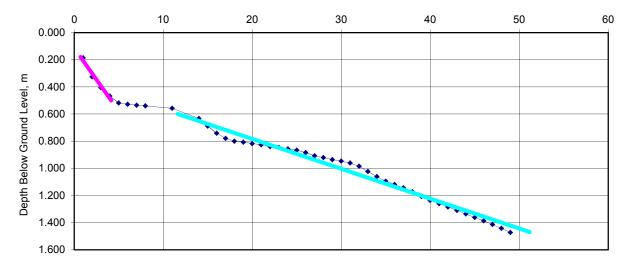
Hole

D09

Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008) Project No.
Carried out for

Project

A5085-15 Balfour Beatty Limited


Date of Test: 14/01/2016 Test Depth: 0.031 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.186	1	0.961	31						
0.325	2	0.985	32						
0.405	3	1.023	33						
0.468	4	1.061	34						
0.519	5	1.095	35						
0.528	6	1.119	36						
0.535	7	1.144	37						
0.540	8	1.173	38						
0.558	11	1.207	39						
0.633	14	1.237	40						
0.689	15	1.260	41						
0.742	16	1.285	42						
0.779	17	1.310	43						
0.801	18	1.336	44						
0.807	19	1.362	45						
0.818	20	1.386	46						
0.826	21	1.414	47						
0.840	22	1.442	48						
0.847	23	1.472	49						
0.857	24								
0.867	25								
0.884	26								
0.908	27								
0.921	28								
0.936	29								
0.947	30								

CBR Values

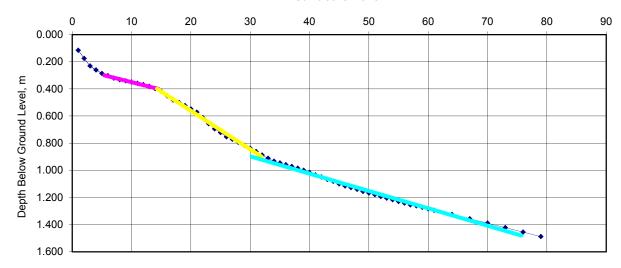
Top, mBGL	Base, mBGL	CBR, % ¹
0.18	0.50	2.5
0.60	1.47	11

Notes:

Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008) Project

A63 CASTLE STREET

Project No. Carried out for A5085-15 Balfour Beatty Limited Hole


Date of Test: 14/01/2016 Test Depth: 0.040 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.115	1	0.771	27	1.205	53				
0.175	2	0.793	28	1.217	54				
0.231	3	0.816	29	1.230	55				
0.260	4	0.837	30	1.242	56				
0.286	5	0.862	31	1.254	57				
0.303	6	0.888	32	1.262	58				
0.320	7	0.911	33	1.272	59				
0.332	8	0.933	34	1.284	60				
0.341	9	0.946	35	1.295	61				
0.350	10	0.959	36	1.325	64				
0.359	11	0.972	37	1.357	67				
0.369	12	0.984	38	1.389	70				
0.382	13	1.000	39	1.422	73				
0.398	14	1.016	40	1.455	76				
0.417	15	1.034	41	1.488	79				
0.451	16	1.049	42						
0.482	17	1.067	43						
0.500	18	1.081	44						
0.523	19	1.100	45						
0.548	20	1.115	46						
0.572	21	1.127	47						
0.612	22	1.140	48						
0.657	23	1.155	49						
0.694	24	1.167	50						
0.722	25	1.179	51						
0.753	26	1.193	52						

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.30	0.40	24
0.40	0.90	8.7
0.90	1.48	20

Notes:

Calculated using DMRB Vol 7,
Section 3, Part 2, HD29/08 (2008)

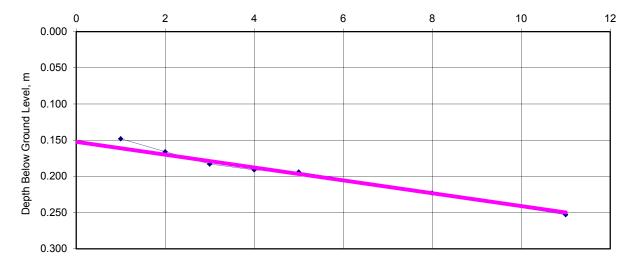
Project No.

Carried out for

A63 CASTLE STREET A5085-15

Balfour Beatty Limited

Hole


Date of Test: 14/12/2016 Test Depth: 0.112 mBGL

Method: TRL DCP

Remarks:

							I		
Depth,	Cumulative	Depth,	Cumulative	Depth,	Cumulative		Cumulative		Cumulative
mBGL	Blows	mBGL	Blows	mBGL	Blows	mBGL	Blows	mBGL	Blows
0.148	1								
0.166	2								
0.183	3								
0.191	4								
0.194	5								
0.223	8								
0.253	11								

Cumulative Blows

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.15	0.25	30

Notes:

Calculated using DMRB Vol 7,
Section 3, Part 2, HD29/08 (2008)

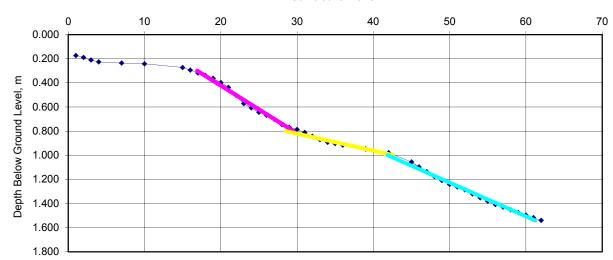
Project Project No.

Carried out for

A63 CASTLE STREET A5085-15

Balfour Beatty Limited

Hole


Date of Test: 14/01/2016 Test Depth: 0.095 mBGL

Method: TRL DCP

Remarks:

Depth,	Cumulative								
mBGL	Blows								
0.173	1	0.903	35						
0.190	2	0.916	36						
0.211	3	0.948	39						
0.227	4	0.979	42						
0.236	7	1.056	45						
0.242	10	1.097	46						
0.273	15	1.137	47						
0.294	16	1.176	48						
0.318	17	1.209	49						
0.339	18	1.242	50						
0.363	19	1.263	51						
0.398	20	1.287	52						
0.437	21	1.321	53						
0.503	22	1.353	54						
0.571	23	1.381	55						
0.608	24	1.408	56						
0.644	25	1.430	57						
0.668	26	1.452	58						
0.701	27	1.475	59						
0.745	28	1.496	60						
0.769	29	1.518	61						
0.787	30	1.540	62						
0.812	31								
0.844	32								
0.870	33								
0.892	34								

Cumulative Blows

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.30	0.80	6.1
0.80	1.00	18
1.00	1.54	8.9

Balfour Beatty Limited

Notes:

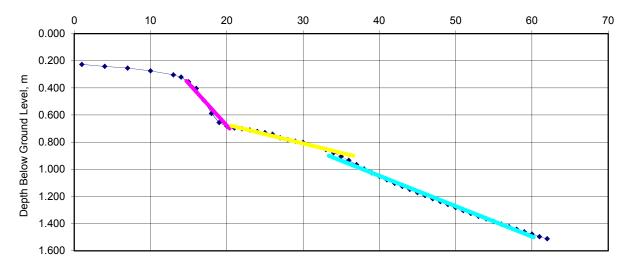
Calculated using DMRB Vol 7,
Section 3, Part 2, HD29/08 (2008)

Project A63 CASTLE STREET
Project No. A5085-15

Carried out for

Hole

D12a


Date of Test: 14/01/2016 Test Depth: 0.212 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.227	1	0.966	37						
0.242	4	0.997	38						
0.254	7	1.026	39						
0.275	10	1.052	40						
0.304	13	1.078	41						
0.321	14	1.103	42						
0.356	15	1.126	43						
0.404	16	1.148	44						
0.493	17	1.172	45						
0.588	18	1.193	46						
0.656	19	1.217	47						
0.683	20	1.238	48						
0.695	21	1.259	49						
0.702	22	1.281	50						
0.711	23	1.304	51						
0.721	24	1.325	52						
0.730	25	1.347	53						
0.742	26	1.365	54						
0.768	27	1.384	55						
0.783	28	1.404	56						
0.793	29	1.423	57						
0.802	30	1.442	58						
0.855	33	1.461	59						
0.878	34	1.477	60						
0.905	35	1.496	61						
0.934	36	1.512	62						

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹		
0.35	0.70	3.8		
0.68	0.90	18		
0.90	1.50	11		

Notes:

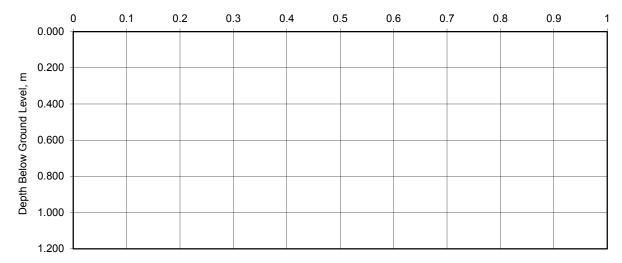
Calculated using DMRB Vol 7,
Section 3, Part 2, HD29/08 (2008)

Project Project No.

Carried out for

A63 CASTLE STREET
A5085-15
Balfour Beatty Limited

Hole


Date of Test: 14/01/2016 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks: Concrete obstruction below surface paving, no test undertaken.

Depth, mBGL	Cumulative Blows								
IIIDGL	DIOWS	IIIBGL	DIOWS	IIIBGL	DIOM2	IIIDGL	DIOWS	IIIDGL	DIOWS
l									1

Cumulative Blows

CBR Values

Calculated using DMRB Vol 7,

Section 3, Part 2, HD29/08 (2008)

Top, mBGL	Base, mBGL	CBR, % ¹

Notes:

Project

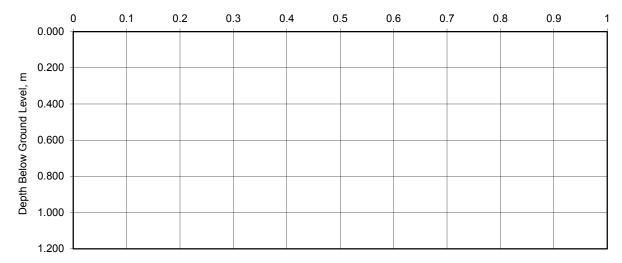
A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

A5085-15

Project No.
Carried out for

Balfour Beatty Limited

Hole


Date of Test: 14/01/2016 Test Depth: 0.000 mBGL

Method: TRL DCP

Remarks: Concrete obstruction below surface paving, no test undertaken.

Depth, mBGL	Cumulative Blows								
IIIDGL	DIOWS	IIIBGL	DIOWS	IIIBGL	DIOM2	IIIDGL	DIOWS	IIIDGL	DIOWS
l								ĺ	1

Cumulative Blows

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹

Notes:

Project

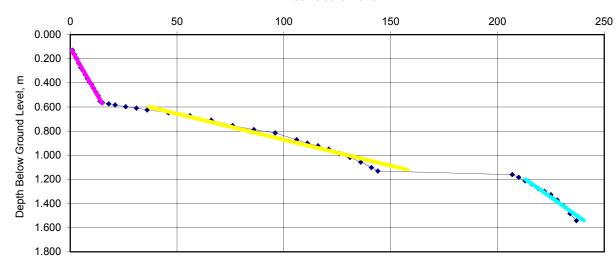
A63 CASTLE STREET IMPROVEMENTS - MAIN SITE GI

Hole

D15

Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008) Project No.
Carried out for

A5085-15 Balfour Beatty Limited


Date of Test: 14/01/2016 Test Depth: 0.040 mBGL

Method: TRL DCP

Remarks:

Depth, mBGL	Cumulative Blows								
0.130	1	0.872	106						
0.164	2	0.901	111						
0.199	3	0.922	116						
0.239	4	0.950	121						
0.274	5	0.985	126						
0.300	6	1.019	131						
0.332	7	1.057	136						
0.364	8	1.102	141						
0.394	9	1.131	144						
0.413	10	1.161	207						
0.445	11	1.183	210						
0.478	12	1.212	213						
0.505	13	1.238	216						
0.553	14	1.274	219						
0.563	15	1.300	222						
0.574	18	1.328	225						
0.584	21	1.372	228						
0.598	26	1.421	231						
0.610	31	1.484	234						
0.624	36	1.543	237						
0.648	46								
0.672	56								
0.710	66								
0.754	76								
0.788	86								
0.815	96								

Cumulative Blows

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.13	0.57	8
0.60	1.12	64
1.20	1.54	20

Notes:

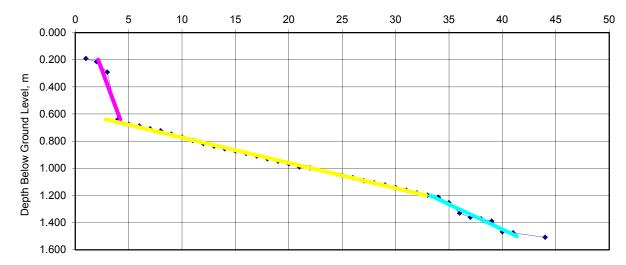
Calculated using DMRB Vol 7,
Section 3, Part 2, HD29/08 (2008)

Project A63 CASTLE STREET

Project No. A5085-15

Carried out for Balfour Beatty Limited

Hole


Date of Test: 14/01/2016 Test Depth: 0.148 mBGL

Method: TRL DCP

Remarks:

Depth,	Cumulative								
mBGL	Blows								
0.191	1	1.122	29						
0.215	2	1.143	30						
0.291	3	1.161	31						
0.639	4	1.181	32						
0.675	5	1.198	33						
0.689	6	1.213	34						
0.708	7	1.253	35						
0.724	8	1.330	36						
0.749	9	1.361	37						
0.771	10	1.372	38						
0.795	11	1.389	39						
0.818	12	1.468	40						
0.837	13	1.475	41						
0.856	14	1.508	44						
0.871	15								
0.890	16								
0.910	17								
0.930	18								
0.948	19								
0.967	20								
0.990	21								
0.997	22								
1.053	25								
1.069	26								
1.091	27								
1.107	28								

Cumulative Blows

CBR Values

Top, mBGL	Base, mBGL	CBR, % ¹
0.20	0.64	1
0.64	1.20	13
1.20	1.50	6.6

Calculated using DMRB Vol 7, Section 3, Part 2, HD29/08 (2008)

Notes:

Project

A63 CASTLE STREET

Project No. A5085-15
Carried out for Balfour Beatty Limited

Hole

APPENDIX F GEOTECHNICAL LABORATORY TEST RESULTS

Index Properties – Summary of Results	INDX 1 to 3
Particle Size Distribution Analyses	PSD 1 to 77
Unconsolidated Undrained Triaxial Compression Tests	UUSUM 1 and 2
Consolidated Undrained Triaxial Compression Tests	CU 1 to 45
One Dimensional (Oedometer) Consolidation Tests	OED 1 to 17
Dry Density / Moisture Content Relationship (Light Compaction 2.5 kg rammer) with Summary of Vane Test on Compaction Specimen	COMPL 1 to 8
Chemical Tests – Summary of Results Test Reports	CHEM 1 and 2 EFS/160977 EFS/161316 EFS/161684 EFS/161698 EFS/161702 EFS/162441
	EFS/162595

INDEX PROPERTIES - SUMMARY OF RESULTS

Project No	Project	Name												
A5085-15	A63 CA	STLE S	TREET	•										
		Samp	ole	1		р	p_d	W	< 425	W_{L}	W_{P}	Ι _Ρ	ps	
Hole No.	No.	Dept	h (m)	type	Soil Description				μm sieve					Remarks
		from	to	,,		Mg	/m³	%	%	%	%		Mg/m ³	
BH402	3	1.20	2.00	В	Brownish grey slightly sandy slightly gravelly CLAY.			39	96 n	64 a	32	32		
BH402	6	2.45	2.90	UT	Soft brown slightly sandy CLAY.			44	100 n	48 a	24	24		
BH402	9	3.75	4.75	Р	Greyish brown slightly sandy clayey SILT.			42	98 n	36 a	25	11		
BH402	11	5.75	6.20	UT	Brownish dark grey sandy slightly clayey SILT.			34	99 n	49 a	29	20		
BH402	13	6.40	7.40	Р	Greyish brown sandy clayey SILT.			34	99 n	33 a	26	7		
BH402	16	8.40	9.05	UT	Firm to stiff greyish brown sandy CLAY.			22	100 n	28 a	18	10		
BH402	24	10.95	11.40	UT	Very stiff greyish brown slightly gravelly sandy CLAY.			13	84 s	32 a	16	16		
BH402	26	11.60	12.05	UT	Very stiff brown slightly sandy slightly gravelly silty CLAY.			20	98 n	31 a	18	13		
BH402	30	13.30	13.75	UT	Stiff greyish brown slightly sandy slightly gravelly CLAY.			21	96 s	39 a	19	20		
BH402	38	15.90	16.35	UT	Stiff laminated greyish brown slightly sandy CLAY.			30	100 n	57 a	28	29		
BH402	46	18.50	18.95	UT	Stiff to very stiff brown slightly sandy silty CLAY.			23	100 n	39 a	23	16		
BH402	50	19.75	20.20	UT	Stiff greyish brown slightly sandy slightly gravelly CLAY with sand partings and			19	99 n	31 a	17	14		
BH403	4	1.65	2.10	UT	Soft brown slightly sandy silty CLAY.			28	100 n	45 a	25	20		
BH403	6	2.30	2.75	UT	Brown SILT.			31	100 n	40 a	23	17		
BH403	10	3.60	4.60	Р	Soft to firm brown silty CLAY.			44	100 n	42 a	29	13		
BH403	12	5.00	6.00	Р	Soft brown sandy silty CLAY.			37	100 n	36 a	22	14		
BH403	14	7.00	8.00	Р	Brown slightly sandy SILT.			38	100 n	45 a	24	21		
BH403	18	8.65	9.30	UT	Very soft brown CLAY.			34	100 n	35 a	23	12		
BH403	27	11.90	12.35	UT	Stiff brown slightly sandy slightly gravelly			14	88 s	32 a	17	15		
BH403	32	13.85	14.20	UT	CLAY. Firm greyish brown slightly sandy slightly			17	94 n	32 a	16	16		
BH403	38	15.70	16.15	UT	gravelly CLAY. Soft to firm brown slightly sandy CLAY.			26	100 n	44 a	24	20		
BH403	48	18.95	19.40	UT	Firm greyish brown slightly sandy CLAY with			28	100 n	39 a	22	17		
BH404	3	1.50	1.95	UT	sand partings. Firm brown silty CLAY.			29	44 s	39 a 49 a	23	26		
BH404	5	2.50	2.95	UT	Soft brown slightly sandy CLAY.			33	100 n	49 a 48 a	27	21		
ВН404	+			P	Light brown and black organic sandy clayey									
	7	3.00	4.00	P	SILT. Dark grey slightly sandy clayey SILT.			42	100 n	43 a	24	19		
BH404	8	4.00	5.00	-	Dark grey slightly sandy clayey SILT.			44	100 n	45 a	23	22		
BH404	9	5.00	6.00	Р	Dark brown sandy clayey SILT.			41	100 n	39 a	22	17		
BH404	10	6.00	7.00	P	Brown slightly sandy silty CLAY.			39	99 n	30 b	NP			
BH404	11	7.00	8.00	Р	Dark brown silty CLAY.			39	100 n	33 a	21	12		
BH404	14	8.00	9.00	Р	Firm dark brown organic CLAY.			34	100 n	50 a	23	27		_
BH404	17	9.00	10.00	Р	Dark brown slightly sandy slightly gravelly			121	98 n	155 a	109	46		
BH404	20	10.00	10.50	В	CLAY.			34	88 s	33 a	16	17		

General notes: All above tests carried out to BS1377 : 1990 unless annotated otherwise. See individual test reports for further details.

 $\text{Key:} \qquad \qquad p \qquad \text{bulk density, linear} \qquad \qquad W_{\text{L}} \qquad \qquad W_{\text{P}} \qquad \text{Plastic limit} \qquad \qquad <425 \text{um preparation} \qquad \qquad p_{\text{S}} \quad \text{particle density}$

 p_d dry density a 4 point cone test NP non - plastic n from natural soil -g = gas jar

 $w \qquad \text{moisture content} \qquad \qquad b \qquad 1 \text{ point cone test} \qquad \qquad \boxed{I_P \qquad \text{Plasticity Index}} \qquad \quad \text{s} \quad \text{sieved specimen} \qquad \quad -p = \text{small pyknometer}$

QA Ref

SLR 1
Rev 91
Mar 12

Environmental Scientifics Group

Printed:30/03/2016 08:56

INDX

Table

INDEX PROPERTIES - SUMMARY OF RESULTS

roject No	Project	Name												
A5085-15	A63 CA	STLE S	TREET	•										
		Sample					p_d	W	< 425	W_{L}	W_{P}	Ι _Ρ	ps	
Hole No.	No. Depth (m) type Soil Description		Soil Description				μm sieve					Remarks		
		from	to	.,,,,,		Mg	/m³	%	%	%	%		Mg/m ³	
BH404	24	11.00	11.50	В	Greyish dark brown slightly sandy slightly gravelly CLAY.			18	88 s	35 a	17	18		
BH404	30	12.50	12.95	UT	Very stiff greyish brown slightly gravelly sandy CLAY.			15	84 s	34 a	16	18		
BH404	36	14.00	14.45	UT	Firm to stiff greyish brown slightly gravelly sandy CLAY with chalk fragments.			15	92 s	29 a	16	13		
BH404	44	16.00	16.45	UT	Stiff laminated greyish brown slightly sandy CLAY.			30	100 n	60 a	27	33		
BH404	54	18.50	18.95	UT	Firm greyish brown silty CLAY.			25	100 n	35 a	22	13		
BH405	5	2.50	2.95	UT	Firm brown slightly sandy silty CLAY.			34	100 n	37 a	23	14		
BH405	8	4.00	5.00	Р	Very soft dark grey slightly sandy organic silty CLAY.			41	99 n	42 a	25	17		
BH405	11	6.00	7.00	Р	Soft dark brown slightly sandy silty CLAY.			38	99 n	35 a	25	10		
BH405	13	7.00	8.00	Р	Very soft brown slightly sandy CLAY.			46	100 n	43 a	22	21		
BH405	15	8.00	9.00	Р	Soft to firm greyish brown slightly sandy silty CLAY becoming organic clayey SILT towards			47	99 n	43 a	24	19		
BH405	17	9.00	10.00	Р	Firm dark brown organic silty CLAY becoming silty amotphous PEAT with			66	100 n	79 a	61	18		
BH405	19	10.00	10.45	UT	Soft brownish dark grey slightly gravelly sandy CLAY.			26	93 n	39 a	25	14		
BH405	23	11.00	11.45	UT	Soft brown slightly sandy slightly gravelly CLAY.			19	87 s	33 a	19	14		
BH405	35	14.00	14.45	UT	Stiff greyish brown slightly sandy slightly gravelly CLAY with chalk fragments.			15	99 s	30 a	14	16		
BH405	45	16.50	16.95	UT	Stiff laminated brown slightly sandy silty CLAY.			25	100 n	51 a	25	26		
BH405	54	19.00	19.50	В	Brown slightly sandy slightly gravelly CLAY.			46	98 s	46 a	24	22		
BH405	60	21.00	21.50	В	Greyish brown slightly sandy CLAY.			48	100 s	35 a	19	16		
BH405	65	23.00	23.45	UT	Very stiff brown slightly sandy silty CLAY.			20	100 n	31 a	19	12		
BH406	9	2.50	2.95	UT	Soft to firm laminated greyish brown slightly			38	100 n	48 a	25	23		
BH406	11	3.00	3.45	UT	sandy CLAY. Soft brown silty CLAY.			85	100 n	46 a	29	17		
BH406	13	3.50	4.50	Р	Brownish grey slightly sandy CLAY.			44	100 n	48 a	27	21		
BH406		4.50	4.95	UT	Brown slightly sandy silty CLAY.			91	100 n	39 a	25	14		
BH406	16	5.00	5.45	UT	Grey slightly sandy silty CLAY.			36	100 n	41 a	26	15		
BH406	18	5.50	6.00	В	Grey and brown slightly sandy CLAY.			23	99 n	39 a	22	17		
BH406	21	6.50	7.50	Р	Brown sandy SILT.			49	100 n	36 a	26	10		
BH406	23	7.50	8.00	В	Greyish brown slightly sandy slightly gravelly			49	100 s	42 a	28	14		
BH406	25	8.00	9.10	Р	SILT. Soft to firm brown silty CLAY with frequent			230	99 n	107 a	56	51		
BH406	27	9.00	9.50	В	wood fragments. Grey slightly sandy slightly gravelly CLAY.			58	95 s	47 a	25	22		
BH406	30	10.50	11.00	В	Greyish brown slightly sandy slightly gravelly			83	98 s	48 a	28	20		
BH406	40	13.00	13.45	UT	SILT. Very stiff greyish brown slightly sandy			13	90 s	32 a	17	15		
BH406	47	14.50	14.95	UT	slightly gravelly CLAY Firm to stiff greyish brown slightly sandy			16	87 s	32 a	16	17		
BH406	53	16.00	16.45	UT	slightly gravelly CLAY. Stiff brown CLAY.			23		33 a 45 a	24			
DI 1400	53	10.00	10.45	UI				23	100 n	40 a	∠4	21		

General notes: All above tests carried out to BS1377 : 1990 unless annotated otherwise. See individual test reports for further details.

 $\text{Key:} \qquad \qquad p \qquad \text{bulk density, linear} \qquad \qquad W_{\text{L}} \qquad \qquad W_{\text{P}} \qquad \text{Plastic limit} \qquad \qquad <425 \text{um preparation} \qquad \qquad p_{\text{S}} \quad \text{particle density}$

 p_d dry density a 4 point cone test NP non - plastic n from natural soil -g = gas jar

 $w \qquad \text{moisture content} \qquad \qquad b \qquad 1 \text{ point cone test} \qquad \qquad \boxed{I_P \qquad \text{Plasticity Index}} \qquad \quad \text{s} \quad \text{sieved specimen} \qquad \quad -p = \text{small pyknometer}$

QA Ref SLR 1

SLR 1
Rev 91
Mar 12

Environmental Scientifics Group

Printed:30/03/2016 08:56

INDX

Table

INDEX PROPERTIES - SUMMARY OF RESULTS

Project No	Project	Name												
A5085-15	A63 CA	STLE S	TREET	-										
		Sam	ole			р	p_d	W	< 425	W_L	W_P	I _P	ps	
Hole No.	No.	Depth (m) type		type	Soil Description				μm sieve					Remarks
		from	to	<u> </u>		Mg	/m³	%	%	%	%		Mg/m ³	
BH406	69	20.00	20.45	UT	Firm laminated greyish brown slightly sandy CLAY.			27	100 n	45 a	24	21		
BH407	3	1.20		D	Brown CLAY.			21	100 s	48 a	27	21		
BH407	5	1.70	2.15	UT	Firm to stiff brown slightly sandy silty CLAY with occasional partings of sand and silt.			22	100 n	53 a	25	28		
BH407	9	3.10	2.55	UT	Very soft brown slightly sandy silty CLAY.			36	99 n	38 a	23	15		
BH407	15	6.05	7.05	Р	Brown slightly sandy silty CLAY.			41	99 n	37 a	25	12		
BH407	18	7.60	8.05	UT	Very soft black organic slightly sandy slightly gravelly CLAY.			66	71 s	51 b	36	15		
BH407	22	9.00	10.00	Р	Dark grey organic slightly sandy silty CLAY with frequent wood fragments.			65	100 n	98 a	49	49		
BH407	25	10.50	10.85	UT	Firm brownish grey slightly sandy slightly gravelly CLAY with wood fragments.			120	94	149 a	72	77		
BH407	27	11.00	11.45	UT	Firm brownish grey slightly sandy organic CLAY with wood fragments.			63	100 n	76 a	42	34		
BH407	33	12.50	12.95	UT	Soft to firm brownish grey slightly sandy slightly gravelly CLAY.			18	85 s	27 a	15	12		
BH407	39	14.00	14.45	UT	Stiff brown slightly sandy slightly gravelly CLAY.			13	86 s	31 a	17	14		
BH407	41	14.50	14.95	UT	Stiff brown slightly gravelly sandy CLAY.			14	86 s	31 a	16	15		
BH407	47	16.00	16.45	UT	Stiff brown CLAY.			22	100 n	36 a	23	13		
BH407	62	20.00	20.45	UT	Stiff brown slightly sandy CLAY with			22	100 n	40 a	21	19		
BH408	1	1.40	1.85	D	occasional partings of sand. Brown slightly sandy slightly gravelly CLAY.			16	68 s	42 a	22	20		
BH408	3	2.00	2.45	UT	Firm to stiff brown slightly sandy CLAY with			29	100 n	51 a	25	26		
BH408	7	3.35	3.80	UT	occasional partings of sand. Dark greyish brown slightly sandy slightly			31	89 s	40 a	25	15		
BH408	11	4.90	5.90	Р	gravelly clayey SILT. Soft dark grey silty CLAY becoming firm dark			100	99 n	42 a	24	18		
BH408	15	6.70	7.15	UT	grey slightly sandy silty CLAY with organic Very soft dark brown slightly sandy silty			28	100 n	39 a	25	14		
BH408	19	8.05	9.05	Р	CLAY. Brown slightly sandy clayey SILT.			34	100 n	36 a	22	14		
BH408	20	9.05	1.05	P	Dark greyish brown sandy clayey SILT			35	100 n	37 a	22	15		
BH408	25	11.50	11.95	UT	becoming very soft organic silty CLAY Dark brown slightly gravelly slightly clayey			24	88 s	24 b	NP			
BH408	37	14.80	15.25	UT	SAND. Firm to stiff greyish brown slightly gravelly			16	86 s	31 a	22	9		
BH408	43	16.75	17.20	UT	sandy CLAY. Stiff brown CLAY.			23	100 n	43 a	24	19		
BH408	59	22.00	22.45	D	Brown slightly sandy CLAY.			30	100 n	43 a 42 a	20	22		
BH417			2.00	В	Greyish brown slightly sandy gravelly SILT.									
	3	1.20			Soft brown slightly sandy slightly gravelly			20	36 s	37 a	29	8		
BH417	8	2.90	3.35	UT	CLAY. Soft brown mottled grey slightly sandy CLAY.			25	100 n	42 a	22	20		
BH417	10	3.55	4.00	UT	Firm brown slightly sandy CLAY.			30	100 n	45 a	23	22		
BH417	12	4.20	4.65	UT	Very soft greyish brown slightly sandy silty			33	100 n	42 a	26	16		
BH417	17	6.00	7.00	P	CLAY. Soft brown slightly sandy silty CLAY.			37	100 n	38 a	24	14		
BH417	22	8.50	8.95	UT	Soft brownish dark grey slightly sandy			32	100 n	38 a	25	13		
BH417	25	9.50	9.95	UT	slightly gravelly CLAY.			38	94 n	41 a	26	15		

General notes: All above tests carried out to BS1377 : 1990 unless annotated otherwise. See individual test reports for further details.

 $\text{Key:} \qquad \qquad p \qquad \text{bulk density, linear} \qquad \qquad W_{\text{L}} \qquad \qquad W_{\text{P}} \qquad \text{Plastic limit} \qquad \qquad <425 \text{um preparation} \qquad \qquad p_{\text{S}} \quad \text{particle density}$

 P_d dry density a 4 point cone test NP non - plastic n from natural soil -g = gas jar

 $w \qquad \text{moisture content} \qquad \qquad b \qquad 1 \text{ point cone test} \qquad \qquad \boxed{I_P \qquad \text{Plasticity Index}} \qquad \quad \text{s} \quad \text{sieved specimen} \qquad \quad -p = \text{small pyknometer}$

QA Ref SLR 1

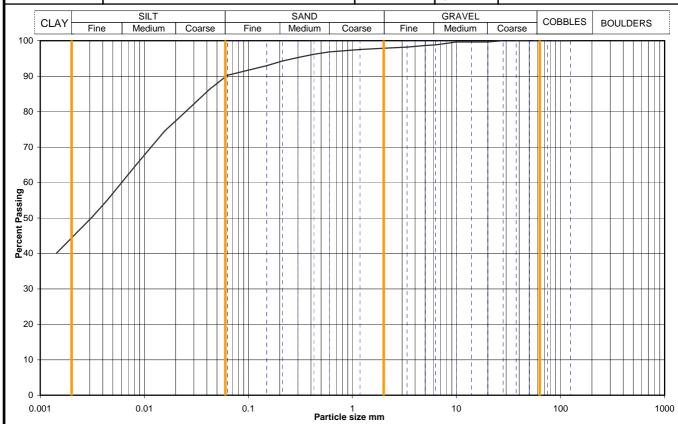
> Rev 91 Mar 12

Printed:30/03/2016 08:56

INDX

Table

Particle Size Distribution Analysis | Sample Details: | Hole No | BH402 |


Project No A5085-15
Project Name A63 CASTLE STREET

Sample Details: Hole No BH402

Depth (m BGL) 1.20

Samp No 3 Type B
ID A5085-1520160125101036

Spec Ref

	1		
Sieving		Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	90
90	100	0.0424	86
75	100	0.0305	82
63	100	0.0219	78
50	100	0.0158	75
37.5	100	0.0084	65
28	100	0.0044	55
20	100	0.0031	50
14	100	0.0014	40
10	100		
6.3	99		
5.0	99		
3.35	98		
2.00	98		
1.18	98	Particle density	v Ma/m3
0.600	97	Particle density, Mg/m3	
0.425	96	2.65 a	ssumed
0.300	95	Dry mass of sa	ample ka
0.212	94	Diy iilass oi se	ampie, kg
0.150	93	6.5	
0.063	90	6.5	

Soil description	Brownish grey slightly sandy slightly gravelly CLAY.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	2	2
*<60mm values to aid	Sand	8	8
description only	Silt	46	46
,,	Clay	44	44

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

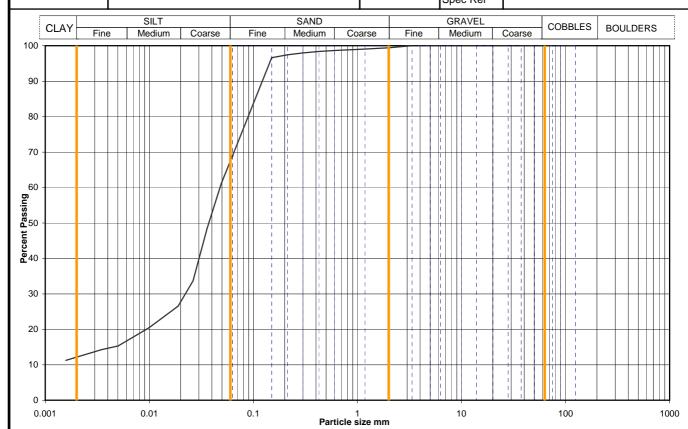
QA Ref

SLR 2,9 Rev 88 Aug 11

Figure

PSD

Particle Size Distribution Analysis


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH402

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 3.75

 Samp No
 9
 Type
 P

 ID
 A5085-1520160125101220

 Spec Ref
 Spec Ref

Sievin	g	Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	69
90	100	0.0493	61
75	100	0.0360	48
63	100	0.0264	34
50	100	0.0189	27
37.5	100	0.0099	20
28	100	0.0050	15
20	100	0.0035	14
14	100	0.0016	11
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	99		
1.18	99	Particle density	, Ma/m2
0.600	99	Failicle delisit	y, wy/ms
0.425	98	2.65 a	ssumed
0.300	98	Dry mass of sample, kg	
0.212	97	Dry mass or so	ampie, kg
0.150	97	6.5	
0.063	69	0.5	

Soil description	Greyish brown slightly sandy clayey SILT.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	1	1
*<60mm values to aid	Sand	32	32
description only	Silt	55	55
, ,	Clay	12	12

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation 9.5 hydromet		

Printed:18/03/2016 11:10

QA Ref

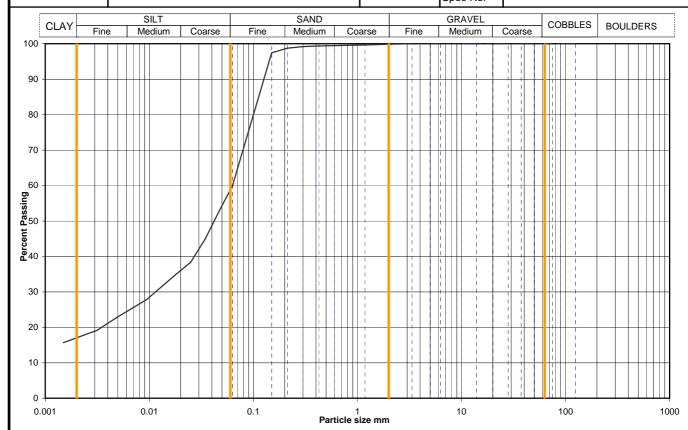
SLR 2,9 Rev 88 Aug 11

Figi

Figure

PSD

Particle Size Distribution Analysis


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH402

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 5.75

 Samp No
 11
 Type
 UT

 ID
 A5085-1520160125101401

 Spec Ref
 Spec Ref

T			
Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	60
90	100	0.0472	53
75	100	0.0344	45
63	100	0.0250	38
50	100	0.0179	35
37.5	100	0.0095	28
28	100	0.0048	23
20	100	0.0031	19
14	100	0.0015	16
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density, Mg/m3	
0.600	99	T ditiole delisit	y, wg/mb
0.425	99	2.65 assumed	
0.300	99	Dry mass of sample, kg	
0.212	99	Diy illass 01 se	ampie, ky
0.150	97	3.7	
0.063	60	3.7	

Soil description	Brownish dark grey sandy slightly clayey SILT.		
Preparation / Pretreatment	Sieve: natural material H	ydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	41	41
description only	Silt	42	42
	Clay	17	17

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

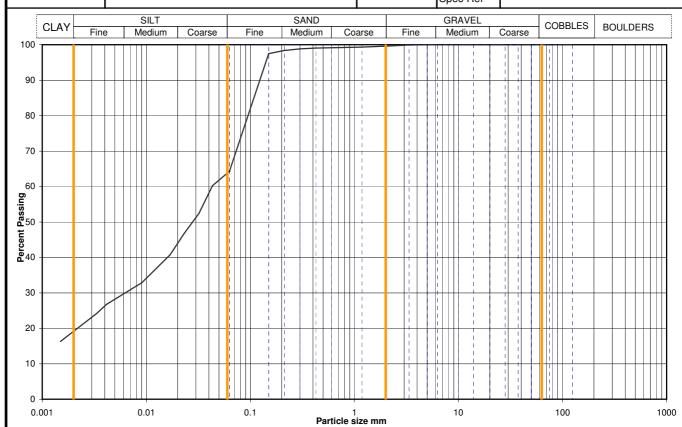
Printed:18/03/2016 11:10

QA Ref

SLR 2,9 Rev 88 Aug 11

Figure

PSD


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH402

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 6.40

 Samp No
 13
 Type
 P

 ID
 A5085-1520160125101438

 Spec Ref
 Spec Ref

Ciavin	Sieving Sedimentation		
Sievin	Sieving		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	64
90	100	0.0432	60
75	100	0.0319	52
63	100	0.0232	47
50	100	0.0169	41
37.5	100	0.0091	33
28	100	0.0042	27
20	100	0.0033	24
14	100	0.0015	16
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	99	Partiala danaity Ma/m2	
0.600	99	Particle density, Mg/m3	
0.425	99	2.65 assumed	
0.300	99	Dry mass of sample, kg	
0.212	98	Dry mass or so	ampie, ky
0.150	97	7.1	
0.063	64	—	

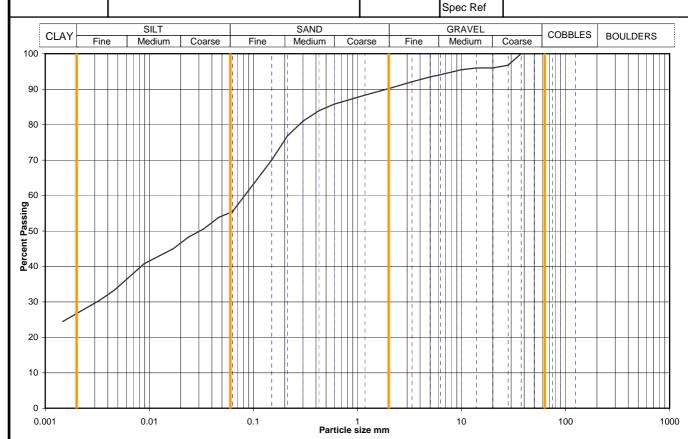
Soil description	Greyish brown sandy clayey SILT.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	36	36
description only	Silt	45	45
, ,	Clay	19	19

Uniformity Coefficient	\mathbf{D}_{60} / \mathbf{D}_{10}	Not applicable
-------------------------------	---------------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11


Printed:30/03/2016 08:54

Figure

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH402

 Project Name
 A63 CASTLE STREET
 Samp No
 24
 Type
 UT

 ID
 A5085-1520160125101741
 Samp No
 Canable
 Canable

Ciavin		Sediment	-4!
Sievin	Sieving		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	55
90	100	0.0463	54
75	100	0.0332	51
63	100	0.0237	48
50	100	0.0170	45
37.5	100	0.0089	41
28	97	0.0046	33
20	96	0.0033	30
14	96	0.0015	24
10	95		
6.3	94		
5.0	93		
3.35	92		
2.00	90		
1.18	88	Particle density, Mg/m3	
0.600	86	Particle density, Mg/IIIS	
0.425	84	2.65 assumed	
0.300	81	Dry mass of sample, kg	
0.212	77	Diy mass or so	ampie, ky
0.150	70	5.0	
0.063	55	5.0	

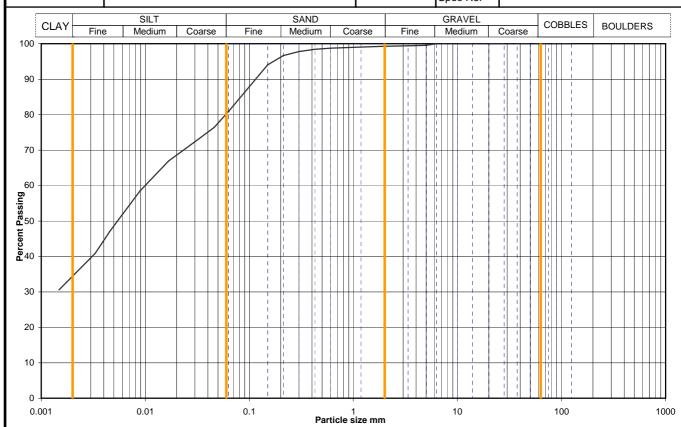
Soil description	Very stiff greyish brown slightly gravelly sandy CLAY.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	10	10
*<60mm values to aid	Sand	35	35
description only	Silt	28	28
. ,	Clay	27	27

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11


Printed:18/03/2016 11:10

Figure

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH402

 Project Name
 A63 CASTLE STREET
 Samp No
 26
 Type
 UT

 ID
 A5085-1520160125101813
 Spec Ref
 Spec Ref

Sievin	a	Sediment	ation
	_		
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	81
90	100	0.0460	76
75	100	0.0329	73
63	100	0.0235	70
50	100	0.0168	67
37.5	100	0.0089	58
28	100	0.0046	47
20	100	0.0033	41
14	100	0.0015	31
10	100		
6.3	100		
5.0	100		
3.35	99		
2.00	99		
1.18	99	Particle density, Mg/m3	
0.600	99	Particle density, Mg/ms	
0.425	98	2.65 assumed	
0.300	98	Dry mass of sample, kg	
0.212	97	Diy mass or so	ampie, ky
0.150	94	5.6	
0.063	81	5.6	

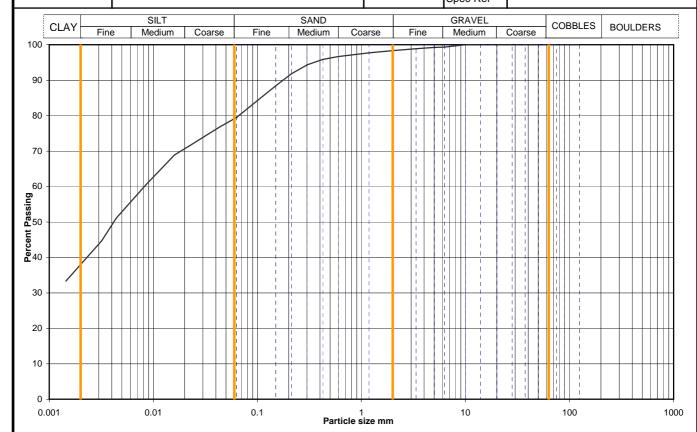
Soil description	Very stiff brown slightly sandy slightly gravelly silty CLAY.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	1	1
*<60mm values to aid	Sand	19	19
description only	Silt	46	46
,,	Clay	34	34

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation 9.5 hydror		

QA Ref

SLR 2,9 Rev 88 Aug 11


Printed:18/03/2016 11:10

Figure

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH402

 Project Name
 A63 CASTLE STREET
 Samp No
 30
 Type
 UT

 ID
 A5085-1520160125101930
 Spec Ref
 Spec Ref

Sievin	Sieving		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	79
90	100	0.0437	77
75	100	0.0312	74
63	100	0.0223	72
50	100	0.0160	69
37.5	100	0.0085	61
28	100	0.0044	51
20	100	0.0032	45
14	100	0.0014	33
10	100		
6.3	99		
5.0	99		
3.35	99		
2.00	98		
1.18	98	Particle densit	, Ma/m2
0.600	97	Particle density, Mg/m3	
0.425	96	2.65 assumed	
0.300	94	Day make of county to the	
0.212	92	Dry mass of sample, kg	
0.150	88	-	
0.063	79	4.8	

Soil description	Stiff greyish brown slightly sandy slightly gravelly CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	⁄dro: as BS1	1377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	2	2
*<60mm values to aid	Sand	19	19
description only	Silt	41	41
,,	Clay	38	38

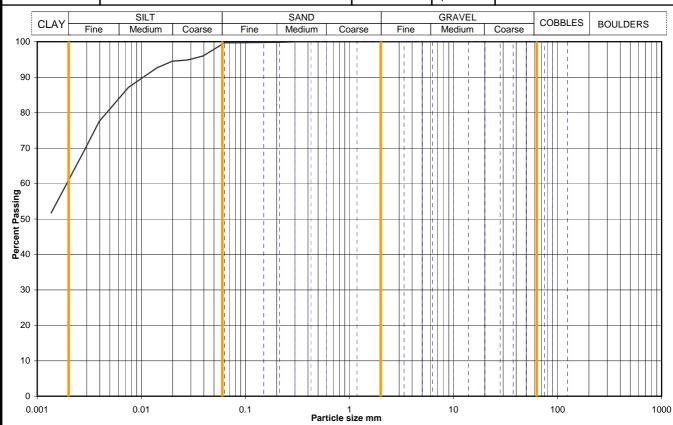
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

Printed:18/03/2016 11:10

QA Ref

SLR 2,9 Rev 88 Aug 11


Figure

Particle Size Distribution Analysis Sample Details: Hole No BH402 15.90 Depth (m BGL) A63 CASTLE STREET UT Samp No Туре

ID

Spec Ref

A5085-1520160125102112

Sievin	Sieving		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	100
90	100	0.0393	96
75	100	0.0280	95
63	100	0.0198	95
50	100	0.0142	93
37.5	100	0.0075	87
28	100	0.0039	78
20	100	0.0029	70
14	100	0.0014	52
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	/ Ma/m3
0.600	100	Particle density, Mg/m3	
0.425	100	2.65 assumed	
0.300	100	Dry mass of sample 1/2	
0.212	100	Dry mass of sample, kg	
0.150	100	4.2	
0.063	100	4.2	

A5085-15

Project No

Project Name

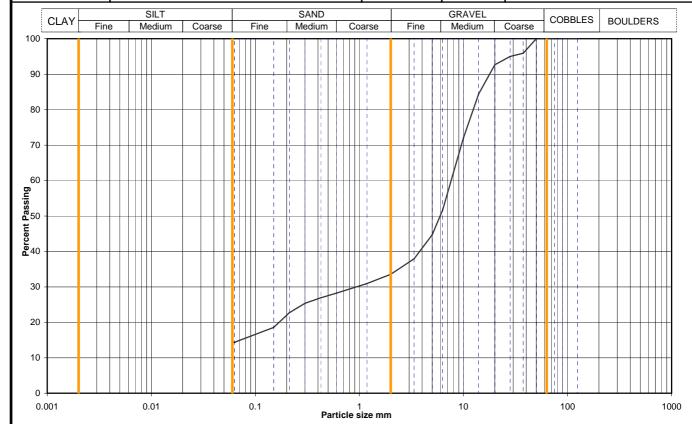
Soil description	Stiff laminated greyish brown slightly sandy CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	/dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	1	1
description only	Silt	38	38
, , , ,	Clay	61	61

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:10

Figure

Particle Size Distribution Analysis Project No A5085-15 Sample Details: Hole No Depth (m BGL) BH402 Project Name A63 CASTLE STREET Samp No 52 Type B ID A5085-1520160125102553 Spec Ref

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	96		
28	95		
20	93		
14	84		
10	72		
6.3	52		
5.0	45		
3.35	38		
2.00	34		
1.18	31		
0.600	28		
0.425	27		
0.300	25	Dry mass of sa	amnla ka
0.212	23	Diy illass 01 Se	ampie, ky
0.150	19	6.9	
0.063	14	0.9	

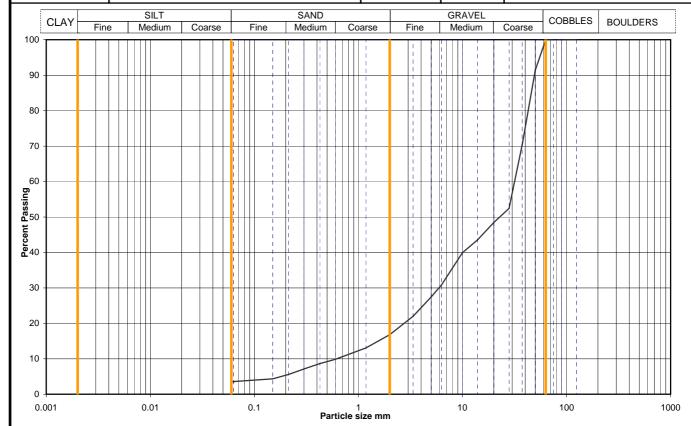
Soil description	Brownish grey sandy silty GRAVEL		
Preparation / Pretreatment	Sieve: natural material		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	66	66
*<60mm values to aid	Sand	19	19
description only	Silt	silt+clay =	
,	Clay	15	15

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable	
------------------------	-----------------------------------	----------------	--

	BS 1377 : Part 2 : 1990		
Test Method	Sedimentation 9.2 wet sieve none		

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:10

Figure

Particle Size Distribution Analysis Project No A5085-15 Sample Details: Hole No Depth (m BGL) BH402 Project Name A63 CASTLE STREET Samp No 56 Type B Type B ID A5085-1520160125102623 Spec Ref

Sievin	Sieving		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100		
90	100		
75	100		
63	100		
50	91		
37.5	70		
28	52		
20	48		
14	44		
10	40		
6.3	31		
5.0	27		
3.35	22		
2.00	17		
1.18	13		
0.600	10		
0.425	9		
0.300	7	Dry mass of sample, kg	
0.212	6	DIY IIIass OI Sa	ampie, kg
0.150	4	6.8	
0.063	4	0.8	

Soil description	Cream CHALK composed of sandy silty gravel.		
Preparation / Pretreatment	Sieve: natural material		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	83	83
*<60mm values to aid	Sand	13	13
description only	Silt	silt+clay =	
, ,	Clay	4	4

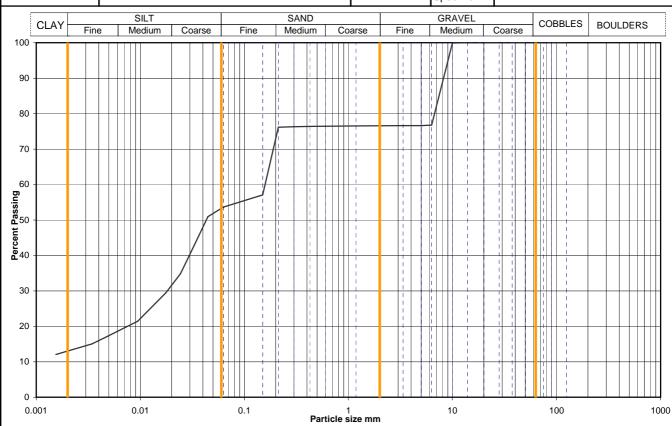
Uniformity Coefficient	D ₆₀ / D ₁₀	51
-------------------------------	-----------------------------------	----

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation none		

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:10


Figure

Particle Size Distribution Analysis Sample Details: Hole No BH403 4.60 Depth (m BGL) A63 CASTLE STREET Samp No Туре В

ID

Spec Ref

A5085-1520160119124449

	1		
Sieving		Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	54
90	100	0.0446	51
75	100	0.0330	43
63	100	0.0243	35
50	100	0.0177	29
37.5	100	0.0095	21
28	100	0.0048	17
20	100	0.0034	15
14	100	0.0015	12
10	100		
6.3	77		
5.0	77		
3.35	77		
2.00	77		
1.18	77	Particle density, Mg/m3	
0.600	76	Particle density, Mg/III3	
0.425	76	2.65 assumed	
0.300	76	Dry mass of sample, kg	
0.212	76	Diy mass or so	ampie, ky
0.150	57	12.6	
0.063	54	12.6	

A5085-15

Project No

Project Name

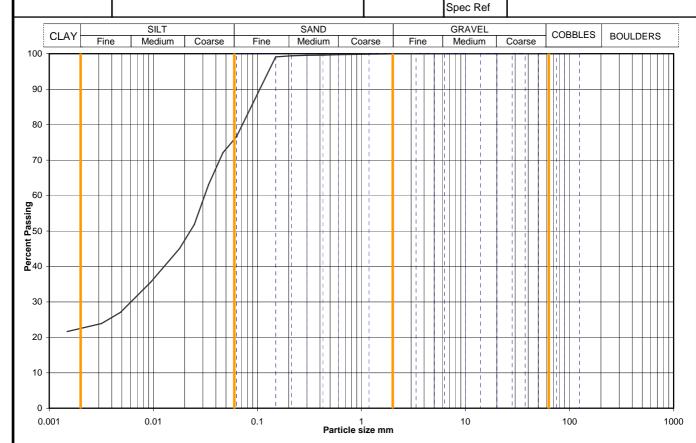
Soil description	Grey and brown slightly sandy slightly gravelly CLAY.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	23	23
*<60mm values to aid	Sand	23	23
description only	Silt	41	41
, , , ,	Clay	13	13

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
Sedimentation 9		9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11


Printed:18/03/2016 11:10

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH403 6.00 Depth (m BGL) A63 CASTLE STREET Samp No Туре

ID

A5085-1520160119124513

Sieving		Sedimentation	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	77
90	100	0.0467	72
75	100	0.0339	63
63	100	0.0248	52
50	100	0.0179	45
37.5	100	0.0095	36
28	100	0.0048	27
20	100	0.0032	24
14	100	0.0015	22
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Dorticle density Ma/m2	
0.600	100	Particle density, Mg/m3	
0.425	100	2.65 assumed	
0.300	100	Drumana of comple lea	
0.212	99	Dry mass of sample, kg	
0.150	99	9.6	
0.063	77	8.6	

A5085-15

Project No

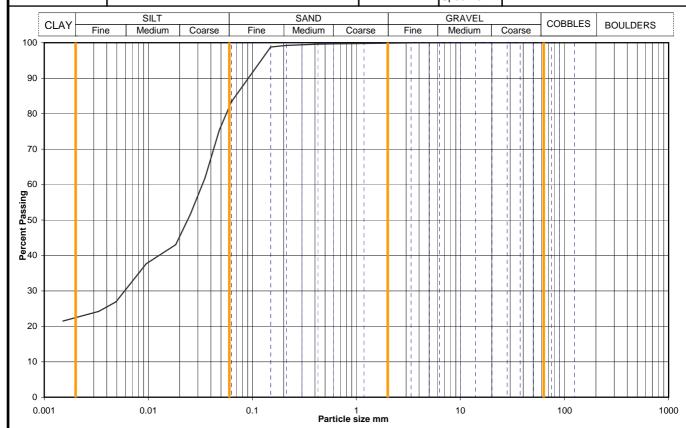
Project Name

Soil description	Brown slightly sandy silty CLAY.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	24	24
description only	Silt	53	53
, , , ,	Clay	23	23

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref


SLR 2,9 Rev 88 Aug 11

Figure

Project No	A5085-15	Sample Details:	Hole No		BH403		
Project Name	A63 CASTLE STREET		Depth (m BG	SL)	8.00		
			Samp No	17		Туре	UT
		ID	A5085-1520160119124600		0		
			Spec Ref				

Sievin	<u> </u>	Sediment	ation
-	<u>`</u>		
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	83
90	100	0.0480	75
75	100	0.0351	62
63	100	0.0254	52
50	100	0.0183	43
37.5	100	0.0096	38
28	100	0.0049	27
20	100	0.0033	24
14	100	0.0015	22
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	/ Ma/m3
0.600	100	i article derisit	y, ivig/iiio
0.425	100	2.65 assumed	
0.300	99	Dry mass of sa	ample ka
0.212	99	Diy illass 01 Se	ampie, ky
0.150	99	4.2	
0.063	83	4.2	

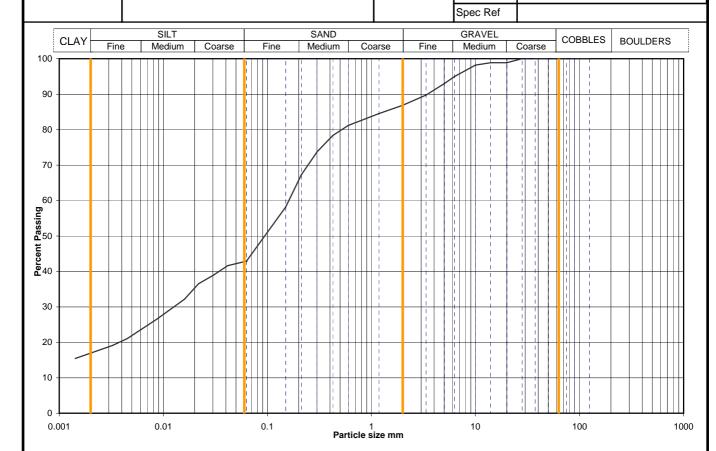
Soil description	Very soft brownish dark grey slightly sandy silty CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	rdro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	18	18
description only	Silt	59	59
, , , ,	Clay	23	23

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

BS 1377 : Part 2 : 1990				
Test Method	Sieving	9.2 wet sieve		
	Sedimentation	9.5 hydrometer		

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:10

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH403 9.30 Depth (m BGL) A63 CASTLE STREET UT Samp No 20 Туре ID

A5085-1520160119124647

Sieving		Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	43
90	100	0.0416	42
75	100	0.0302	39
63	100	0.0218	37
50	100	0.0161	32
37.5	100	0.0087	27
28	100	0.0045	21
20	99	0.0032	19
14	99	0.0014	15
10	98		
6.3	95		
5.0	93		
3.35	90		
2.00	87		
1.18	85	Particle density	, Ma/m2
0.600	81	Particle density, Mg/m3	
0.425	78	2.65 a	ssumed
0.300	74	Dry mass of or	ample ka
0.212	67	Dry mass of sample, kg	
0.150	58	6.2	
0.063	43	6.2	

A5085-15

Project No

Project Name

Soil description	Soft brown slightly gravelly sandy CLAY.		
Preparation / Pretreatment	Sieve: natural material H	Hydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	13	13
*<60mm values to aid	Sand	44	44
description only	Silt	26	26
,	Clay	17	17

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

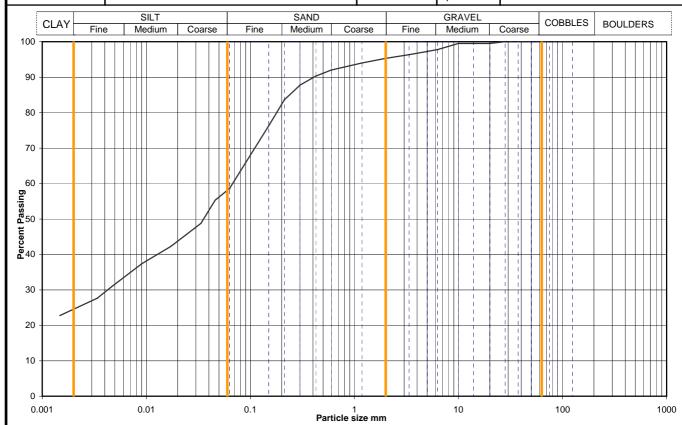
	BS 1377 : Part 2 : 1990				
Test Method	Sieving	9.2 wet sieve			
	Sedimentation	9.5 hydrometer			

Printed:18/03/2016 11:10

QA Ref

SLR 2,9 Rev 88 Aug 11

Figure


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH403

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 11.25

 Samp No
 26
 Type
 B

 ID
 A5085-1520160119124821

 Spec Ref
 Spec Ref

Sieving		Sediment	ation
Sieving			
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	59
90	100	0.0460	55
75	100	0.0335	49
63	100	0.0240	46
50	100	0.0172	42
37.5	100	0.0091	37
28	100	0.0046	31
20	100	0.0034	28
14	100	0.0015	23
10	100		
6.3	98		
5.0	97		
3.35	96		
2.00	95		
1.18	94	Particle density	/ Ma/m3
0.600	92	Particle density, Mg/m	
0.425	90	2.65 assumed	
0.300	88	Dry mass of sa	ample ka
0.212	84	Diy illass 01 se	ampie, ky
0.150	76	10.7	
0.063	59	10.7	

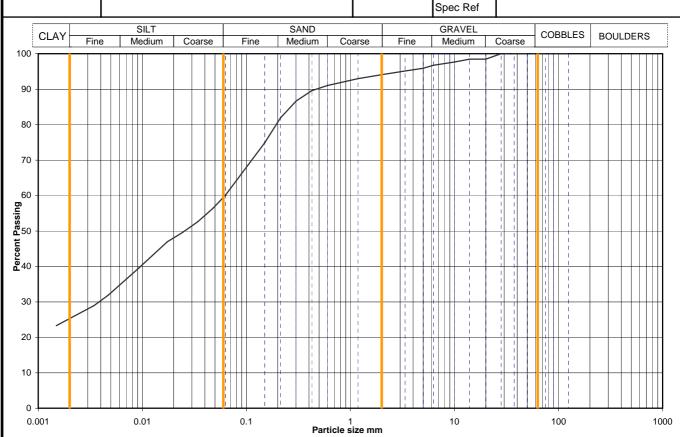
Soil description	Brown slightly gravelly sandy CLAY.		
Preparation / Pretreatment	Sieve: natural material H	Hydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	5	5
*<60mm values to aid	Sand	37	37
description only	Silt	33	33
. ,	Clay	25	25

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:10

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH403 13.20 Depth (m BGL) A63 CASTLE STREET

Samp No Туре В ID A5085-1520160119125005

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	60
90	100	0.0475	56
75	100	0.0341	53
63	100	0.0243	50
50	100	0.0174	47
37.5	100	0.0092	39
28	100	0.0047	32
20	98	0.0034	29
14	98	0.0015	23
10	98		
6.3	97		
5.0	96		
3.35	95		
2.00	94		
1.18	93	Particle densit	v Ma/m3
0.600	91	i article derisit	y, wg/ms
0.425	90	2.65 a	ssumed
0.300	87	Dry mass of comple lea	
0.212	82	Dry mass of sample, kg	
0.150	75	9.6	
0.063	60	9.6	

A5085-15

Project No

Project Name

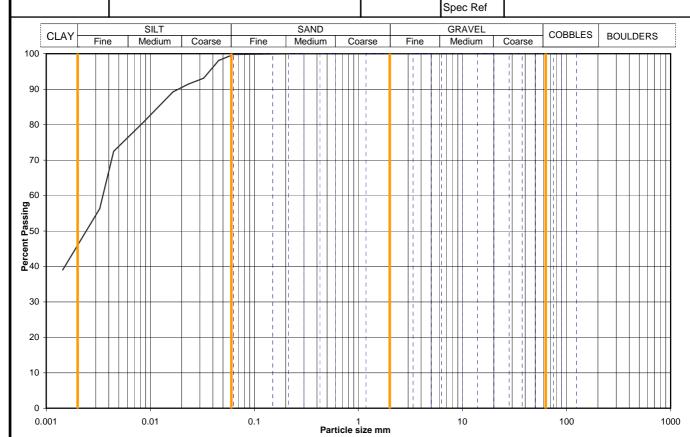
Soil description	Greyish brown slightly grav	elly sandy sil	ty CLAY.
Preparation / Pretreatment	Sieve: natural material H	lydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	6	6
*<60mm values to aid	Sand	35	35
description only	Silt	34	34
	Clay	25	25

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:10

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH403 16.35 Depth (m BGL) A63 CASTLE STREET UT Samp No Туре

ID A5085-1520160120111310

Sievin	g	Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
	Ŭ		Ŭ
125	100	0.0630	100
90	100	0.0455	98
75	100	0.0326	93
63	100	0.0232	91
50	100	0.0165	89
37.5	100	0.0087	81
28	100	0.0044	72
20	100	0.0033	56
14	100	0.0014	39
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	/ Ma/m3
0.600	100	T article derisity	y, ivig/iiio
0.425	100	2.65 a	ssumed
0.300	100	Dry mass of sa	amplo ka
0.212	100	Dry mass of sa	ampie, kg
0.150	100	4.1	
0.063	100	4.1	

A5085-15

Project No

Project Name

Soil description	Firm brown CLAY.		
Preparation / Pretreatment	Sieve: natural material H	Hydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	0	0
description only	Silt	54	54
,,	Clay	46	46

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

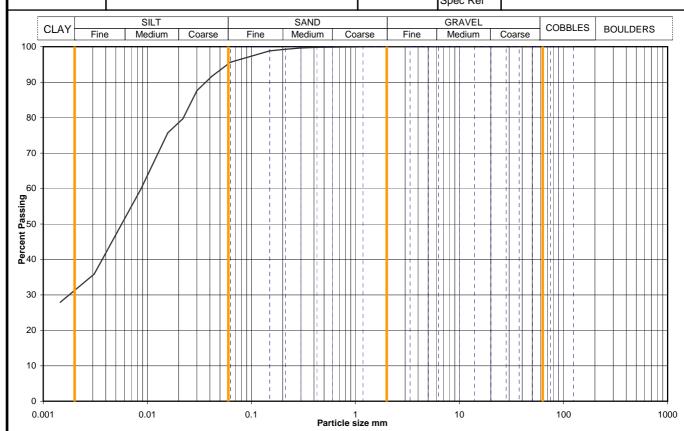
	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:10

Figure


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH403

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 19.60

 Samp No
 50
 Type
 UT

 ID
 A5085-15201601201111454

 Spec Ref
 Spec Ref

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	96
90	100	0.0417	92
75	100	0.0300	88
63	100	0.0219	80
50	100	0.0158	76
37.5	100	0.0086	60
28	100		422
20	100	0.0031	36
14	100	0.0015	28
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	, Ma/m2
0.600	100	Farticle density	y, wg/ms
0.425	100	2.65 a	ssumed
0.300	100	Drumana of cample lies	
0.212	99	Dry mass of sample, kg	
0.150	99	5.4	
0.063	96	5.4	

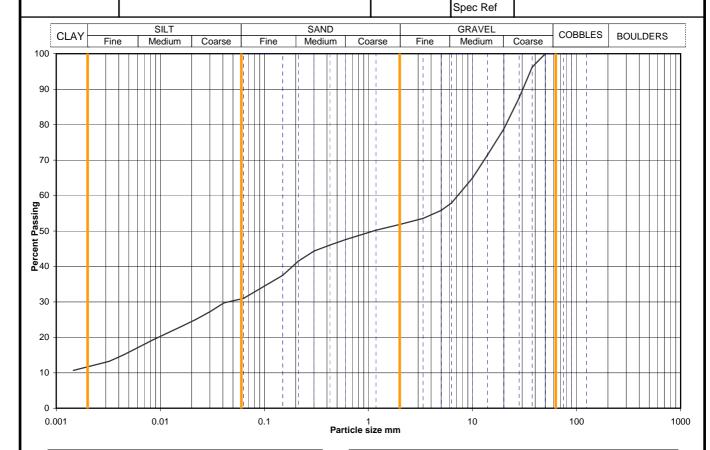
Soil description	Firm brown slightly sandy C	LAY.	
Preparation / Pretreatment	Sieve: natural material Hy	/dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	5	5
description only	Silt	64	64
,	Clay	31	31

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



| -

Printed:18/03/2016 11:11

Figure

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	31
90	100	0.0409	30
75	100	0.0300	27
63	100	0.0219	25
50	100	0.0159	23
37.5	96	0.0086	19
28	88	0.0045	15
20	79	0.0032	13
14	71	0.0015	11
10	65		
6.3	58		
5.0	56		
3.35	54		
2.00	52		
1.18	50	Particle density	/ Ma/m3
0.600	48	Particle density, Mg/m3	
0.425	46	2.65 a	ssumed
0.300	44	Dry mass of s	amnla ka
0.212	42	Dry mass of sample, kg	
0.150	37	8.2	
0.063	31	0.2	

Soil description	Greyish brown slightly sand	ly gravelly Cl	_AY.
Preparation / Pretreatment	Sieve: natural material H	ydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	48	48
*<60mm values to aid	Sand	21	21
description only	Silt	19	19
,,	Clay	12	12

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

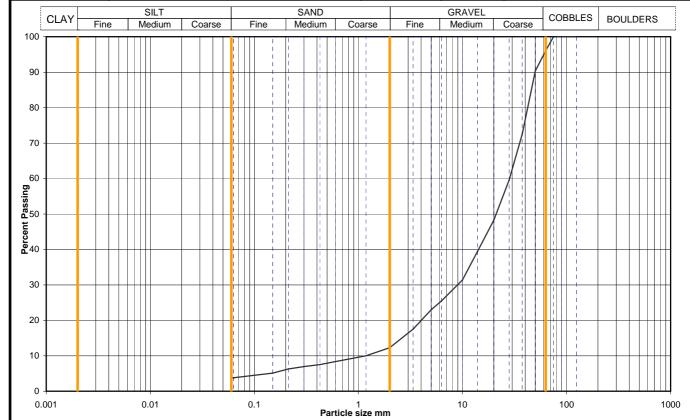
	BS 1377 : Par	t 2 : 1990
Test Method	Sieving	9.2 wet sieve
	Sedimentation	9.5 hydrometer

QA Ref

Project No

Project Name

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:11

Figure

Project No A5085-15 Sample Details: Hole No BH403 Project Name A63 CASTLE STREET Depth (m BGL) 22.55 Samp No 63 Type B ID A5085-1520160120111700 Spec Ref Spec Ref

Sievin	Sieving		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100		
90	100		
75	100		
63	96		
50	90		
37.5	72		
28	59		
20	48		
14	40		
10	31		
6.3	26		
5.0	23		
3.35	18		
2.00	12		
1.18	10		
0.600	8		
0.425	8		
0.300	7	Dry mass of sa	ample ka
0.212	6	Dry mass or se	ampie, kg
0.150	5	12.5	
0.063	4	12.5	

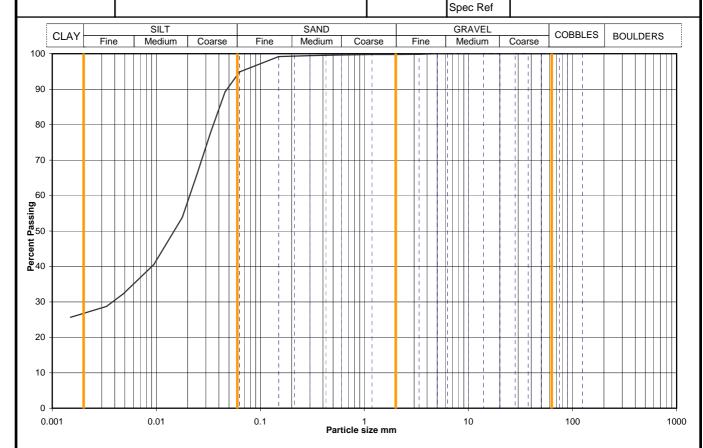
Soil description	Light brown and cream CHALK composed of sandy silty gravel with one cobble.		
Preparation / Pretreatment	Sieve: natural material		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	4	0
Proportions	Gravel	84	88
*<60mm values to aid	Sand	9	9
description only	Silt	silt+clay =	
, , , ,	Clay	3	3

Uniformity Coefficient	D ₆₀ / D ₁₀	24
------------------------	-----------------------------------	----

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet siev		
	Sedimentation	none	

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:11

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH404 2.50 Depth (m BGL) A63 CASTLE STREET UT Samp No Туре ID

A5085-1520160126094427

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	95
90	100	0.0457	89
75	100	0.0334	78
63	100	0.0244	66
50	100	0.0178	54
37.5	100	0.0095	40
28	100	0.0048	32
20	100	0.0033	29
14	100	0.0015	26
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	/ Ma/m3
0.600	100	Particle density, Mg/m3	
0.425	100	2.65 a	ssumed
0.300	99	Drumage of completion	
0.212	99	Dry mass of sample, kg	
0.150	99	2.4	
0.063	95	2.4	

A5085-15

Project No

Project Name

Soil description	Soft brown slightly sandy CL	AY.	
Preparation / Pretreatment	Sieve: natural material Hy	⁄dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	6	6
description only	Silt	67	67
, , , ,	Clay	27	27

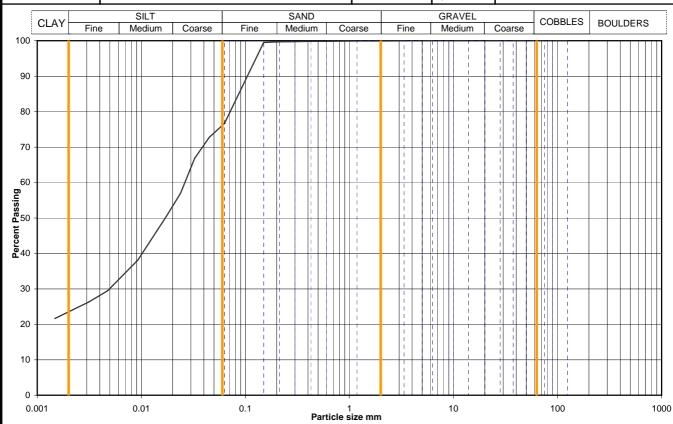
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:11


Figure

Particle Size Distribution Analysis Sample Details: Hole No BH404 4.00 Depth (m BGL) A63 CASTLE STREET Samp No Туре

ID

Spec Ref

A5085-1520160126094619

Sieving		Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	77
90	100	0.0449	73
75	100	0.0325	67
63	100	0.0238	57
50	100	0.0172	50
37.5	100	0.0093	38
28	100	0.0048	29
20	100	0.0031	26
14	100	0.0015	22
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density, Mg/m3	
0.600	100		
0.425	100	2.65 a	ssumed
0.300	100	Dry mass of sa	ample ka
0.212	100	Diy illass 01 Se	ampie, ky
0.150	100	7.6	
0.063	77	7.6	

A5085-15

Project No

Project Name

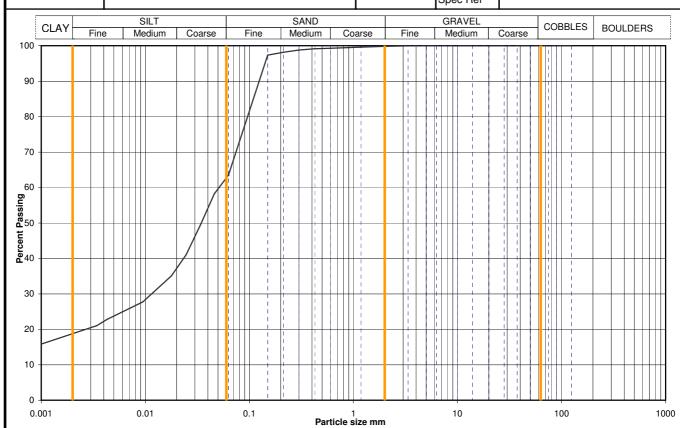
Soil description	Dark grey slightly sandy clayey SILT.		
Preparation / Pretreatment	Sieve: natural material F	lydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	24	24
description only	Silt	53	53
,	Clay	23	23

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Figure

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH404

 Project Name
 A63 CASTLE STREET
 Samp No
 10
 Type
 P

 ID
 A5085-1520160126094851
 Spec Ref
 Spec Ref
 Spec Ref

Sievin	Sieving		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	63
90	100	0.0461	58
75	100	0.0338	49
63	100	0.0247	41
50	100	0.0178	35
37.5	100	0.0095	28
28	100	0.0043	23
20	100	0.0034	21
14	100	0.0008	15
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Dartiala danaitri Ma/m2	
0.600	99	Particle density, Mg/m3	
0.425	99	2.65 assumed	
0.300	99	Dry mass of sa	ample ka
0.212	98	Diy illass 01 Se	ampie, ky
0.150	97	6.8	
0.063	63	— 6.8	

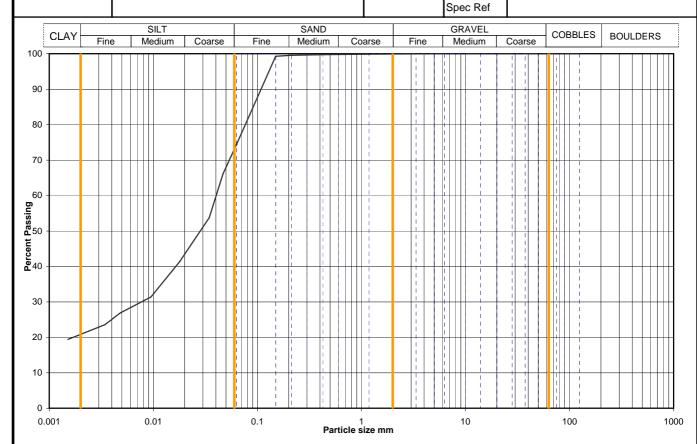
Soil description	Dark brown sandy clayey SILT.		
Preparation / Pretreatment	Sieve: natural material H	lydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	37	37
description only	Silt	44	44
	Clay	19	19

Uniformity Coefficient	\mathbf{D}_{60} / \mathbf{D}_{10}	Not applicable
-------------------------------	---------------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Figure

Printed:23/03/2016 11:45

Particle Size Distribution Analysis Sample Details: Hole No BH404 7.00 Depth (m BGL) A63 CASTLE STREET Samp No Туре В ID A5085-1520160126095020

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	74
90	100	0.0467	66
75	100	0.0344	54
63	100	0.0248	48
50	100	0.0179	41
37.5	100	0.0095	31
28	100	0.0048	27
20	100	0.0034	24
14	100	0.0015	19
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Dortinia donoity Ma/m2	
0.600	100	Particle density, Mg/m3	
0.425	100	2.65 a	ssumed
0.300	100	Dry mass of sa	ample ka
0.212	100	Dry mass of sample, kg	
0.150	99	16.0	
0.063	74	16.8	

A5085-15

Project No

Project Name

Soil description	Brownish grey slightly sandy	∕ clayey SIL	Г.
Preparation / Pretreatment	Sieve: natural material Hy	/dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	27	27
description only	Silt	52	52
, , , ,	Clay	21	21

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

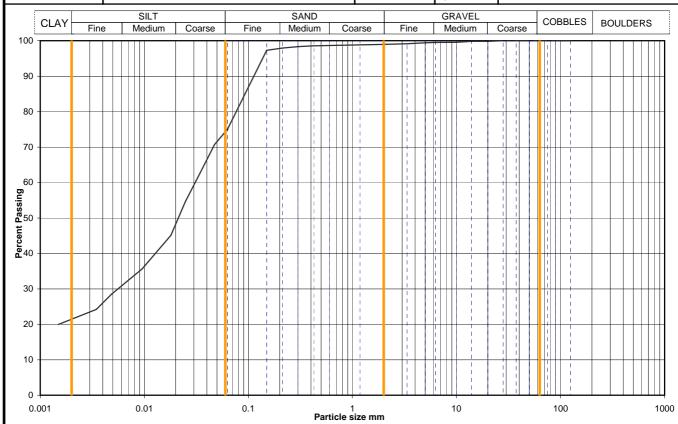
	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:11

Figure


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH404

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 8.00

 Samp No
 15
 Type
 B

 ID
 A5085-1520160126095121

 Spec Ref
 Spec Ref

Sievin	g	Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	75
90	100	0.0474	71
75	100	0.0343	63
63	100	0.0248	55
50	100	0.0180	45
37.5	100	0.0095	36
28	100	0.0048	28
20	100	0.0035	24
14	100	0.0015	20
10	100		
6.3	100		
5.0	99		
3.35	99		
2.00	99		
1.18	99	Particle density	/ Ma/m2
0.600	99	Failible delisity	y, ivig/iiis
0.425	99	2.65 a	ssumed
0.300	98	Dry mass of sa	amplo ka
0.212	98	Dry mass or sa	anipie, kg
0.150	97	13.9	
0.063	75	13.9	

Soil description	Greyish brown slightly sandy slightly gravelly CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	rdro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	1	1
*<60mm values to aid	Sand	25	25
description only	Silt	53	53
, , , ,	Clay	21	21

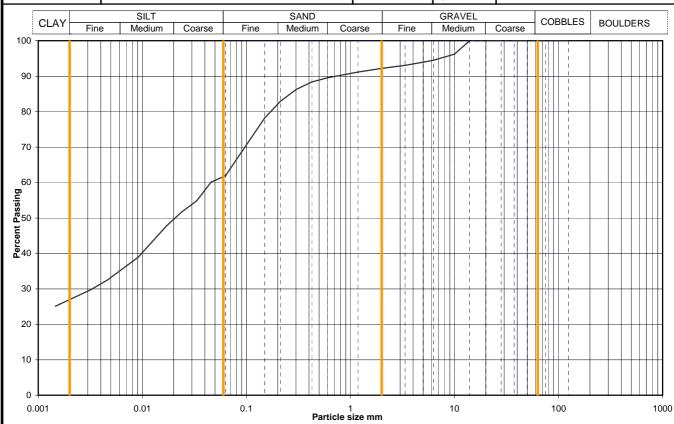
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation		

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:11


Figure

Particle Size Distribution Analysis Sample Details: Hole No BH404 10.00 Depth (m BGL) A63 CASTLE STREET Samp No 20 Туре В

ID

Spec Ref

A5085-1520160126095309

Sievin	g	Sedimentation	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	62
90	100	0.0460	60
75	100	0.0332	55
63	100	0.0238	52
50	100	0.0171	48
37.5	100	0.0091	39
28	100	0.0047	33
20	100	0.0032	30
14	100	0.0015	25
10	96		
6.3	94		
5.0	94		
3.35	93		
2.00	92		
1.18	91	Particle density	/ Ma/m3
0.600	90	i article derisit	y, wg/mo
0.425	88	2.65 a	ssumed
0.300	86	Dry mass of sample, kg	
0.212	83	Diy illass 01 se	ampie, ky
0.150	78	12.1	
0.063	62	12.1	

A5085-15

Project No

Project Name

Soil description	Dark brown slightly sandy s	lightly gravel	ly CLAY.
Preparation / Pretreatment	Sieve: natural material H	ydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	8	8
*<60mm values to aid	Sand	31	31
description only	Silt	34	34
,	Clay	27	27

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:11

Figure

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH404

 Project Name
 A63 CASTLE STREET
 Samp No
 24
 Type
 B

 ID
 A5085-1520160126095614

 Spec Ref
 Spec Ref
 Spec Ref

Sievin	g	Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	61
			_
90	100	0.0460	58
75	100	0.0328	56
63	100	0.0235	53
50	100	0.0168	51
37.5	100	0.0089	42
28	100	0.0046	36
20	98	0.0033	33
14	98	0.0015	26
10	98		
6.3	97		
5.0	96		
3.35	95		
2.00	93		
1.18	92	Particle density	/ Ma/m3
0.600	90	T article derisity	y, ivig/iiio
0.425	88	2.65 a	ssumed
0.300	86	Dry mass of sa	ample ka
0.212	82	Dry mass or so	anipie, ky
0.150	76	11.7	
0.063	61	11.7	

Soil description	Greyish dark brown slightly sandy slightly gravelly CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	7	7
*<60mm values to aid	Sand	33	33
description only	Silt	31	31
, , , ,	Clay	29	29

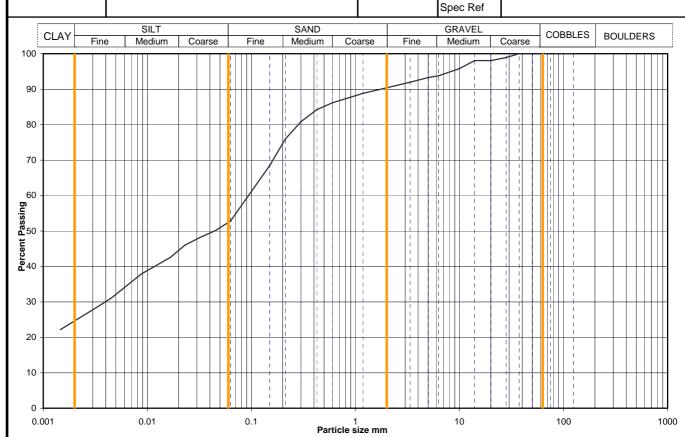
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

Printed:18/03/2016 11:11

QA Ref

SLR 2,9 Rev 88 Aug 11



Figure

Particle Size Distribution Analysis Sample Details: Hole No BH404 12.50 Depth (m BGL) A63 CASTLE STREET

UT Samp No Туре ID A5085-1520160126100101

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	53
90	100	0.0449	50
75	100	0.0321	48
63	100	0.0230	46
50	100	0.0166	42
37.5	100	0.0088	38
28	99	0.0045	31
20	98	0.0032	28
14	98	0.0015	22
10	96		
6.3	94		
5.0	93		
3.35	92		
2.00	90		
1.18	89	Particle density	, Ma/m3
0.600	86	Farticle derisit	y, ivig/iiio
0.425	84	2.65 a	ssumed
0.300	81	Dry mass of or	ample ka
0.212	76	Dry mass of sa	ampie, kg
0.150	68	5.7	
0.063	53	5.7	

A5085-15

Project No

Project Name

Soil description	Very stiff greyish brown slightly gravelly sandy CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	rdro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	10	10
*<60mm values to aid	Sand	38	38
description only	Silt	28	28
, ,	Clay	24	24

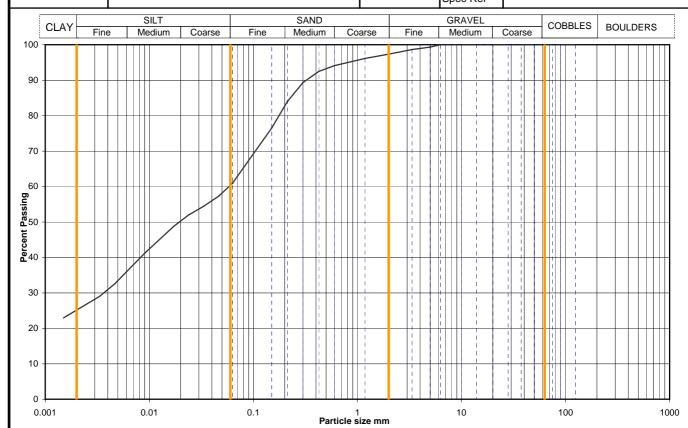
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:11


Figure

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH404

 Project Name
 A63 CASTLE STREET
 Samp No
 36
 Type
 UT

 ID
 A5085-1520160126100329

 Spec Ref
 Spec Ref

Siovin	~	Sediment	otion
Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	61
90	100	0.0467	57
75	100	0.0334	54
63	100	0.0238	52
50	100	0.0171	49
37.5	100	0.0091	41
28	100	0.0047	33
20	100	0.0033	29
14	100	0.0015	23
10	100		
6.3	100		
5.0	99		
3.35	99		
2.00	97		
1.18	96	Particle density	/ Ma/m3
0.600	94	T ditiole delisit	y, wg/mb
0.425	92	2.65 a	ssumed
0.300	89	Dry mass of sa	ample ka
0.212	84	Diy mass or so	ampie, ky
0.150	76	5.6	
0.063	61	5.0	

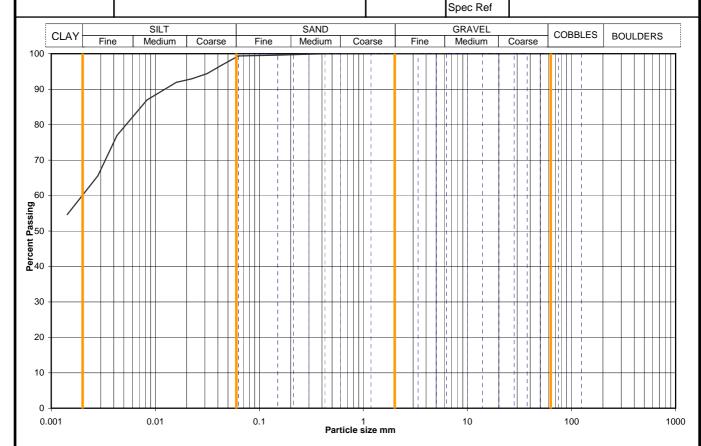
Soil description	Firm to stiff greyish brown slightly gravelly sandy CLAY with chalk fragments.		
Preparation / Pretreatment	Sieve: natural material Hy	/dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	3	3
*<60mm values to aid	Sand	37	37
description only	Silt	35	35
, , , ,	Clay	25	25

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:11

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH404 16.50 Depth (m BGL) A63 CASTLE STREET Samp No Туре В ID

A5085-1520160126100732

Sievin	g	Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	99
90	100	0.0442	99
75	100	0.0315	94
63	100	0.0224	93
50	100	0.0159	92
37.5	100	0.0083	87
28	100	0.0043	77
20	100	0.0028	66
14	100	0.0014	55
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	/ Ma/m3
0.600	100	I article derisity	y, ivig/iiio
0.425	100	2.65 a	ssumed
0.300	100	Dry mass of sa	amplo ka
0.212	100	Dry mass or sa	ampie, kg
0.150	100	6.3	
0.063	99	0.5	

A5085-15

Project No

Project Name

Soil description	Brownish grey slightly sandy CLAY.		
Preparation / Pretreatment	Sieve: natural material H	ydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	1	1
description only	Silt	39	39
	Clay	60	60

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

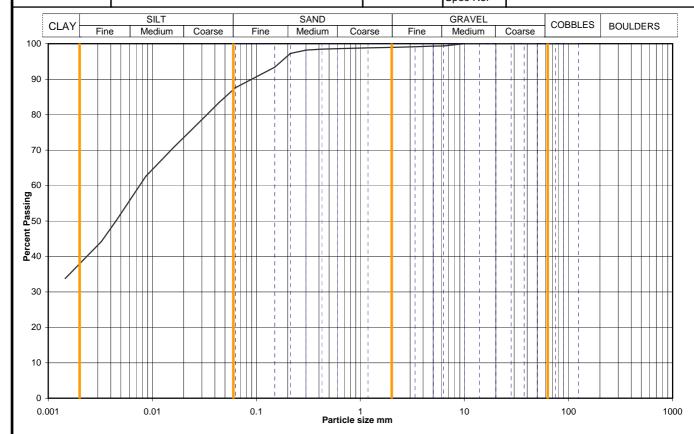
QA Ref

SLR 2,9 Rev 88 Aug 11

Figure

PSD

Printed:18/03/2016 11:11


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH404

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 18.00

 Samp No
 52
 Type
 B

 ID
 A5085-1520160126100940

 Spec Ref
 Spec Ref

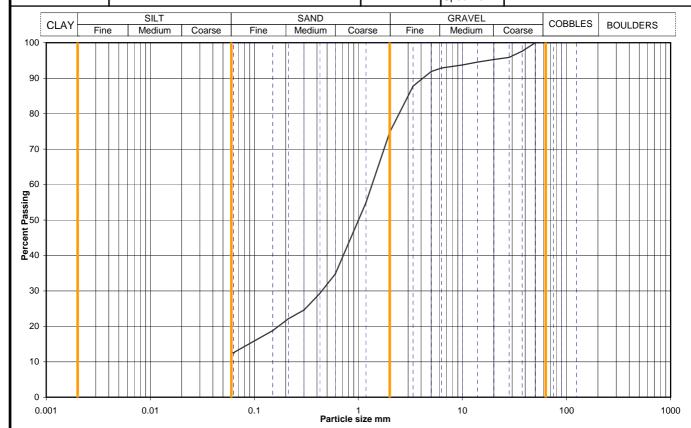
Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	88
90	100	0.0439	83
75	100	0.0315	79
63	100	0.0226	75
50	100	0.0163	71
37.5	100	0.0086	63
28	100	0.0045	50
20	100	0.0032	44
14	100	0.0015	34
10	100		
6.3	99		
5.0	99		
3.35	99		
2.00	99		
1.18	99	Particle density	, Ma/m2
0.600	99	Farticle density	y, wy/ms
0.425	98	2.65 a	ssumed
0.300	98	Dry mass of sample, kg	
0.212	97	Dry mass or so	ampie, kg
0.150	93	5.9	
0.063	88	5.9	

Soil description	Greyish brown slightly sandy slightly gravelly CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	/dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	1	1
*<60mm values to aid	Sand	12	12
description only	Silt	49	49
, , , ,	Clay	38	38

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990			
Test Method	Sieving 9.2 wet sieve			
	Sedimentation	9.5 hydrometer		

QA Ref


SLR 2,9 Rev 88 Aug 11

Figure

Project No A5085-15 Sample Details: Hole No BH404 Project Name A63 CASTLE STREET Depth (m BGL) 23.80 Samp No 71 Type B ID A5085-1520160126101330 Spec Ref

Sievin	eving Sedimentation		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	98		
28	96		
20	95		
14	95		
10	94		
6.3	93		
5.0	92		
3.35	88		
2.00	75		
1.18	55		
0.600	35		
0.425	29		
0.300	25	Dry mass of sa	ample ka
0.212	22	DIY IIIass OI Sa	ampie, kg
0.150	19	4.8	
0.063	13	4.6	

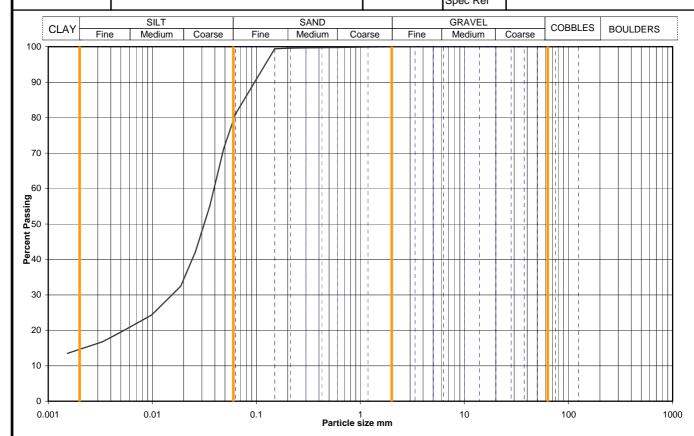
Soil description	Brown very gravelly clayey SAND.		
Preparation / Pretreatment	Sieve: natural material		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	25	25
*<60mm values to aid	Sand	62	62
description only	Silt	silt+clay =	
	Clay	13	13

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990	
Test Method	Sieving 9.2 wet sieve	
	Sedimentation	none

QA Ref

SLR 2,9 Rev 88 Aug 11


Printed:18/03/2016 11:11

Figure

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH405

 Project Name
 A63 CASTLE STREET
 Samp No
 7
 Type
 P

 ID
 A5085-1520160119112456
 Spec Ref
 Spec Ref
 Spec Ref
 Spec Ref

Sievin	g	Sediment	ation
Particle Size	% Possing	Particle Size mm	% Passing
mm	Passing		Passing
125	100	0.0630	81
90	100	0.0485	71
75	100	0.0357	55
63	100	0.0260	42
50	100	0.0187	32
37.5	100	0.0098	24
28	100	0.0050	19
20	100	0.0033	17
14	100	0.0015	13
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	/ Ma/m3
0.600	100	i article derisit	y, ivig/iiio
0.425	100	2.65 a	ssumed
0.300	100	Dry mass of sample, kg	
0.212	100		
0.150	99	8.8	
0.063	81	0.0	

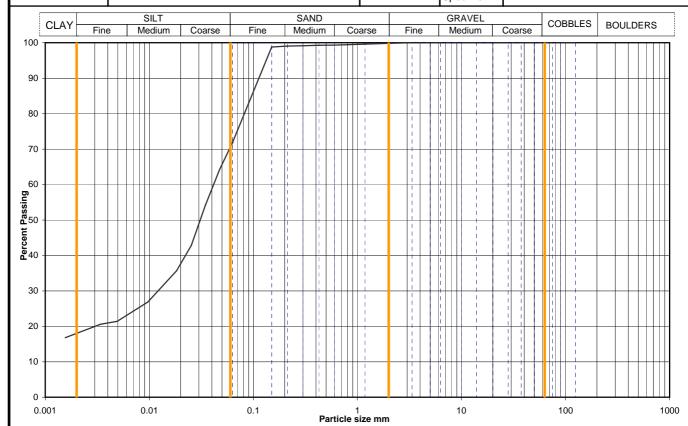
Soil description	Dark grey slightly sandy clayey SILT.		
Preparation / Pretreatment	Sieve: natural material H	ydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	21	21
description only	Silt	64	64
	Clay	15	15

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:11

Figure

Project No	A5085-15	Sample Details:	Hole No		BH40)5	
Project Name	A63 CASTLE STREET		Depth (m BG	SL)	4.00		
			Samp No	8		Туре	Р
			ID	A5085-	5-1520160119112519		9
			Spec Ref				

Sievin	Sieving		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	72
90	100	0.0473	64
75	100	0.0346	54
63	100	0.0253	43
50	100	0.0183	36
37.5	100	0.0097	27
28	100	0.0049	21
20	100	0.0034	21
14	100	0.0016	17
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	, Ma/m²
0.600	99	Particle density, Mg/m3	
0.425	99	2.65 assumed	
0.300	99	Drumoss of completies	
0.212	99	Dry mass of sample, kg	
0.150	99	1 25.0	
0.063	72	25.8	

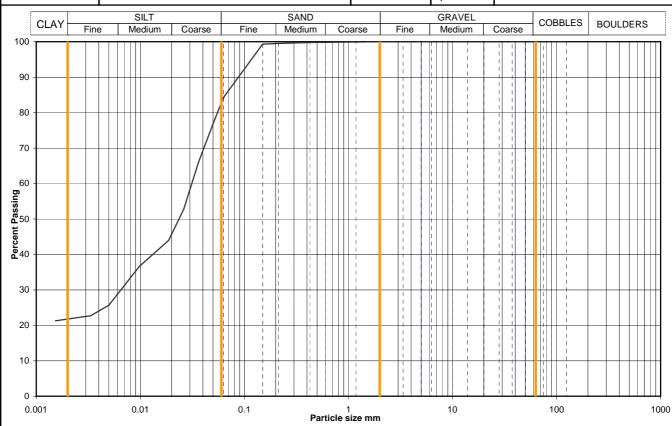
Soil description	Very soft dark grey slightly sandy organic silty CLAY.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	29	29
description only	Silt	53	53
	Clay	18	18

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Figure

Particle Size Distribution Analysis | Sample Details: | Hole No | BH405 |

Project No A5085-15
Project Name A63 CASTLE STREET

Spec Ref

Sieving		Sedimentation		
-	_			
Particle Size	%	Particle Size	%	
mm	Passing	mm	Passing	
125	100	0.0630	84	
90	100	0.0502	77	
75	100	0.0362	66	
63	100	0.0261	53	
50	100	0.0187	44	
37.5	100	0.0098	37	
28	100	0.0050	26	
20	100	0.0033	23	
14	100	0.0015	21	
10	100			
6.3	100			
5.0	100			
3.35	100			
2.00	100			
1.18	100	Particle density	/ Ma/m3	
0.600	100	i article derisit	y, ivig/iiio	
0.425	100	2.65 assumed		
0.300	100	Dry mass of sample, kg		
0.212	100			
0.150	99	70		
0.063	84	7.2		

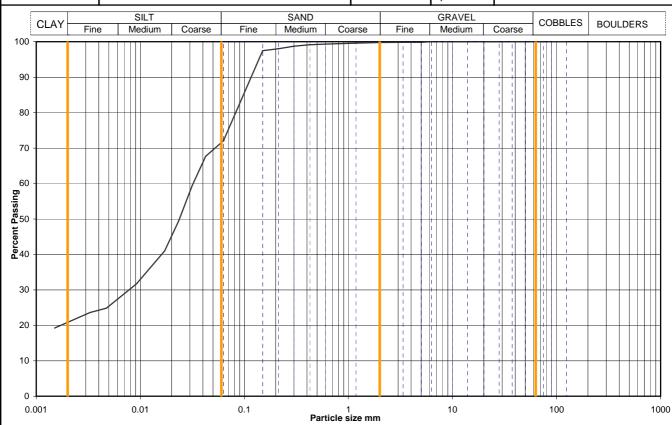
Soil description	Dark grey slightly sandy clayey SILT.		
Preparation / Pretreatment	Sieve: natural material F	lydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	17	17
description only	Silt	61	61
,	Clay	22	22

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11


Printed:18/03/2016 11:11

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH405 6.00 Depth (m BGL) A63 CASTLE STREET

Samp No Туре ID A5085-1520160119112610

Spec Ref

Sieving		Sedimentation	
Particle Size	%	Particle Size	%
	, -		, -
mm	Passing	mm	Passing
125	100	0.0630	72
90	100	0.0424	68
75	100	0.0314	59
63	100	0.0233	49
50	100	0.0171	41
37.5	100	0.0092	32
28	100	0.0047	25
20	100	0.0033	24
14	100	0.0015	19
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	v Ma/m2
0.600	99	Farticle derisit	y, wy/ms
0.425	99	2.65 a	ssumed
0.300	99	Dry mass of s	ample ka
0.212	98	Dry mass of sample, kg	
0.150	97	4.4	
0.063	72		

A5085-15

Project No

Project Name

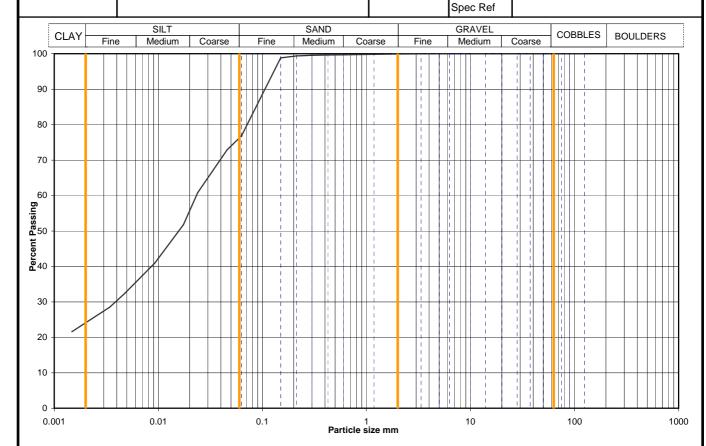
Soil description	Soft dark brown slightly sandy silty CLAY.		
Preparation / Pretreatment	Sieve: natural material H	ydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	28	28
description only	Silt	51	51
, ,	Clay	21	21

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation 9.5 hydrome		

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:11

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH405 7.00 Depth (m BGL) A63 CASTLE STREET Samp No Туре ID A5085-1520160119112634

Sieving		Sedimentation	
Particle Size	%	Particle Size %	
mm	Passing	mm	Passing
125	100	0.0630	77
90	100	0.0460	73
75	100	0.0332	67
63	100	0.0240	61
50	100	0.0174	52
37.5	100	0.0093	41
28	100	0.0048	32
20	100	0.0034	28
14	100	0.0015	22
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	, Ma/m2
0.600	100	Particle density, Mg/m3	
0.425	100	2.65 assumed	
0.300	100	Dry mass of sometralis	
0.212	99	Dry mass of sample, kg	
0.150	99	7.5	
0.063	77	7.5	

A5085-15

Project No

Project Name

Soil description	Very soft brown slightly sandy CLAY.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	24	24
description only	Silt	52	52
, , , ,	Clay	24	24

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

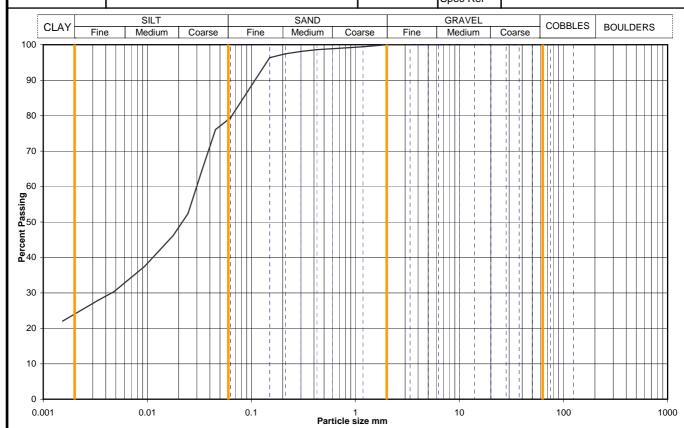
	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:11

Figure


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH405

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 8.00

 Samp No
 15
 Type
 P

 ID
 A5085-1520160119112703

 Spec Ref
 Spec Ref

Sieving		Sedimentation	
Particle Size	%	Particle Size %	
mm	Passing	mm	Passing
125	100	0.0630	79
90	100	0.0453	76
75	100	0.0334	64
63	100	0.0246	52
50	100	0.0177	46
37.5	100	0.0094	37
28	100	0.0048	30
20	100	0.0033	28
14	100	0.0015	22
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	99	Particle densit	v Ma/m2
0.600	99	Particle derisity	y, wg/ms
0.425	99	2.65 assumed	
0.300	98	Dry mass of sample, kg	
0.212	97		
0.150	96	4.2	
0.063	79	1 4.2	

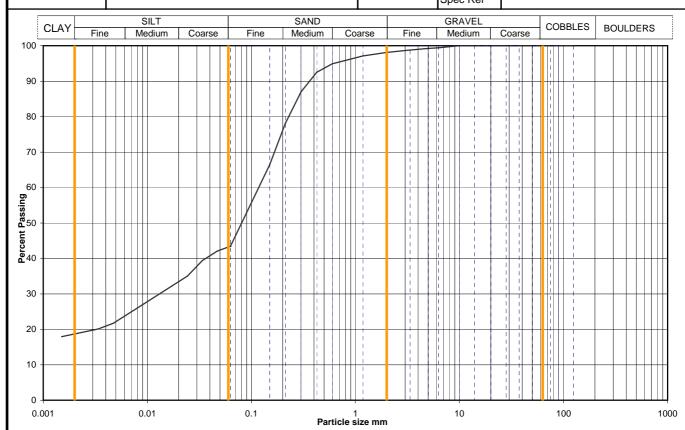
Soil description	Soft to firm greyish brown slightly sandy silty CLAY becoming organic clayey SILT towards base.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	21	21
description only	Silt	55	55
	Clay	24	24

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Figure

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH405

 Project Name
 A63 CASTLE STREET
 Samp No
 19
 Type
 UT

 ID
 A5085-1520160119112827
 Spec Ref
 Spec Ref
 Spec Ref

Sievin	Sieving		ation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	43
90	100	0.0470	42
75	100	0.0337	39
63	100	0.0244	35
50	100	0.0175	32
37.5	100	0.0092	27
28	100	0.0047	22
20	100	0.0034	20
14	100	0.0015	18
10	100		
6.3	99		
5.0	99		
3.35	99		
2.00	98		
1.18	97	Particle density	/ Ma/m3
0.600	95	T article derisity	y, ivig/iiio
0.425	93	2.65 assumed	
0.300	87	Dry mass of sample les	
0.212	78	Dry mass of sample, kg	
0.150	66	3.6	
0.063	43] 3.0	

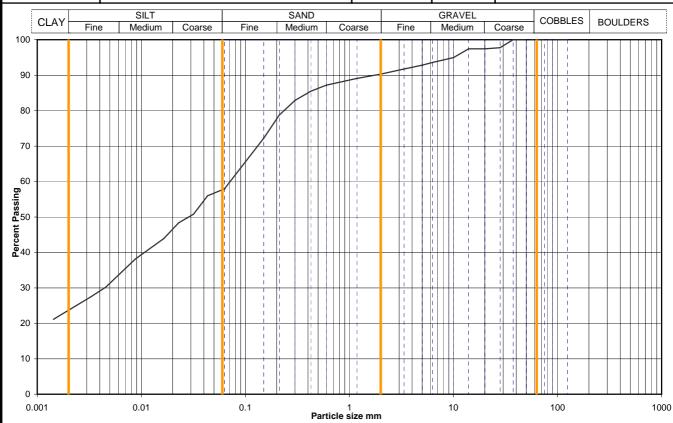
Soil description	Soft brownish dark grey slightly gravelly sandy CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	vdro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	2	2
*<60mm values to aid	Sand	55	55
description only	Silt	24	24
, , , ,	Clay	19	19

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Figure

Particle Size Distribution Analysis Sample Details: Hole No BH405 11.50 Depth (m BGL) A63 CASTLE STREET UT Samp No

Туре ID A5085-1520160119113252

Spec Ref

Sieving		ng Sedimentation	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	58
90	100	0.0435	56
75	100	0.0317	51
63	100	0.0227	48
50	100	0.0165	44
37.5	100	0.0088	38
28	98	0.0046	30
20	97	0.0033	27
14	97	0.0014	21
10	95		
6.3	94		
5.0	93		
3.35	92		
2.00	90		
1.18	89	Particle density, Mg/m3	
0.600	87		
0.425	85	2.65 assumed	
0.300	83	Dry mass of sample, kg	
0.212	79	Diy illass 01 Se	ampie, ky
0.150	72	4.1	
0.063	58	4.1	

A5085-15

Project No

Project Name

Soil description	Firm brownish dark grey slightly sandy slightly gravelly CLAY.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	10	10
*<60mm values to aid	Sand	33	33
description only	Silt	34	34
	Clay	23	23

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

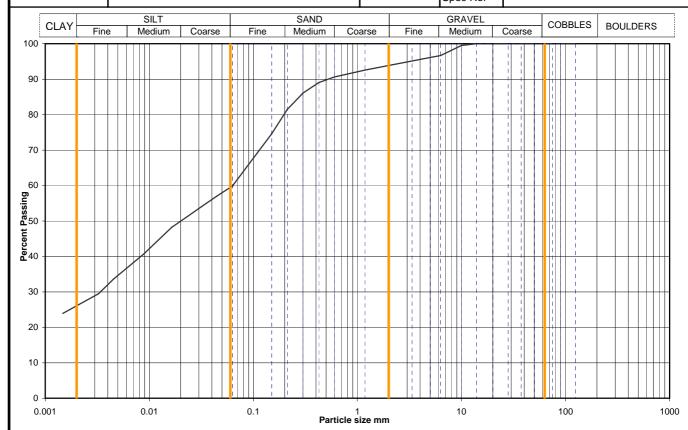
	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation 9.5 hyd		

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:12

Figure


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH405

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 14.00

 Samp No
 34
 Type
 D

 ID
 A5085-1520160119113547

 Spec Ref
 Spec Ref

Sieving		Sedimentation	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	60
90	100	0.0442	57
75	100	0.0318	54
63	100	0.0228	51
50	100	0.0164	48
37.5	100	0.0088	41
28	100	0.0045	34
20	100	0.0033	29
14	100	0.0015	24
10	100		
6.3	97		
5.0	96		
3.35	95		
2.00	94		
1.18	93	Particle density, Mg/m3	
0.600	91	T ditiole delisit	y, ivig/iiio
0.425	89	2.65 a	ssumed
0.300	86	Dry mass of sample, kg	
0.212	81	Diy mass or so	ampie, ky
0.150	75	0.9	
0.063	60	0.9	

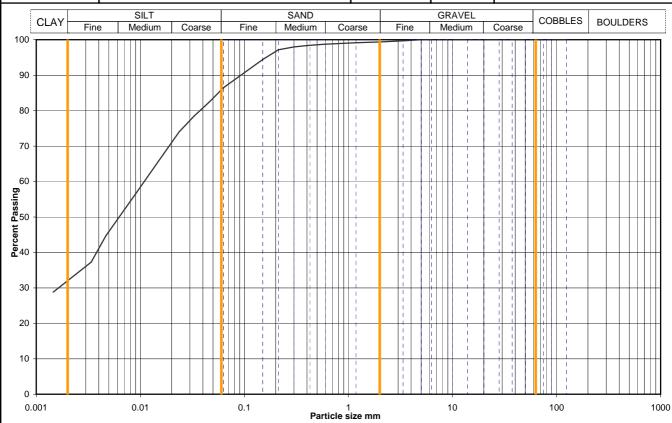
Soil description	Dark brown slightly sandy slightly gravelly CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	/dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	6	6
*<60mm values to aid	Sand	34	34
description only	Silt	34	34
, ,	Clay	26	26

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11


Printed:18/03/2016 11:12

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH405 19.00 Depth (m BGL) A63 CASTLE STREET

Samp No Туре В ID A5085-1520160119115054

Spec Ref

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	86
90	100	0.0462	82
75	100	0.0331	78
63	100	0.0237	74
50	100	0.0170	68
37.5	100	0.0091	57
28	100	0.0047	45
20	100	0.0034	37
14	100	0.0015	29
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	99		
1.18	99	Particle density, Mg/m3	
0.600	99		
0.425	98	2.65 a	ssumed
0.300	98	Dry mass of sample, kg	
0.212	97	DIY IIIass OI Si	ampie, kg
0.150	94	8.2	
0.063	86	0.2	

A5085-15

Project No

Project Name

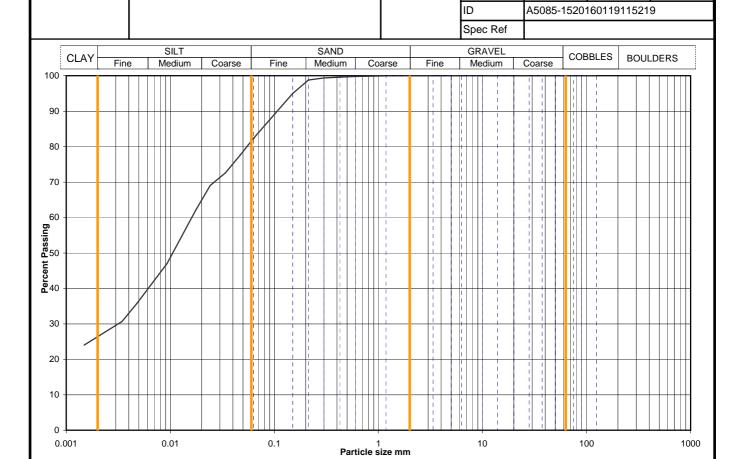
Soil description	Brown slightly sandy slightly gravelly CLAY.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	1	1
*<60mm values to aid	Sand	14	14
description only	Silt	53	53
, , , ,	Clay	32	32

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:12

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH405 21.00 Depth (m BGL) A63 CASTLE STREET Samp No 60 Туре В

Sievin	Sieving Sedimentation		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	82
90	100	0.0472	78
75	100	0.0338	73
63	100	0.0242	69
50	100	0.0174	62
37.5	100	0.0093	47
28	100	0.0048	36
20	100	0.0034	31
14	100	0.0015	24
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	, Ma/m3
0.600	100	Particle density, Mg/m3	
0.425	100	2.65 assumed	
0.300	99	Dry mass of sample les	
0.212	99	Dry mass of sample, kg	
0.150	95	7	
0.063	82	6.1	

A5085-15

Project No

Project Name

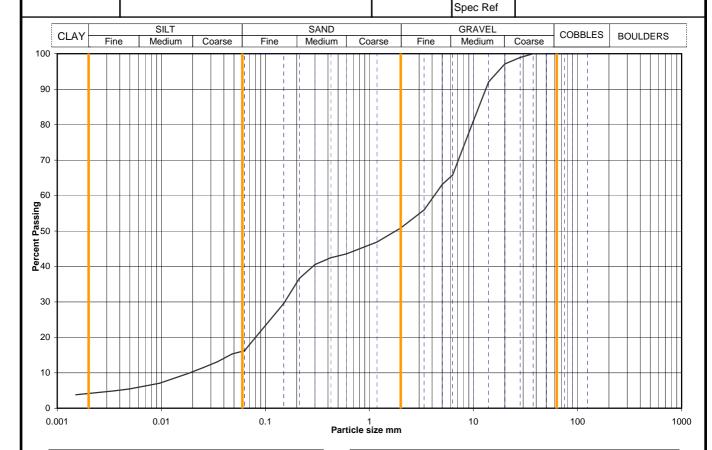
Soil description	Greyish brown slightly sandy CLAY.		
Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	18	18
description only	Silt	55	55
,	Clay	27	27

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990 Test Method Sieving 9.3 dry sieve		
Test Method			
	Sedimentation	9.5 hydrometer	

Printed:18/03/2016 11:12

QA Ref


SLR 2,9 Rev 88 Aug 11

Figure

Particle Size Distribution Analysis Project No A5085-15 Sample Details: Hole No BH405 Project Name A63 CASTLE STREET Depth (m BGL) 23.60 Samp No 67 Type B ID A5085-1520160119115414

Sieving Sedimentatio		ation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	16
90	100	0.0479	15
75	100	0.0348	13
63	100	0.0251	11
50	100	0.0181	10
37.5	100	0.0096	7
28	99	0.0049	5
20	97	0.0035	5
14	92	0.0015	4
10	81		
6.3	66		
5.0	63		
3.35	56		
2.00	51		
1.18	47	Particle densit	v Ma/m3
0.600	44	Particle density, Mg/m3	
0.425	42	2.65 assumed	
0.300	41	Dry mann of completion	
0.212	37	Dry mass of sample, kg	
0.150	30	12.0	
0.063	16	12.0	

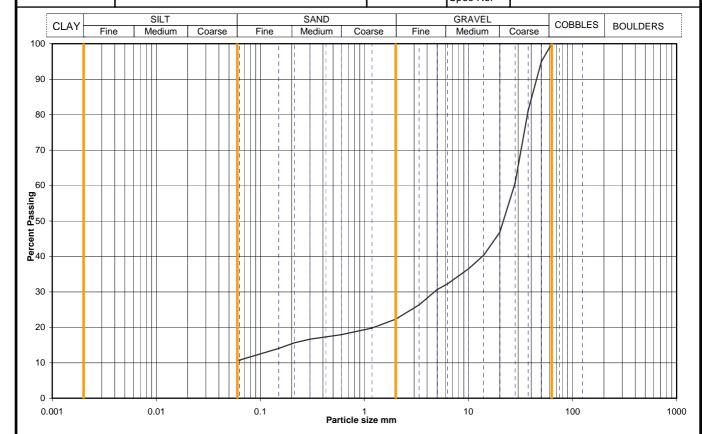
Soil description	Brown very sandy clayey GRAVEL.		
Preparation / Pretreatment	Sieve: natural material I	Hydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	49	49
*<60mm values to aid	Sand	35	35
description only	Silt	12	12
	Clay	4	4

Uniformity Coefficient	D ₆₀ / D ₁₀	222
------------------------	-----------------------------------	-----

BS 1377 : Part 2 : 1990			
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Figure

PSD

Printed:18/03/2016 11:12

Project No A5085-15 Sample Details: Hole No BH405 Project Name A63 CASTLE STREET Samp No 69 Type B ID A5085-1520160119115434 Spec Ref Spec Ref

Sieving		Sedimentation	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100		
90	100		
75	100		
63	100		
50	95		
37.5	81		
28	61		
20	47		
14	40		
10	36		
6.3	32		
5.0	31		
3.35	26		
2.00	22		
1.18	20		
0.600	18		
0.425	17		
0.300	17	Dry mass of sample, kg	
0.212	16	Diy mass or so	anipie, ky
0.150	14	14.0	
0.063	11	14.0	

Soil description	White and cream CHALK composed of sandy silty GRAVEL.		
Preparation / Pretreatment	Sieve: natural material		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	78	78
*<60mm values to aid	Sand	12	12
description only	Silt	silt+clay =	
,	Clay	10	10

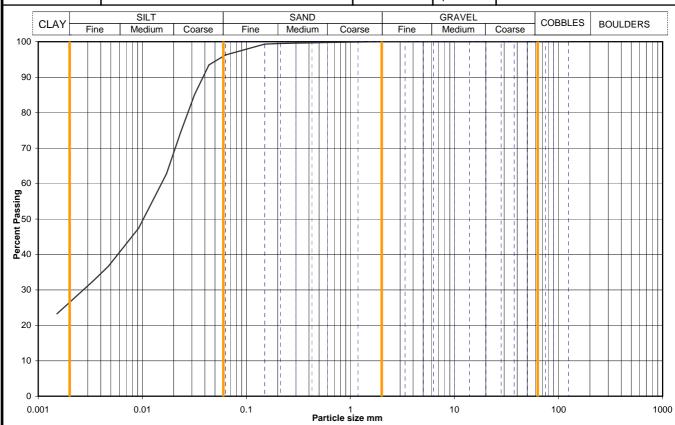
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet siev	
	Sedimentation	none

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:12


Figure

Particle Size Distribution Analysis Sample Details: Hole No BH406 3.50 Depth (m BGL) A63 CASTLE STREET Samp No Туре

ID

Spec Ref

A5085-1520151208041628

Sievin	Sieving		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	96
90	100	0.0437	93
75	100	0.0318	85
63	100	0.0233	74
50	100	0.0171	63
37.5	100	0.0092	47
28	100	0.0047	37
20	100	0.0034	33
14	100	0.0015	23
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density, Mg/m3	
0.600	100	- Farticle density, Mg/III3	
0.425	100	2.65 assumed	
0.300	100	Dry mass of sample, kg	
0.212	99	Diy illass 01 se	ampie, ky
0.150	99	1 0	
0.063	96	1.9	

A5085-15

Project No

Project Name

Soil description	Brownish grey slightly sandy CLAY.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	4	4
description only	Silt	69	69
, ,	Clay	27	27

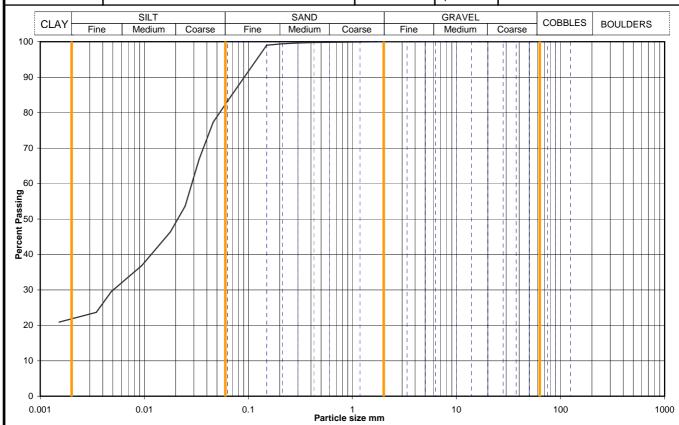
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
Sedimentation		9.5 hydrometer	

Printed:18/03/2016 11:12

QA Ref

SLR 2,9 Rev 88 Aug 11



Figure

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH406

 Project Name
 A63 CASTLE STREET
 Samp No
 16
 Type
 UT

 ID
 A5085-1520151208042145
 Spec Ref
 Spec Ref

Sievin	Sieving		ation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	83
90	100	0.0459	77
75	100	0.0336	67
63	100	0.0247	54
50	100	0.0178	46
37.5	100	0.0095	37
28	100	0.0048	30
20	100	0.0035	24
14	100	0.0015	21
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	/ Ma/m2
0.600	100	Particle density, Mg/m3	
0.425	100	2.65 assumed	
0.300	100	Dry mass of sample, kg	
0.212	99	Diy illass 01 Sa	ampie, kg
0.150	99	2.9	
0.063	83	2.9	

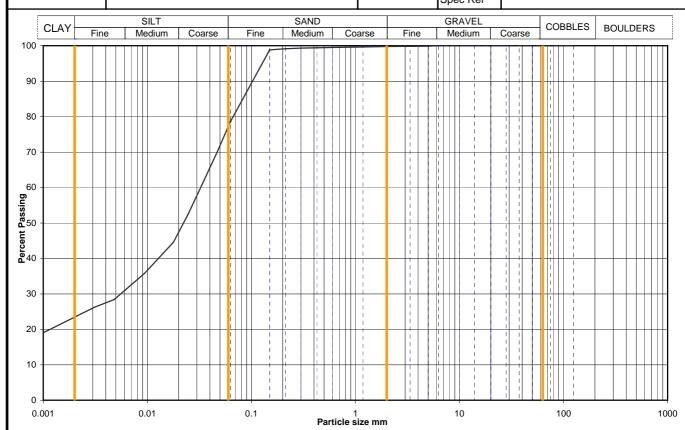
Soil description	Grey slightly sandy silty CLAY.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	18	18
description only	Silt	60	60
,,	Clay	22	22

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11


Printed:18/03/2016 11:12

Figure

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH406

 Project Name
 A63 CASTLE STREET
 Samp No
 18
 Type
 B

 ID
 A5085-1520151208042257
 Spec Ref
 Spec Ref
 Spec Ref

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	79
90	100	0.0467	70
75	100	0.0339	61
63	100	0.0246	52
50	100	0.0178	45
37.5	100	0.0094	36
28	100	0.0048	28
20	100	0.0031	26
14	100	0.0008	18
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Dortinla donaity Ma/m2	
0.600	99	Particle density, Mg/m3	
0.425	99	2.65 assumed	
0.300	99	Dry man of completion	
0.212	99	Dry mass of sample, kg	
0.150	99	12.4	
0.063	79	12.4	

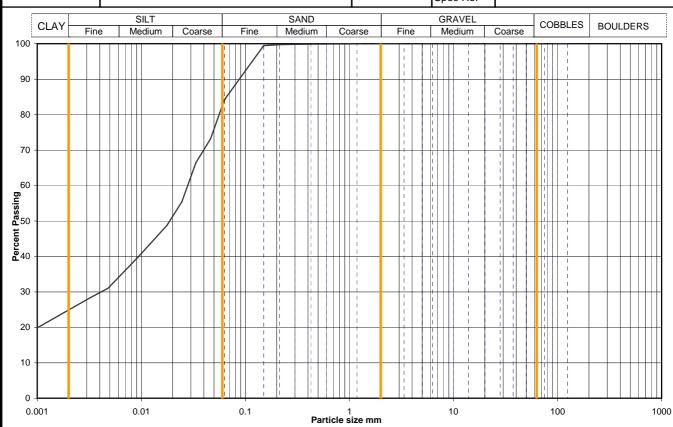
Soil description	Grey and brown slightly sandy CLAY.		
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	23	23
description only	Silt	54	54
	Clay	23	23

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11


Printed:18/03/2016 11:12

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH406 7.50 Depth (m BGL) A63 CASTLE STREET

Samp No Туре В ID A5085-1520151209113442

Spec Ref

Sieving		Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	84
90	100	0.0463	73
75	100	0.0335	66
63	100	0.0245	55
50	100	0.0177	49
37.5	100	0.0093	40
28	100	0.0048	31
20	100	0.0032	28
14	100	0.0008	19
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle densit	Ma/m3
0.600	100	i article derisit	y, ivig/iiio
0.425	100	2.65 a	ssumed
0.300	100	Dry mass of sa	ample ka
0.212	100	Diy illass 01 Se	ampie, ky
0.150	99	7.0	
0.063	84	7.0	

A5085-15

Project No

Project Name

Soil description	Greyish brown slightly sandy slightly gravelly SILT.			
Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377			
Remarks				
		Whole	*<63mm	
Sample	Cobbles / boulders	0	0	
Proportions	Gravel	0	0	
*<60mm values to aid	Sand	18	18	
description only	Silt	57	57	
, , , ,	Clay	25	25	

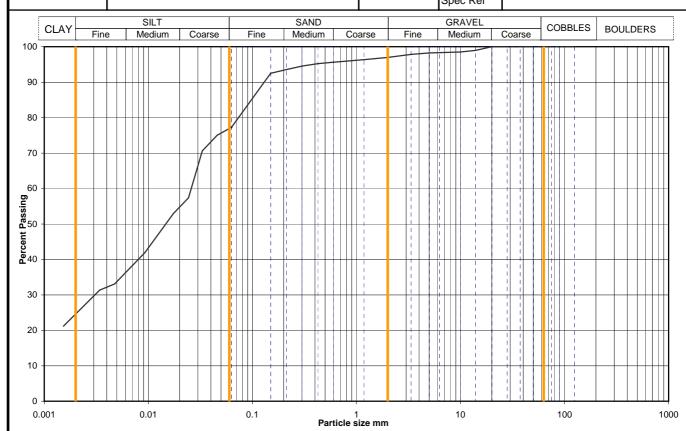
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.3 dry sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Figure


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH406

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 9.00

 Samp No
 27
 Type
 B

 ID
 A5085-1520151209113602

 Spec Ref
 Spec Ref

Sievin	Sieving		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	77
90	100	0.0460	75
75	100	0.0330	71
63	100	0.0243	57
50	100	0.0174	53
37.5	100	0.0093	42
28	100	0.0048	33
20	100	0.0034	31
14	99	0.0015	21
10	99		
6.3	98		
5.0	98		
3.35	98		
2.00	97		
1.18	96	Particle densit	Ma/m3
0.600	96	Faiticle delisit	y, wg/ms
0.425	95	2.65 a	ssumed
0.300	95	Dry mass of sa	ample ka
0.212	94	Diy illass 01 Se	ampie, ky
0.150	93	6.4	
0.063	77	7	

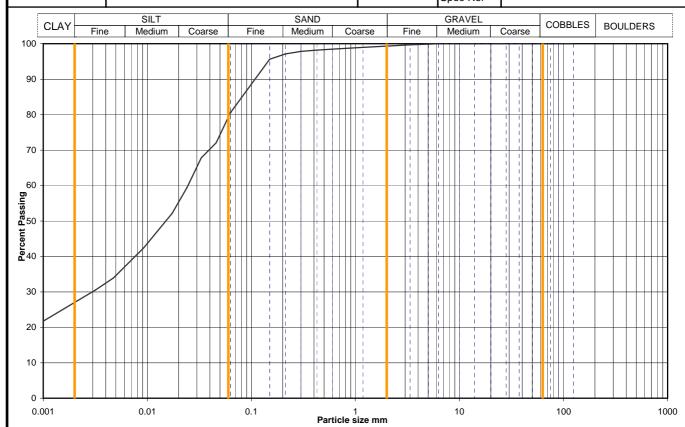
Soil description	Grey slightly sandy slightly gravelly CLAY.			
Preparation / Pretreatment	Sieve: natural material Hydro: as BS1377			
Remarks				
		Whole	*<63mm	
Sample	Cobbles / boulders	0	0	
Proportions	Gravel	3	3	
*<60mm values to aid	Sand	20	20	
description only	Silt	52	52	
, ,	Clay	25	25	

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:12

Figure

Project No	A5085-15	Sample Details:	Hole No		BH406			
Project Name	A63 CASTLE STREET		Depth (m BG	SL)	10.50)		
		Samp No	30		Туре	В		
		ID	A5085-	5-1520151209113910		0		
		Spec Ref						

Sievin	Sieving Sedime		ation
-	_		
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	81
90	100	0.0460	72
75	100	0.0330	68
63	100	0.0240	59
50	100	0.0174	52
37.5	100	0.0092	42
28	100	0.0047	34
20	100	0.0032	31
14	100	0.0008	20
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	99		
1.18	99	Particle density	/ Ma/m3
0.600	98	Particle density, Mg/m	
0.425	98	2.65 a	ssumed
0.300	98	Dry mass of sa	ample ka
0.212	97	Diy illass 01 Se	ampie, ky
0.150	96	4.9	
0.063	81	7 4.9	

Soil description	Greyish brown slightly sandy slightly gravelly SILT.			
Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377			
Remarks				
		Whole	*<63mm	
Sample	Cobbles / boulders	0	0	
Proportions	Gravel	1	1	
*<60mm values to aid	Sand	20	20	
description only	Silt	52	52	
, , , ,	Clay	27	27	

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Pari	t 2 : 1990		
Test Method	Sieving 9.3 dry sieve			
	Sedimentation	9.5 hydrometer		

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:12

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH406 13.00 Depth (m BGL) A63 CASTLE STREET UT Samp No Туре

ID

Spec Ref

A5085-1520151209114256

Sieving		Sediment	ation
	ĭ		
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	53
90	100	0.0430	51
75	100	0.0310	48
63	100	0.0222	46
50	100	0.0160	43
37.5	100	0.0086	37
28	98	0.0044	31
20	96	0.0032	28
14	96	0.0015	22
10	94		
6.3	91		
5.0	91		
3.35	89		
2.00	88		
1.18	86	Double density May/22	
0.600	83	Particle density, Mg/m3	
0.425	82	2.65 assumed	
0.300	79	Dayman of completion	
0.212	74	Dry mass of sample, kg	
0.150	68	┨	
0.063	53	5.2	

A5085-15

Project No

Project Name

Soil description	Very stiff greyish brown slightly sandy slightly gravelly CLAY		
Preparation / Pretreatment	Sieve: natural material H	/dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	12	12
*<60mm values to aid	Sand	35	35
description only	Silt	29	29
, ,	Clay	24	24

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:12


Figure

Particle Size Distribution Analysis Sample Details: Hole No BH406 14.50 Depth (m BGL) A63 CASTLE STREET UT Samp No Туре

ID

Spec Ref

A5085-1520151222102152

Sievin	Sieving Sedimentation		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	68
90	100	0.0411	63
75	100	0.0298	59
63	100	0.0215	56
50	100	0.0156	52
37.5	100	0.0084	44
28	98	0.0044	36
20	96	0.0032	32
14	96	0.0014	25
10	95		
6.3	93		
5.0	92		
3.35	92		
2.00	91		
1.18	90	Particle density	/ Ma/m3
0.600	88	Particle density, Mg/m3	
0.425	87	2.65 assumed	
0.300	85	Dry mass of co	amnla ka
0.212	82	Dry mass of sample, kg	
0.150	77	20	
0.063	68	3.8	

A5085-15

Project No

Project Name

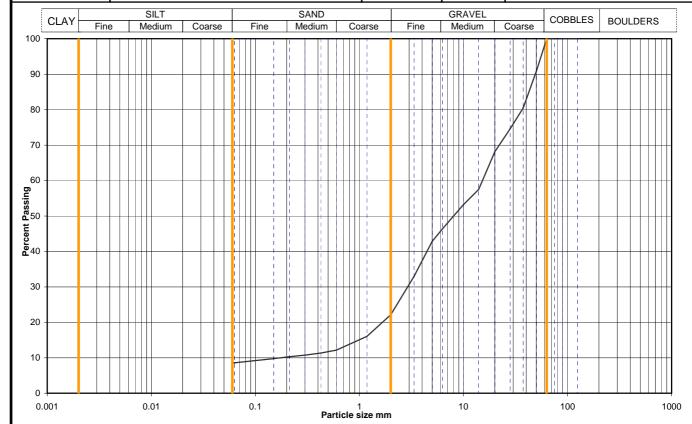
Soil description	Firm to stiff greyish brown slightly sandy slightly gravelly CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	9	9
*<60mm values to aid	Sand	24	24
description only	Silt	39	39
,,	Clay	28	28

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:12

Figure

Particle Size Distribution Analysis Project No A5085-15 Sample Details: Hole No BH406 Project Name A63 CASTLE STREET Depth (m BGL) 23.00 Samp No 82 Type B ID A5085-1520151222102956 Spec Ref Spec Ref

Sieving		Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	91		
37.5	80		
28	75		
20	68		
14	57		
10	53		
6.3	46		
5.0	43		
3.35	33		
2.00	22		
1.18	16		
0.600	12		
0.425	11		
0.300	11	Dry mass of or	amplo ka
0.212	10	Dry mass of sa	апріе, ку
0.150	10	12.5	
0.063	9	12.5	

Soil description	Light brownish cream sandy clayey GRAVEL.		
Preparation / Pretreatment	Sieve: natural material		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	78	78
*<60mm values to aid	Sand	14	14
description only	Silt	silt+clay =	
,	Clay	8	8

Uniformity Coefficient	D ₆₀ / D ₁₀	87
-------------------------------	-----------------------------------	----

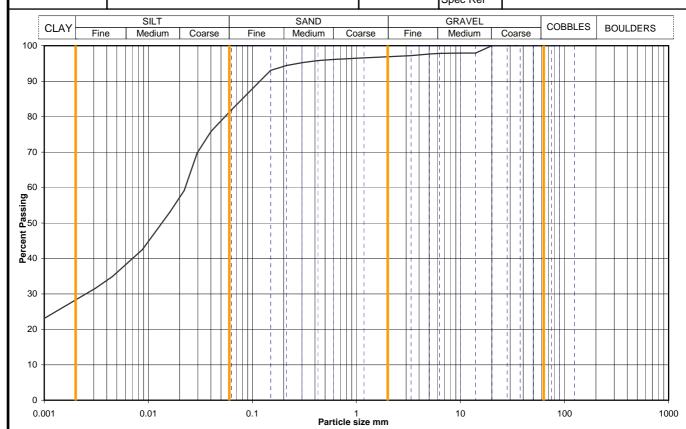
	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	none	

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:12

Figure


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH407

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 1.20

 Samp No
 4
 Type
 B

 ID
 A5085-1520151208111339

 Spec Ref
 Spec Ref

Sievin	g	Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
	Ŭ		Ŭ
125	100	0.0630	82
90	100	0.0401	76
75	100	0.0295	70
63	100	0.0221	59
50	100	0.0161	53
37.5	100	0.0088	42
28	100	0.0045	35
20	100	0.0031	32
14	98	0.0008	22
10	98		
6.3	98		
5.0	98		
3.35	97		
2.00	97		
1.18	97	Particle density	/ Ma/m2
0.600	96	Faitible delisity	y, ivig/iii3
0.425	96	2.65 a	ssumed
0.300	95	Dry mass of or	ample ka
0.212	94	Dry mass of sa	лпріе, ку
0.150	93	12.1	
0.063	82	12.1	

Soil description	Brownish grey slightly sandy slightly gravelly silty CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	rdro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	3	3
*<60mm values to aid	Sand	16	16
description only	Silt	53	53
, , , ,	Clay	28	28

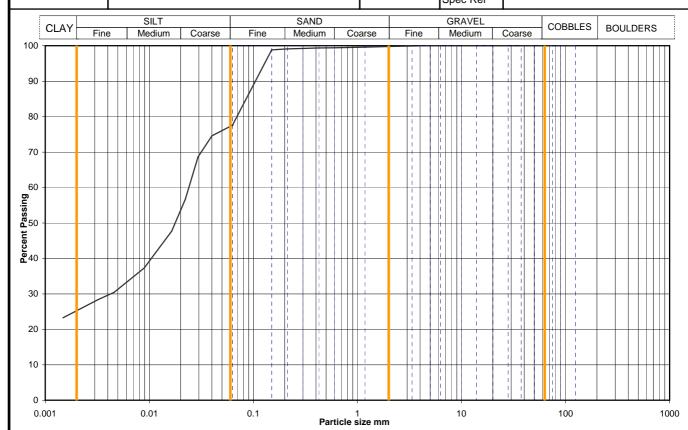
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Figure


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH407

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 3.10

 Samp No
 9
 Type
 UT

 ID
 A5085-1520151208112333

 Spec Ref
 Spec Ref

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	78
90	100	0.0400	75
75	100	0.0294	69
63	100	0.0222	57
50	100	0.0165	48
37.5	100	0.0089	37
28	100	0.0046	30
20	100	0.0032	28
14	100	0.0015	23
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	, Ma/m3
0.600	99	Particle density, Mg/m3	
0.425	99	2.65 a	ssumed
0.300	99	Drumoss of completies	
0.212	99	Dry mass of sample, kg	
0.150	99		
0.063	78	6.8	

Soil description	Very soft brown slightly san	dy silty CLA`	Y.
Preparation / Pretreatment	Sieve: natural material H	ydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	23	23
description only	Silt	52	52
	Clay	25	25

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

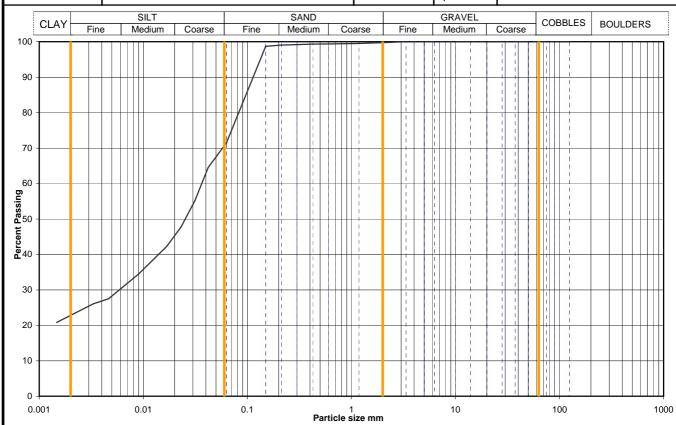
	BS 1377 : Part 2 : 1990	
Test Method	Sieving	9.2 wet sieve
	Sedimentation	9.5 hydrometer

QA Ref

SLR 2,9 Rev 88 Aug 11

Figure

PSD


Printed:18/03/2016 11:12

Particle Size Distribution Analysis Sample Details: Hole No BH407 6.05 Depth (m BGL) A63 CASTLE STREET Samp No Туре

ID

Spec Ref

A5085-1520151222105857

		_	
Sievin	Sieving		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	71
90	100	0.0421	65
75	100	0.0314	55
63	100	0.0231	48
50	100	0.0168	42
37.5	100	0.0090	34
28	100	0.0046	27
20	100	0.0033	26
14	100	0.0015	21
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Partiala danaity Ma/m2	
0.600	99	Particle density, Mg/m3	
0.425	99	2.65 assumed	
0.300	99	Dry mass of sample, kg	
0.212	99	Diy illass of se	ampie, kg
0.150	99	7.7	
0.063	71	7.7	

A5085-15

Project No

Project Name

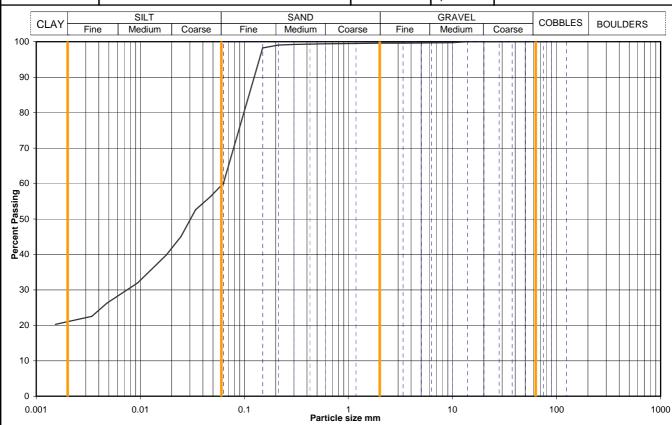
Soil description	Brown slightly sandy silty CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	/dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	29	29
description only	Silt	48	48
, , , ,	Clay	23	23

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11


Figure

Particle Size Distribution Analysis Sample Details: Hole No BH407 8.05 Depth (m BGL) A63 CASTLE STREET Samp No 20 Туре В

ID

Spec Ref

A5085-1520151222105952

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	60
90	100	0.0473	56
75	100	0.0339	53
63	100	0.0246	45
50	100	0.0177	40
37.5	100	0.0094	32
28	100	0.0048	26
20	100	0.0034	23
14	100	0.0015	20
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	/ Ma/m2
0.600	99	Failible delisity	y, ivig/iii3
0.425	99	2.65 a	ssumed
0.300	99	Drumana of completing	
0.212	99	Dry mass of sample, kg	
0.150	98	10.0	
0.063	60	10.0	

A5085-15

Project No

Project Name

Soil description	Grey sandy clayey SILT.		
Preparation / Pretreatment	Sieve: natural material H	ydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	40	40
description only	Silt	39	39
, , , ,	Clay	21	21

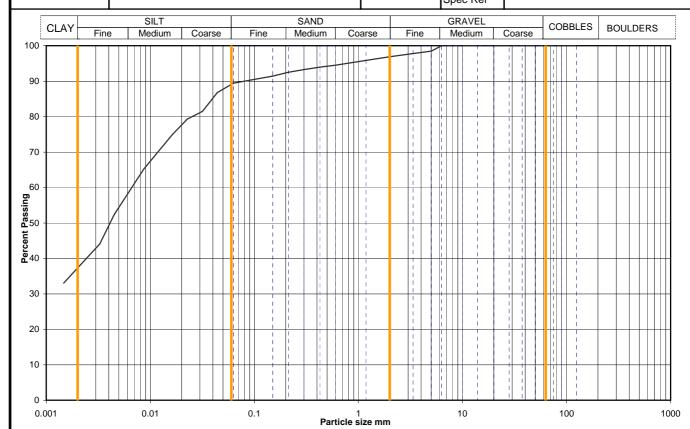
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

Printed:18/03/2016 11:12

QA Ref

SLR 2,9 Rev 88 Aug 11



Figure

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH407

 Project Name
 A63 CASTLE STREET
 Samp No
 25
 Type
 UT

 ID
 A5085-1520151222110034
 Spec Ref
 Spec Ref

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	89
90	100	0.0440	87
75	100	0.0317	81
63	100	0.0226	79
50	100	0.0162	75
37.5	100	0.0087	65
28	100	0.0045	52
20	100	0.0033	44
14	100	0.0015	33
10	100		
6.3	100		
5.0	98		
3.35	98		
2.00	97		
1.18	96	Particle density	, Ma/m2
0.600	94	Farticle density	y, ivig/iiis
0.425	94	2.65 a	ssumed
0.300	93	Dry mass of o	ample ka
0.212	92	Dry mass of sample, kg	
0.150	91	1.5	
0.063	89	1.5	

Soil description	Firm brownish grey slightly sandy slightly gravelly CLAY with wood fragments.		
Preparation / Pretreatment	Sieve: natural material H	lydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	3	3
*<60mm values to aid	Sand	8	8
description only	Silt	52	52
, , , ,	Clay	37	37

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

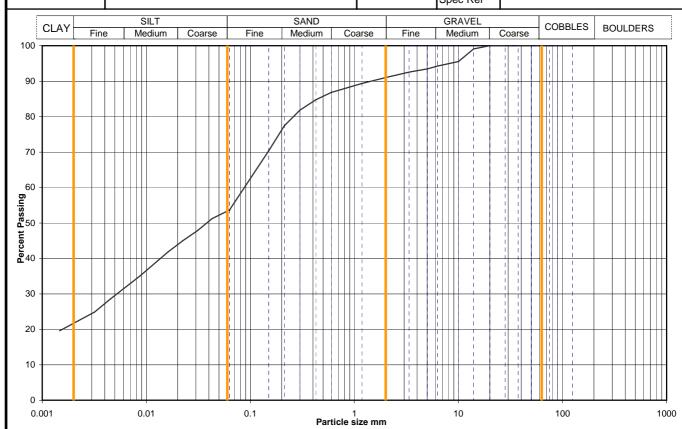
	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:12

Figure


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH407

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 12.50

 Samp No
 33
 Type
 UT

 ID
 A5085-1520151222110125

 Spec Ref
 Spec Ref

		ı	
Sievin	Sieving Sedimentation		ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	54
90	100	0.0429	51
75	100	0.0310	48
63	100	0.0224	45
50	100	0.0161	42
37.5	100	0.0087	35
28	100	0.0045	29
20	100	0.0032	25
14	99	0.0015	20
10	96		
6.3	94		
5.0	93		
3.35	93		
2.00	91		
1.18	89	Particle density	/ Ma/m3
0.600	87	i article derisity	y, ivig/iiio
0.425	85	2.65 assumed	
0.300	82	Dry mass of sa	ample ka
0.212	77	Diy mass of se	ampie, ky
0.150	70	3.1	
0.063	54	3.1	

Soil description	Soft to firm brownish grey slightly sandy slightly gravelly CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	rdro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	9	9
*<60mm values to aid	Sand	38	38
description only	Silt	31	31
, , , ,	Clay	22	22

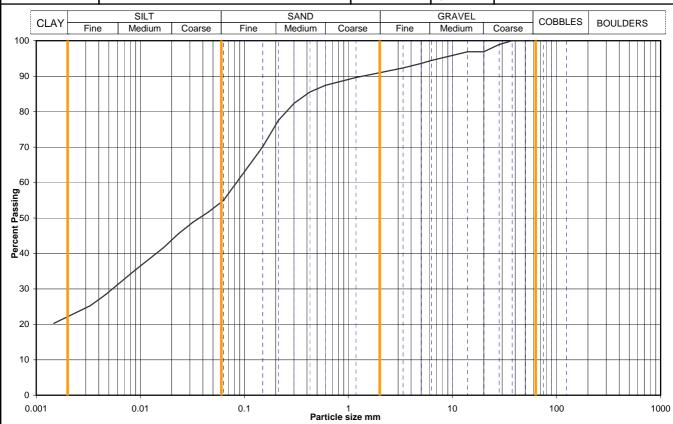
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:13


Figure

Particle Size Distribution Analysis Sample Details: Hole No BH407 14.50 Depth (m BGL) A63 CASTLE STREET UT Samp No Туре

ID

Spec Ref

A5085-1520151222110217

Sievin	a 1	Sediment	ation
Sieviii	g		
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	55
90	100	0.0448	52
75	100	0.0322	49
63	100	0.0232	46
50	100	0.0167	42
37.5	100	0.0089	35
28	99	0.0046	28
20	97	0.0033	25
14	97	0.0015	20
10	96		
6.3	94		
5.0	94		
3.35	92		
2.00	91		
1.18	90	Particle density, Mg/m3	
0.600	87		
0.425	86	2.65 a	ssumed
0.300	82	Dry mass of sample, kg	
0.212	78	Diy illass 01 Se	ampie, ky
0.150	70	4.3	
0.063	55	4.3	

A5085-15

Project No

Project Name

Soil description	Stiff brown slightly gravelly sandy CLAY.		
Preparation / Pretreatment	Sieve: natural material H	ydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	9	9
*<60mm values to aid	Sand	37	37
description only	Silt	32	32
, , , ,	Clay	22	22

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
Sedimentation		9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:13

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH407 16.50 Depth (m BGL) A63 CASTLE STREET UT Samp No Туре

ID

Spec Ref

A5085-1520151222110304

<u> </u>			
Sievin	g	Sedimentation	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	48
90	100	0.0461	44
75	100	0.0336	38
63	100	0.0243	34
50	100	0.0176	29
37.5	100	0.0095	20
28	100	0.0048	16
20	100	0.0034	13
14	100	0.0015	11
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density, Mg/m3	
0.600	100		
0.425	100	2.65 a	ssumed
0.300	100	Dry mass of sample, kg	
0.212	99	Diy iilass oi se	anipie, ky
0.150	90	5.0	
0.063	48	5.0	

A5085-15

Project No

Project Name

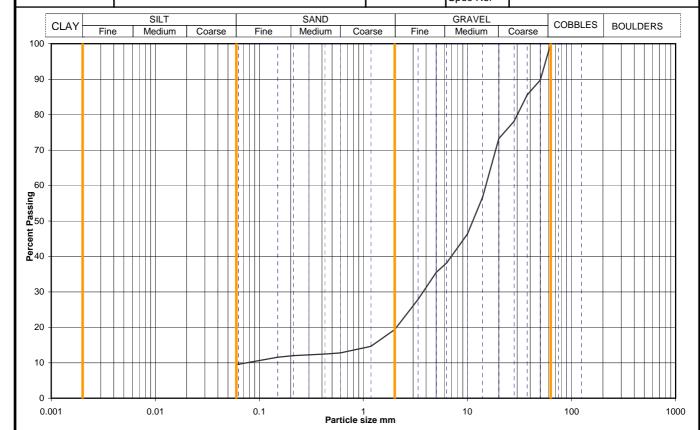
Soil description	Brown sandy clayey SILT.		
Preparation / Pretreatment	Sieve: natural material H	lydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	53	53
description only	Silt	35	35
, ,	Clay	12	12

Uniformity Coefficient	D_{60} / D_{10}	Not applicable
------------------------	---------------------	----------------

	BS 1377 : Part 2 : 1990			
Test Method	Sieving 9.2 wet sieve			
	Sedimentation	9.5 hydrometer		

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:13

Figure

Project No A5085-15 Sample Details: Hole No BH407 Project Name A63 CASTLE STREET Depth (m BGL) 26.50 Samp No 85 Type B ID A5085-1520151222110835 Spec Ref

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100		
90	100		
75	100		
63	100		
50	90		
37.5	86		
28	78		
20	73		
14	57		
10	46		
6.3	38		
5.0	36		
3.35	28		
2.00	19		
1.18	15		
0.600	13		
0.425	12		
0.300	12	Dry mass of sa	amnle ka
0.212	12	Diy illass 01 se	ampie, ky
0.150	12	12.6	
0.063	10	12.0	

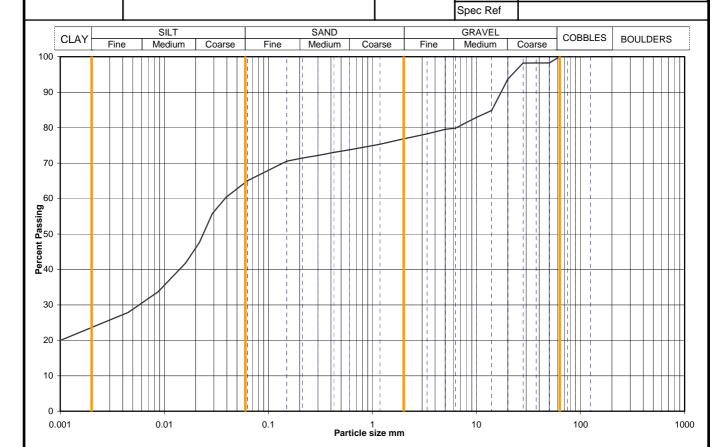
Soil description	White sandy silty GRAVEL. Gravel is chalk.		
Preparation / Pretreatment	Sieve: pre dried,		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	81	81
*<60mm values to aid	Sand	10	10
description only	Silt	silt+clay =	
, , , ,	Clay	9	9

Uniformity Coefficient	D ₆₀ / D ₁₀	197
------------------------	-----------------------------------	-----

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.3 dry sieve		
	Sedimentation	none	

QA Ref

SLR 2,9 Rev 88 Aug 11



Figure

Particle Size Distribution Analysis Sample Details: Hole No BH408 1.40 Depth (m BGL) A63 CASTLE STREET Samp No Туре В

ID

A5085-1520151209100759

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	65
90	100	0.0393	60
75	100	0.0289	56
63	100	0.0218	48
50	98	0.0160	42
37.5	98	0.0087	34
28	98	0.0045	28
20	94	0.0030	26
14	85	0.0008	19
10	83		
6.3	80		
5.0	80		
3.35	78		
2.00	77		
1.18	75	Particle density	/ Ma/m2
0.600	74	Faitible delisity	y, ivig/iii3
0.425	73	2.65 a	ssumed
0.300	72	Dry mass of or	ample ka
0.212	71	Dry mass of sa	лпріе, ку
0.150	71	12.2	
0.063	65	12.2	

A5085-15

Project No

Project Name

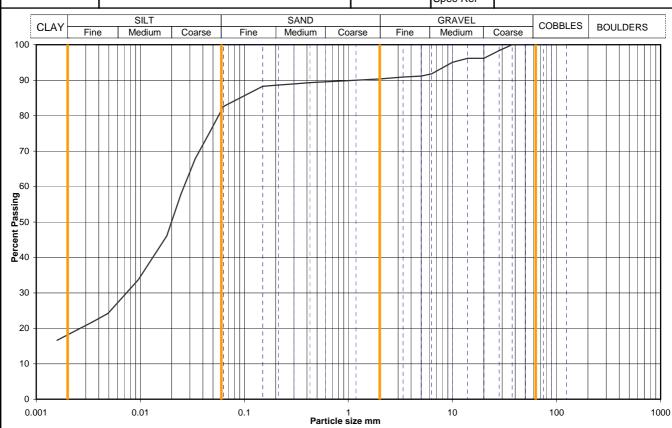
Soil description	Light brown slightly sandy sl	lightly grave	lly CLAY.
Preparation / Pretreatment	Sieve: natural material Hy	/dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	23	23
*<60mm values to aid	Sand	12	12
description only	Silt	41	41
, , , , , , ,	Clay	24	24

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11


Printed:18/03/2016 11:13

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH408 3.35 Depth (m BGL) A63 CASTLE STREET UT Samp No Туре

ID A5085-1520151209102344

Spec Ref

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	83
90	100	0.0467	75
75	100	0.0338	68
63	100	0.0246	58
50	100	0.0180	46
37.5	100	0.0096	34
28	98	0.0049	24
20	96	0.0035	22
14	96	0.0016	17
10	95		
6.3	92		
5.0	91		
3.35	91		
2.00	90		
1.18	90	Particle density	/ Ma/m2
0.600	90	Faiticle delisit	y, ivig/iii3
0.425	89	2.65 a	ssumed
0.300	89	Drumana of comple lies	
0.212	89	Dry mass of sample, kg	
0.150	88	4.3	
0.063	83	4.3	

A5085-15

Project No

Project Name

Soil description	Dark greyish brown slightly sandy slightly gravelly clayey SILT.		
Preparation / Pretreatment	Sieve: natural material Hy	dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	10	10
*<60mm values to aid	Sand	9	9
description only	Silt	63	63
, ,	Clay	18	18

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

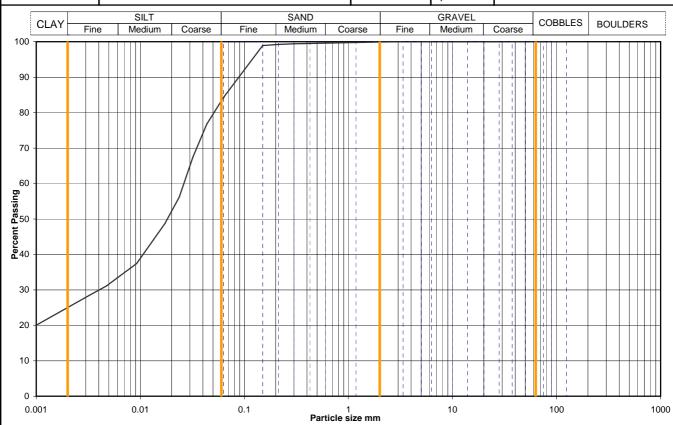
QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:13

Figure

Particle Size Distribution Analysis | Sample Details: | Hole No | BH408 |


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH408

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 4.90

 Samp No
 11
 Type
 P

ID A5085-1520151209102511

Spec Ref

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	84
90	100	0.0435	77
75	100	0.0320	67
63	100	0.0237	56
50	100	0.0172	49
37.5	100	0.0092	37
28	100	0.0047	31
20	100	0.0032	28
14	100	0.0008	19
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	, Ma/m2
0.600	100	Farticle density	y, ivig/iiis
0.425	99	2.65 a	ssumed
0.300	99	Durance of completion	
0.212	99	Dry mass of sample, kg	
0.150	99	4.1	
0.063	84	4.1	

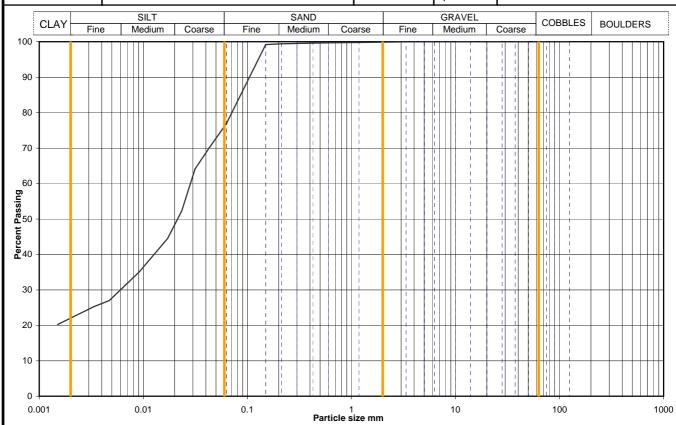
Soil description	Soft dark grey silty CLAY becoming firm dark grey slightly sandy silty CLAY with organic material towards base.		
Preparation / Pretreatment	Sieve: natural material Hy	rdro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
* .CO	Sand	17	17
*<60mm values to aid description only	Silt	58	58
,	Clay	25	25

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11


Figure

Particle Size Distribution Analysis Sample Details: Hole No BH408 6.70 Depth (m BGL) A63 CASTLE STREET UT Samp No Туре

ID

Spec Ref

A5085-1520151209102618

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	77
90	100	0.0432	70
75	100	0.0314	64
63	100	0.0234	52
50	100	0.0171	45
37.5	100	0.0092	35
28	100	0.0047	27
20	100	0.0034	25
14	100	0.0015	20
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	, Ma/m2
0.600	100	Particle density, Mg/m3	
0.425	100	2.65 assumed	
0.300	100	Dry mass of s	ample ka
0.212	99	Dry mass of sample, kg	
0.150	99	22	
0.063	77	3.2	

A5085-15

Project No

Project Name

Soil description	Very soft dark brown slightly sandy silty CLAY.		
Preparation / Pretreatment	Sieve: natural material H	ydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	24	24
description only	Silt	54	54
, , , ,	Clay	22	22

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

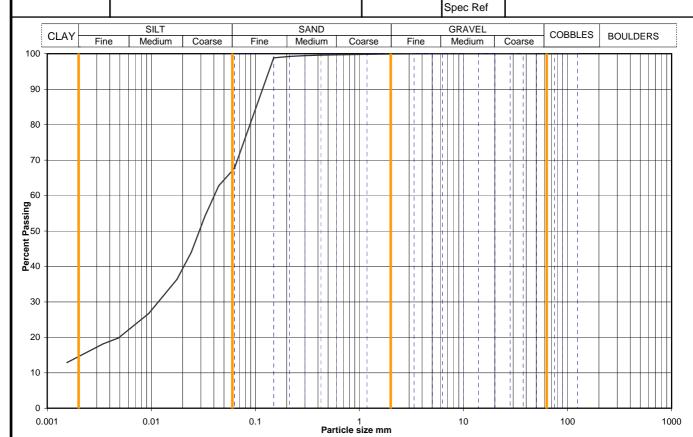
	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:13

Figure


Particle Size Distribution Analysis Sample Details: Hole No BH408 Depth (m. RGL) 8.05

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH408

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 8.05

 Samp No
 19
 Type
 P

 ID
 A5085-1520151209102743

Sievin	g	Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	68
90	100	0.0445	63
75	100	0.0328	54
63	100	0.0242	44
50	100	0.0177	36
37.5	100	0.0095	27
28	100	0.0048	20
20	100	0.0034	18
14	100	0.0015	13
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	, Ma/m2
0.600	100	Particle density, Mg/m3	
0.425	100	2.65 a	ssumed
0.300	99	Dry mass of sample, kg	
0.212	99	Dry mass or so	ampie, kg
0.150	99	7.9	
0.063	68	7.9	

Soil description	Brown slightly sandy clayey SILT.		
Preparation / Pretreatment	Sieve: natural material F	lydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	33	33
description only	Silt	52	52
, ,	Clay	15	15

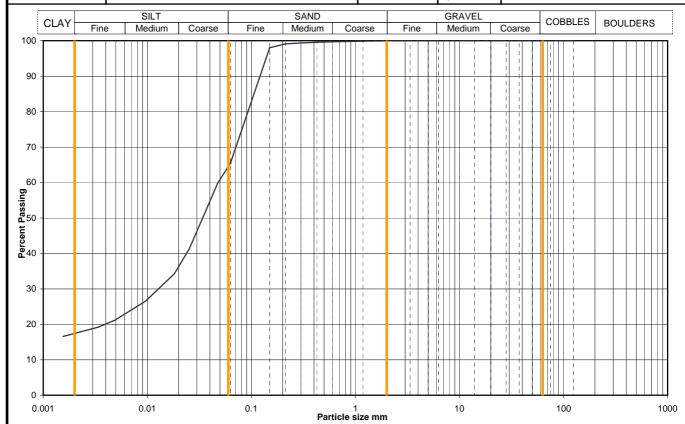
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Figure


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH408

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 9.05

 Samp No
 20
 Type
 P

 ID
 A5085-1520151209104559

 Spec Ref
 Spec Ref

		ı	
Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	65
90	100	0.0472	60
75	100	0.0345	50
63	100	0.0252	41
50	100	0.0182	34
37.5	100	0.0096	27
28	100	0.0049	21
20	100	0.0034	19
14	100	0.0016	17
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Dartiala danaiti: Ma/m2	
0.600	100	Particle density, Mg/m3	
0.425	100	2.65 assumed	
0.300	99	Dry mass of sample, kg	
0.212	99	Diy illass 01 Se	ampie, ky
0.150	98	7.0	
0.063	65	1 7.0	

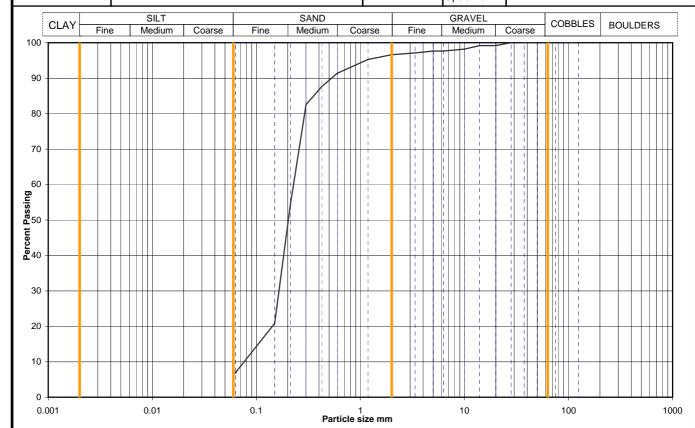
Soil description	Dark greyish brown sandy clayey SILT becoming very soft organic silty CLAY towards base.		
Preparation / Pretreatment	Sieve: natural material Hy	/dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	35	35
description only	Silt	47	47
, , , ,	Clay	18	18

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:13

Figure

Project No A5085-15 Sample Details: Hole No BH408 Project Name A63 CASTLE STREET Depth (m BGL) 11.50 Samp No 25 Type UT ID A5085-1520151209105041 Spec Ref

Sievin	g	Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	99		
14	99		
10	98		
6.3	98		
5.0	98		
3.35	97		
2.00	97		
1.18	95		
0.600	91		
0.425	88		
0.300	83	Dry mass of sa	amnla ka
0.212	54	Dry mass or so	ampie, kg
0.150	21	1.6	
0.063	7	1.0	

Soil description	Dark brown slightly gravelly slightly clayey SAND.		
Preparation / Pretreatment	Sieve: natural material		
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	3	3
*<60mm values to aid	Sand	90	90
description only	Silt	silt+clay =	
, , , ,	Clay	7	7

Uniformity Coefficient	D ₆₀ / D ₁₀	3
------------------------	-----------------------------------	---

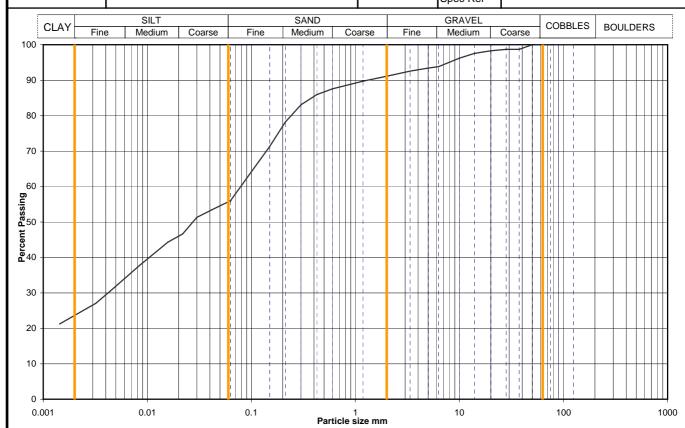
	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	none	

Printed:18/03/2016 11:13

QA Ref

SLR 2,9 Rev 88 Aug 11

Figure


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH408

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 14.15

 Samp No
 35
 Type
 UT

 ID
 A5085-1520151222123103

 Spec Ref
 Spec Ref

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	56
90	100	0.0416	53
75	100	0.0299	51
63	100	0.0219	47
50	100	0.0157	44
37.5	99	0.0085	38
28	99	0.0044	31
20	98	0.0032	27
14	98	0.0014	21
10	96		
6.3	94		
5.0	93		
3.35	93		
2.00	91		
1.18	90	Particle density	/ Ma/m3
0.600	88	i article derisit	y, wg/mb
0.425	86	2.65 a	ssumed
0.300	83	Dry mass of comple 1/2	
0.212	78	Dry mass of sample, kg	
0.150	71	6.8	
0.063	56	0.0	

Soil description	Soft greyish brown slightly	gravelly sand	ly CLAY.
Preparation / Pretreatment	Sieve: natural material H	lydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	9	9
*<60mm values to aid	Sand	35	35
description only	Silt	32	32
	Clay	24	24

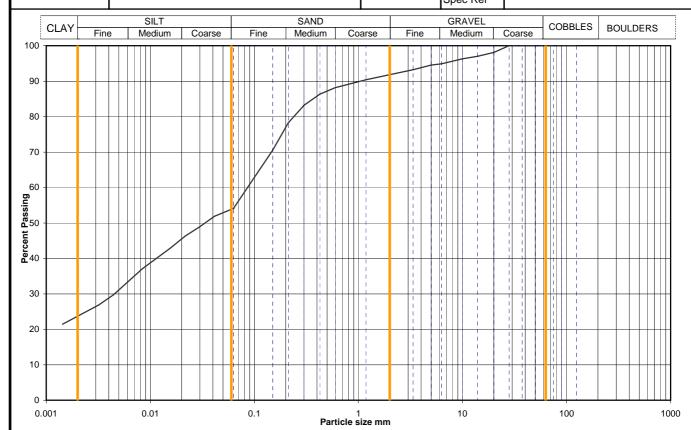
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

Printed:18/03/2016 11:13

QA Ref

SLR 2,9 Rev 88 Aug 11


| ["

Figure

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH408

 Project Name
 A63 CASTLE STREET
 Samp No
 37
 Type
 UT

 ID
 A5085-1520151222123121
 Spec Ref
 Spec Ref

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	54
90	100	0.0413	52
75	100	0.0299	49
63	100	0.0216	46
50	100	0.0156	43
37.5	100	0.0084	37
28	100	0.0044	30
20	98	0.0032	27
14	97	0.0014	21
10	96		
6.3	95		
5.0	95		
3.35	93		
2.00	92		
1.18	90	Particle density	/ Ma/m3
0.600	88	i article derisit	y, ivig/iiio
0.425	86	2.65 a	ssumed
0.300	83	Dry mass of sa	ample ka
0.212	78	Dry mass or so	ampie, kg
0.150	71	5.4	
0.063	54	5.4	

Soil description	Firm to stiff greyish brown slightly gravelly sandy CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	vdro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	8	8
*<60mm values to aid	Sand	38	38
description only	Silt	30	30
, ,	Clay	24	24

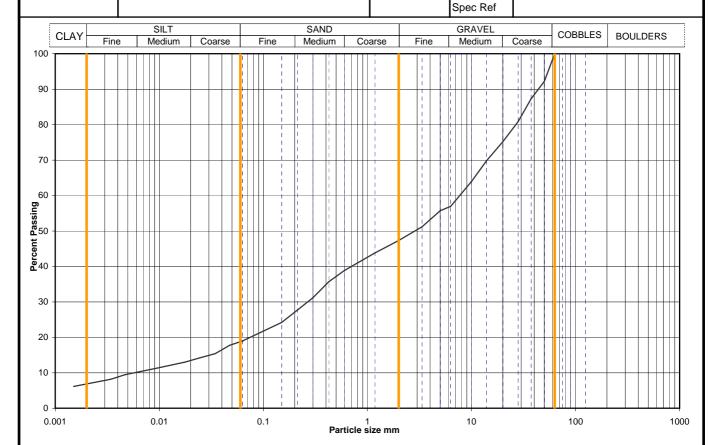
Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Par	t 2 : 1990	
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

Printed:18/03/2016 11:13

QA Ref

SLR 2,9 Rev 88 Aug 11



Fig

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH417 1.20 Depth (m BGL) A63 CASTLE STREET Samp No Туре В ID A5085-1520151222015233

Sieving		Sedimentation	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	19
90	100	0.0473	18
75	100	0.0344	15
63	100	0.0246	14
50	92	0.0177	13
37.5	87	0.0093	11
28	81	0.0047	9
20	75	0.0034	8
14	70	0.0015	6
10	64		
6.3	57		
5.0	56		
3.35	51		
2.00	47		
1.18	44	Dartiala danaiti, Ma/m2	
0.600	39	Particle density, Mg/m3	
0.425	36	2.65 assumed	
0.300	31	Dry mass of sa	amnle ka
0.212	28	Diy illass 01 se	ampie, ky
0.150	24	7.9	
0.063	19	7.9	

A5085-15

Project No

Project Name

Soil description	Greyish brown slightly sandy gravelly SILT.		
Preparation / Pretreatment	Sieve: natural material	Hydro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	53	53
*<60mm values to aid	Sand	29	29
description only	Silt	12	12
,,	Clay	6	6

Uniformity Coefficient	D ₆₀ / D ₁₀	1335
------------------------	-----------------------------------	------

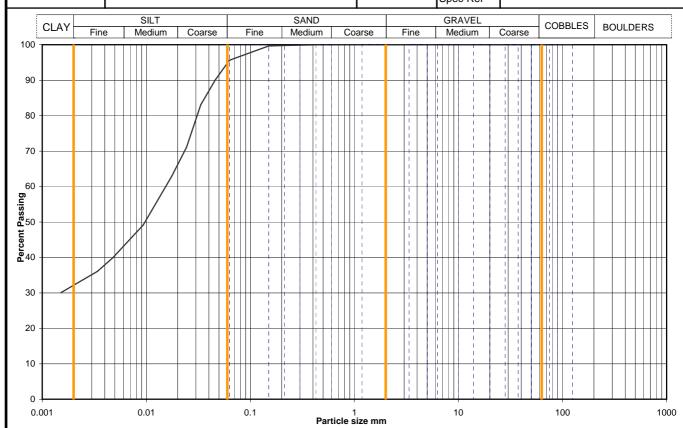
	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:13

Figure


 Project No
 A5085-15
 Sample Details:
 Hole No
 BH417

 Project Name
 A63 CASTLE STREET
 Depth (m BGL)
 3.55

 Samp No
 10
 Type
 UT

 ID
 A5085-1520151222015310

 Spec Ref
 Spec Ref

Sievin	a	Sediment	ation
-	_		
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	96
90	100	0.0463	90
75	100	0.0334	83
63	100	0.0243	71
50	100	0.0175	63
37.5	100	0.0093	49
28	100	0.0048	40
20	100	0.0034	36
14	100	0.0015	30
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Portiolo donoity Ma/m2	
0.600	100	Particle density, Mg/m3	
0.425	100	2.65 a	ssumed
0.300	100	Dry mass of sample, kg	
0.212	100	Diy illass 01 Se	ampie, ky
0.150	100	12	
0.063	96	4.2	

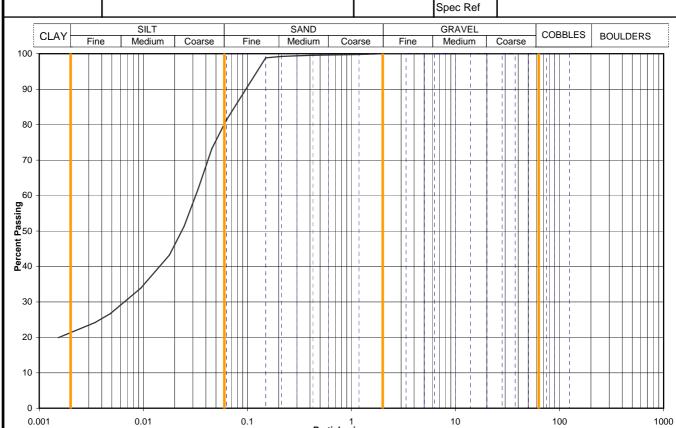
Soil description	Soft brown mottled grey slightly sandy CLAY.		
Preparation / Pretreatment	Sieve: natural material Hy	/dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	5	5
description only	Silt	63	63
, ,	Clay	32	32

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref

SLR 2,9 Rev 88 Aug 11



Printed:18/03/2016 11:13

Figure

Particle Size Distribution Analysis Sample Details: Hole No BH417 6.00 Depth (m BGL) A63 CASTLE STREET

Samp No Туре ID A5085-1520151222015410

1 Particle size mm

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	81
90	100	0.0457	73
75	100	0.0336	62
63	100	0.0246	51
50	100	0.0178	43
37.5	100	0.0094	34
28	100	0.0048	27
20	100	0.0034	24
14	100	0.0015	20
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Partiala danait	, Ma/m2
0.600	100	Particle density, Mg/m3	
0.425	100	2.65 a	ssumed
0.300	99	Dry mass of sample, kg	
0.212	99	Dry mass or sa	лпріе, ку
0.150	99	7.9	
0.063	81	7.9	

A5085-15

Project No

Project Name

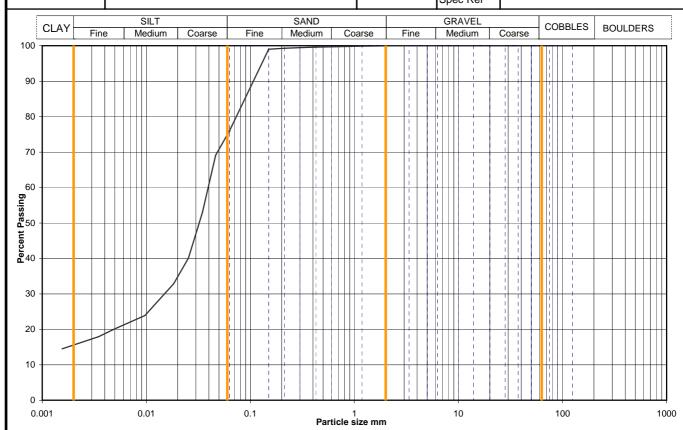
Soil description	Very soft greyish brown sligl	ntly sandy si	ilty CLAY.
Preparation / Pretreatment	Sieve: natural material Hy	⁄dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	20	20
description only	Silt	59	59
,,	Clay	21	21

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
------------------------	-----------------------------------	----------------

	BS 1377 : Part 2 : 1990	
Test Method	Sieving	9.2 wet sieve
	Sedimentation	9.5 hydrometer

QA Ref

SLR 2,9 Rev 88 Aug 11


Figure

Particle Size Distribution Analysis

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH417

 Project Name
 A63 CASTLE STREET
 Samp No
 22
 Type
 UT

 ID
 A5085-1520151222015444
 Spec Ref
 Spec Ref

Sievin	g	Sediment	ation
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	76
90	100	0.0464	69
75	100	0.0346	53
63	100	0.0254	40
50	100	0.0183	33
37.5	100	0.0097	24
28	100	0.0049	20
20	100	0.0035	18
14	100	0.0016	15
10	100		
6.3	100		
5.0	100		
3.35	100		
2.00	100		
1.18	100	Particle density	/ Ma/m2
0.600	100	T article derisity	y, ivig/iiio
0.425	100	2.65 a	ssumed
0.300	99	Dry mass of sa	amplo ka
0.212	99	Dry mass of sa	ampie, kg
0.150	99	3.0	
0.063	76	3.0	

Soil description	Soft brown slightly sandy silt	ty CLAY.	
Preparation / Pretreatment	Sieve: natural material Hy	⁄dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	0	0
*<60mm values to aid	Sand	25	25
description only	Silt	59	59
,	Clay	16	16

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

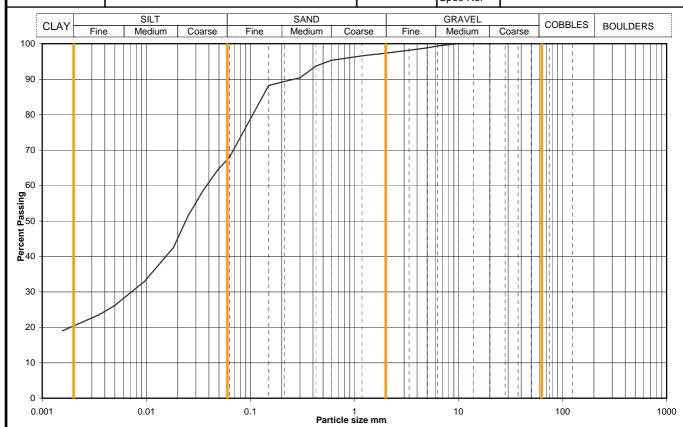
	BS 1377 : Part	t 2 : 1990
Test Method	Sieving	9.2 wet sieve
	Sedimentation	9.5 hydrometer

QA Ref

SLR 2,9 Rev 88 Aug 11

Printed:18/03/2016 11:13

Figure


PSD

Particle Size Distribution Analysis

 Project No
 A5085-15
 Sample Details:
 Hole No
 BH417

 Project Name
 A63 CASTLE STREET
 Samp No
 25
 Type
 UT

 ID
 A5085-1520151222015515
 Spec Ref
 Spec Ref

Sievin	g	Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	68
90	100	0.0487	64
75	100	0.0350	58
63	100	0.0252	51
50	100	0.0182	42
37.5	100	0.0096	33
28	100	0.0049	26
20	100	0.0035	23
14	100	0.0016	19
10	100		
6.3	99		
5.0	99		
3.35	98		
2.00	97		
1.18	97	Particle density	/ Ma/m3
0.600	95	Farticle density	y, ivig/iiis
0.425	94	2.65 a	ssumed
0.300	90	Dry mass of o	ample ka
0.212	89	Dry mass of sa	ampie, kg
0.150	88	4.3	
0.063	68	4.3	

Soil description	Soft brownish dark grey slig gravelly CLAY.	ntly sandy s	lightly
Preparation / Pretreatment	Sieve: natural material Hy	⁄dro: as BS1	377
Remarks			
		Whole	*<63mm
Sample	Cobbles / boulders	0	0
Proportions	Gravel	3	3
*<60mm values to aid	Sand	30	30
description only	Silt	47	47
, ,	Clay	20	20

Uniformity Coefficient	D ₆₀ / D ₁₀	Not applicable
-------------------------------	-----------------------------------	----------------

	BS 1377 : Par	t 2 : 1990
Test Method	Sieving	9.2 wet sieve
	Sedimentation	9.5 hydrometer

QA Ref

SLR 2,9 Rev 88 Aug 11

| -

Printed:18/03/2016 11:13

Figure

PSD

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TESTS WITHOUT MEASUREMENT OF PORE **PRESSURE - SUMMARY OF RESULTS**

A5085-15	A63 C	CASTL	E STF	REET												
		Sam	nple			Dei	nsity	w	Test	Dia.	Ó ₃	At fail	ure / er	nd of s	tage	
Hole No.		Dept	th (m)		Soil Description	bulk	dry		type			Axial strain	ó ₁ - ó ₃	c _u	МО	Remarks
	No.	from	to	type		Mç	Mg/m³			mm	kPa	%	kPa	kPa	D E	
BH402	16	8.40	9.05	UT	Firm to stiff greyish brown sandy CLAY.	2.07	1.70	22	UU	103.0	155	19.4	58	29	Р	
BH402	24	10.95	11.40	UT	Very stiff greyish brown slightly gravelly sandy CLAY.	2.25	2.00	13	UU	103.7	205	19.8	576	288	Р	
BH402	26	11.60	12.05	UT	Very stiff brown slightly sandy slightly gravelly silty CLAY.	2.14	1.79	20	UU	103.4	220	19.8	302	151	Р	
BH402	30	13.30	13.75	UT	Stiff greyish brown slightly sandy slightly gravelly CLAY.	2.10	1.74	21	UU	103.6	250	15.4	162	81	С	
BH402	38	15.90	16.35	UT	Stiff laminated greyish brown slightly sandy CLAY.	1.96	1.51	30	UU	103.9	300	6.9	159	79	В	
BH402	46	18.50	18.95	UT	Stiff to very stiff brown slightly sandy silty CLAY.	2.07	1.69	23	UU	104.0	350	10.9	217	109	В	
BH402	50	19.75	20.20	UT	Stiff greyish brown slightly sandy slightly gravelly CLAY with sand partings and occasional shell	2.12	1.78	19	UU	103.9	370	9.9	249	124	В	
BH403	27	11.90	12.35	UT	Stiff brown slightly sandy slightly gravelly CLAY.	2.22	1.95	14	UU	103.7	220	18.8	396	198	Р	
BH403	32	13.85	14.20	UT	Firm greyish brown slightly sandy slightly gravelly CLAY.	2.19	1.86	17	UU	102.4	260	19.9	149	74	Р	
BH403	38	15.70	16.15	UT	Soft to firm brown slightly sandy CLAY.	2.01	1.59	26	UU	103.7	300	15.3	83	41	Р	
BH403	48	18.95	19.40	UT	Firm greyish brown slightly sandy CLAY with sand partings.	1.99	1.56	28	UU	103.0	350	9.4	70	35	С	
BH404	17	9.00	10.00	Р	Firm dark brown organic CLAY.	1.36	0.62	121	UU	97.7	105	20.1	75	37	Р	
BH404	26	11.50	11.95	UT	Very stiff brown slightly sandy slightly gravelly CLAY.	2.22	1.97	13	UU	103.9	220	19.8	664	332	Р	
BH404	30	12.50	12.95	UT	Very stiff greyish brown slightly gravelly sandy CLAY.	2.20	1.91	15	UU	103.8	235	15.3	400	200	С	
BH404	36	14.00	14.45	UT	Firm to stiff greyish brown slightly gravelly sandy CLAY with chalk fragments.	2.20	1.91	15	UU	103.7	262	19.7	188	94	Р	
BH404	44	16.00	16.45	UT	Stiff laminated greyish brown slightly sandy CLAY.	1.96	1.51	30	UU	103.1	300	5.4	179	89	В	
BH404	54	18.50	18.95	UT	Firm greyish brown silty CLAY.	2.02	1.62	25	UU	103.1	350	11.4	119	60	В	
BH405	5	2.50	2.95	UT	Firm brown slightly sandy silty CLAY.	1.93	1.44	34	UU	102.6	50	19.0	71	36	Р	
BH405	35	14.00	14.45	UT	Stiff greyish brown slightly sandy slightly gravelly CLAY with chalk fragments.	2.20	1.91	15	UU	103.6	260	19.8	258	129	Р	
BH405	45	16.50	16.95	UT	Stiff laminated brown slightly sandy silty CLAY.	2.02	1.62	25	UU	103.1	310	7.9	200	100	В	
BH405				2.13	1.78	20	UU	103.1	430	18.7	625	313	Р			
BH406	9	2.50	2.95	UT	Soft to firm laminated greyish brown slightly sandy CLAY.	1.87	1.35	38	UU	101.1	45	17.8	47	23	Р	
General notes:					e with BS1377: Part 7: 1990, clause		-	-			-					ly 2:1 height
					ate of strain of 2%/minute, unless ar		a other			vidual te	st repo					
egend	UU - sir	ngie stag	e test (r	nay be	in sets of specimens)	ό ₃		cell pre	essure			Mode	of failu	re	P	plastic
															_	

 \acute{o}_1 - \acute{o}_3 UUM - multistage test on a single specimen deviator stress В brittle c_{u}

suffix R - remoulded or recompacted

Environmental Scientifics Group

undrained shear strength

Printed:18/03/2016 10:15

QA Ref

Project No

Project Name

SLR 2 Rev 71 Mar 12

compound

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TESTS WITHOUT MEASUREMENT OF PORE **PRESSURE - SUMMARY OF RESULTS**

Project No	Proje	ct Nam	ne													
A5085-15	A63 C	CASTL	E STF	REET												
		Sam	ple				nsity	w	Test	Dia.	Ó ₃	At fail	ure / ei	nd of st	tage	
Hole No.	No.	Dept	h (m)	turno	Soil Description	bulk	bulk dry		type			Axial strain \acute{o}_1 - \acute{o}_3		C _u	M O	Remarks
	INO.	from	to	type		Mg	ı/m³	%		mm	kPa	%	kPa	kPa	D E	
BH406	40	13.00	13.45		Very stiff greyish brown slightly sandy slightly gravelly CLAY	2.22	1.96	13	UU	103.9	235	18.8	575	287	Р	
BH406	47	14.50	14.95		Firm to stiff greyish brown slightly sandy slightly gravelly CLAY.	2.22	1.91	16	UU	102.7	260	19.8	125	63	Р	
BH406	69	20.00	20.45		Firm laminated greyish brown slightly sandy CLAY.	1.96	1.54	27	UU	102.7	365	10.9	182	91	Р	
BH407	5	1.70	2.15	UT	Firm to stiff brown slightly sandy silty CLAY with occasional partings of sand and silt.	1.88	1.54	22	UU	102.7	40	12.8	167	84	С	
BH407	27	11.00	11.45		Firm brownish grey slightly sandy organic CLAY with wood fragments.	1.60	0.98	63	UU	103.5	110	10.9	53	26	Р	
BH407	33	12.50	12.95		Soft to firm brownish grey slightly sandy slightly gravelly CLAY.	2.18	1.85	18	UU	103.8	225	20.1	59	29	Р	
BH407	62	20.00	20.45		Stiff brown slightly sandy CLAY with occasional partings of sand.	2.06	1.69	22	UU	103.0	370	9.4	161	81	С	
BH408	3	2.00	2.45		Firm to stiff brown slightly sandy CLAY with occasional partings of sand.	1.95	1.51	29	UU	103.4	40	11.4	127	64	С	
BH408	37	14.80	15.25		Firm to stiff greyish brown slightly gravelly sandy CLAY.	2.21	1.91	16	UU	103.6	150	19.7	232	116	Р	
BH408	BH408 57 21.35 21.80 UT Firm brown slightly sandy CLAY.		1.97	1.54	28	UU	101.7	215	18.7	111	56	Р				
BH417	17 12 4.20 4.65 UT Firm brown slightly sandy CLAY.		4.65	UT	Firm brown slightly sandy CLAY.	1.91	1.44	33	UU	102.4	80	19.8	58	29	Р	

General notes: Tests carried out in accordance with BS1377: Part 7: 1990, clause 8 for single stage, clause 9 for multistage tests. Specimens nominally 2:1 height

diameter ratio and tested at a rate of strain of 2%/minute, unless annotated otherwise. See individual test reports for further details.

 \acute{o}_3 Mode of failure plastic UU - single stage test (may be in sets of specimens) cell pressure ó₁ - ó₃ UUM - multistage test on a single specimen deviator stress В brittle c_{u}

suffix R - remoulded or recompacted

Printed:18/03/2016 10:15

С

compound

undrained shear strength

Table **UUSUM**

QA Ref SLR 2 Rev 71 Mar 12

Legend

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH402 A5085-15 3.75-4.75 Depth (m BGL) Project Name Туре Nο A63 CASTLE STREET ID Spec Ref **Specimen Details** 2 3 Soil Description Soft greyish brown sandy clayey SILT. Length 190.62 mm Specimen Type UNDISTURBED 97.62 /Preparation Diameter mm **Bulk Density** 1.79 Mg/m3 Method of Saturation Water Content 46 **Saturation Details** Dry density 1.23 Increments of cell and back pressure Mg/m³ 186.62 Length 50 mm Cell pressure increments kPa consolidation Diameter 95.55 Differential Pressure kPa 0 Bulk Density* 1.85 kPa 210 Final Cell Pressure Mg/m³ Water Content* 208.6 41 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same Specimen 1 --1.0 0.8 o.0 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 365 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure kPa Pore pressure at start of consolidation 365 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation C_{vi} 2.00 m²/year parameters Coefficient of Compressibility M_{vi} 0.97 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 6.0E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 5 10 15 20 25 30 35 40 0 mL (-ve if swell) 40 Volume change 60 80 100 Ref **Figure** SLR8.1 CU Printed:18/03/2016 10:01 Rev 85 May 09 sheet 1 of 3

Project	No		A5085	-15						Sample Det	ails:	Hole N	lo		BH4	402			
Project	Name											Depth	(m B	GL)	3.7	5-4.75	5		
,						_						No		9		Туре		Р	
			A63 C/	ASTLES	STREET							ID							
												Spec	Ref						
Shea	rina s	tanes	- graphi	cal data	,												, .	.,	
Onco	120	nuges	grapin	T Tall	· 		T										o fai	ilure po	ints
	100 -																		
, KP																			
- مع	80 -											•	_	1					
Deviator stress (σ1' - σ3') kPa																			
ress	60 -																		
tor st																			
evia	40 -	/																	
_		/																	
	20 -																		
		/																	
	0 -																		
	7.0)	1	2	3	4	5	6	7	8 9		10	11	12		13	14	15	ε% 1
	6.0																		
	0.0																		
σ3')	5.0										_	•		1					
Principal stress ratio (σ1' / σ3')	5.0																		
ratio (4.0																		
tress	4.0																		
ipal s	0.0																		
Princ	3.0		/																
		/	'																
	2.0																		
		0	1	2	3	4	5	6	7	8 9		10	11	12	-	13	14	15	ε % 1
	360 -																		
	350 -				_														
_												•	\top	1					
Pore water pressure kPa	340 -																		
sure		/																	
pres	330 -	-																	
ater																			
re W	320 -	$-\!$																	
9																			
	310 -	_																	
		/																	
	300 -		1	2	3	4	5	6	7	8 9		10	11	12		13	14	15	
	(,	1	_	J	7	J			ε% (all plots)	10	11	12		10	14	15	1
Ref					_										Fi	gure			
			SC	- /												-			
SLR: Rev	8.1							Ē (s	⊁⊀ <u>) </u>	Drint	1.6	8/03/20	16 10	·01			C	11	

roie	ct N	0	Λ50	Q5_15	:					Samo	le Details:	Hole	Nο		BH4	02		
			ASU	03-13	,					-				3I)				
roje	CUN	ame										⊢	(5				Р	
			A63	CAST	LE ST	REET								 		1,700	<u>'</u>	
													Ref					
				20 30 40 50 60 70 80 90 100 110 120 130 140 150 160														
	50 -	Mohr C	Circles		T									T				\neg
	40 -									\downarrow								\dashv
_																		
Shear stress KPa	30 -				_/					`								_
ess				,														
ii sii	20 -																	
Š				//								\						
	10 -			/								\						
	10 -			/														
				1								1						
	0 -	0 1	0 2	20	30	40	50	60	70	80 9	0 100	1	10	120	130	140	150	—— 16
		MIT Str	ess fiel	d					Effective s	tresses k	Pa							
	50 -											c	Compres	sion s	tages			
												S	Specimer	ı	1	2	3	
	40											C	Cell press	sure	365			ŀ
,)	300			ŀ
	30 -						_											-
1												F	Rate of s	rain	1.63			_ %
7 (%)	20 -												- -	onditi				
	20 -												allule C	onani	3115			٦
	4.0						\					C	Criterion		Maximi	ım devia	tor stress	
	10 -											A	Axial stra	in	10.14			1
												(σ_1'/σ_3') _f	5.186			
	0 -		0 2	20	30	40	50	60	70	80	90 100	(σ_1' - σ_3') _f	85.0			ŀ
						$(\sigma_1' + \sigma_3')$) / 2 kPa	a										
	100 -	Cambri	dge str	ess fie	ld													_
	-																	- [∤]
	80 -													ailuro				-
	JU -			/								'	iiie io la	anui C	0.2	['
	60 -											9	Shear St	rength	Parame	ters		
	60 -																	
				\								_				Line	ear regres	sion
-	40 -																	
													Ø'		degrees			
	20 -			/	\										l/Do	Manua		3SM
	0 -	0 2	0 4	.0	60	80	100	120	140	160 1	30 200				acgrees			
	,	0 2	0 1	0					140	100	50 200					Mada af	fallura	
Not	es:	Davis	itor strees	s correct					and 0.308 m	m thịck rubh	er membrand	·(s)				wiode of	iaiiuie	_
IVOL	03.				ou ioi aic	a change,	vertical 3i	uc uranis c	ina 0.500 m	III tillok rube	er membrane	.(3)						
		J. L.													1	2	3	
															<u>'</u>		<u> </u>	
f)									Fig	ure		
SL	_R8. ev 85	1			6	7					Printed:1	8/03/2	2016 10	:01			CU	
		ບ I				-				- 1					1			

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Project No Hole No BH402 A5085-15 6.40-7.40 Depth (m BGL) Project Name Nο 13 Туре A63 CASTLE STREET ID Spec Ref **Specimen Details** 1 2 3 Soil Description Very soft brown sandy silty CLAY. Length 170.54 mm Specimen Type UNDISTURBED 100.78 /Preparation Diameter mm **Bulk Density** 2.04 Mg/m3 Method of Saturation Water Content 33 **Saturation Details** Dry density 1.54 Increments of cell and back pressure Mg/m³ 163.09 Length mm Cell pressure increments kPa consolidation Diameter 96.28 Differential Pressure kPa 0 Bulk Density* 2.27 kPa 210 Final Cell Pressure Mg/m³ Water Content* 210.2 29 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same Specimen 1 -1.0 0.8 o.0 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 388 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure kPa Pore pressure at start of consolidation 388 kPa Pore pressure at end of consolidation 305 kPa Pore pressure dissipation at end of consolidation 94 % Consolidation Coefficient of Consolidation C_{vi} 0.10 m²/year parameters Coefficient of Compressibility M_{vi} 4.15 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 1.3E-10 m/s pt 8, clause 6.3.4) k_{vi} Root time minutes 20 40 60 80 100 120 140 160 0 (Fve if swell) ᇻ lume change 00 00 1000 Ref **Figure** SLR8.1 CU Printed:23/03/2016 12:22 Rev 85 May 09 sheet 1 of 3

	Coi	nsoli	dated U	Indrai	ned Tr	iaxia	l Comp (BS	oress 31377	ion to	est w rt 8 :	ith Meas 1990)	suremer	nt of F	Pore \	Water P	ress	ure	
Projec	t No		A5085-	-15						Sam	ole Details:	Hole No		В	H402			
Projec	t Name									1		Depth (m	BGL)	6.	.40-7.40)		
,				CT. F.	C T DEE T	_						No	13		Type		Р	
			A63 CA	SILE:	SIREEI							ID						
												Spec Ref						
She		stages	- graphic	cal data	a											o fail	ure points	
	240																Ť	
кРа	200																	\exists
73.)																		
31'-¢	160															•	- 1	╗
) ss	400								_	_								
Deviator stress (σ1' - σ3') kPa	120																	٦
eviato	80																	
ŏ	00																	
	40																	
	40																	
	0																	
		0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5 5	5.5	6	6.5	7	7.5 ε %	6 8
	10.0	-																4
_																		
' / a3'	8.0	-																4
Principal stress ratio (σ 1' / σ 3')									_	\downarrow								
s ratio	6.0	-			_/	1										^	1	4
l stres				/														
incipa	4.0	-																\dashv
Pri																		
	2.0	-																\dashv
		-																
	0.0	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5 5	5.5	6	6.5	7	7.5 ε 9	<u></u>
	420		0.5	· 	1.5		2.5		0.0		4.5		J.5		0.5	, 	7.5 € 7	
	400																_	-
_																		
kPa	380																	\dashv
Pore water pressure kPa																		
pres	360															•	- 1	-
vater																		
ore v	340																	
Ā		/																
	320																	٦
	_																	
	300	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5 5	5.5	6	6.5	7	7.5	8
								Axial	strain,	ε% (ε	all plots)							
Ref															Figure			
SLI	R8.1 v 85	ΙF	SC	1					UKAS		Printed:2	23/03/2016	12:22			Cl	J	
Ma	y 09							•	1157							sheet	2 of 3	

oject No	Λ508	35-15					Sam	ple Deta	ails: F	lole No		BH4	02		
oject Name	ASUC	33-13					-	.,		epth (m Bo	GL)		-7.40		
ojeći Name										lo	13		Туре	Р	_
	A63	CASTLE	STREET						l li		<u> </u>		71	I	_
									-	Spec Ref					
Mohr	Circles								_	-	•				
100	Circles														\neg
80															\dashv
60															_
40	/	/													
20															
20															
0	20 40	60	80	100	120	140	160	180	200	220	240	260	280	300	32
MIT S	ress field	l				Effective	stresses	kPa							
100										Compres	sion s	tages			
										Specime		1	2	3	
80									_	Cell pres		387.5			
										Initial pw)	300			
60			_/							Initial σ ₃ '	luala.	88 0.15			
										Rate of s	ıraırı	0.13			(
60										Failure c	onditio	ons			
															1
20										Criterion		Maximi	ım deviat	or stress	
20										Axial stra	in	6.93			
		\								(σ_1 ' / σ_3 '		6.453			
0	20 40	60	80	100	120	140	160	180	200	(σ ₁ ' - σ ₃ ') _f	152.7			
			$S' (\sigma_1' + c)$	₃ ')/2 kF	Pa .					u _f		360			
200 T	ridge stre	ss field							_	σ ₃ ' _f		28 181			
										$\sigma_1'_f$ A_f		0.39			-
160										Time to fa	ailure	45.6			
120										Shear St	rength	Parame	ers		
80														ar regres	
00	(c'		kPa		ot assess	
										Ø'		degrees		t assesse	
40										c'		kPa	IVIAITUA	l re-asses	2511
										Ø'		degrees			
0 +	40 80	120	160	200	240	280	320	360	 400			0.00			
		-		+ 2 σ ₃ ')/3									Mode of	failure	
Notes: Dev	ator stresses	corrected fo	or area chang	e, vertical :	side drains	and 0.308 r	nm thick ru	bber memb	orane(s)				7]] [٦
	IT AND DESC		n aroa onang	o, romoan	ordo dram	, and 0.000 i			J. u o (o)			2	_}		
												1	2	3	١
												1			_
f												Fig	ure		
SLR8.1 Rev 85	ES							Printe	ed:23/	03/2016 12	:22			CU	
May 09							- 1					- 1		eet 3 of	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH403 A5085-15 2.30-2.75 Depth (m BGL) Project Name UT No Type A63 CASTLE STREET ID Spec Ref 2 **Specimen Details** 1 3 Soil Description Soft brown SILT. Length 203.20 Specimen Type UNDISTURBED 103.12 /Preparation Diameter mm **Bulk Density** Mg/m³ 1.90 Method of Saturation Water Content 35 Saturation Details Dry density 1.41 Increments of cell and back pressure Mg/m³ Length 200.27 Cell pressure increments kPa 50 mm Diameter 101.63 Differential Pressure kPa 0 Bulk Density* 1.93 Final Cell Pressure kPa 210 Mg/m Water Content* 195.6 31 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 0.99 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 345 kPa Consolidation Back Pressure applied kPa 300 Details Effective Pressure 45 kPa Pore pressure at start of consolidation 344 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation 0.97 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 1.08 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 3.3E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 5 10 15 30 35 40 20 25 0 mL (-ve if swell) 20 40 Volume change 60 80 100 Ref **Figure SLR8.1** CU Printed:01/03/2016 10:48 Rev 85 May 09 sheet 1 of 3

Project No	Α	5085	-15						Sample	Details:	Hole N	Vo		BH40)3		
Project Name									•		Depth		GL)	2.30-			
rojoot riam					_						No		6		ype	UT	
	Α	63 C	ASTLE	STREE	Т						ID			•			
											Spec I	Ref					
Shearing :	stages - g	graphi	cal dat	a											0.1	ailure po	nints
240]		•														andre pe)IIIIO
200 -																	
3.																	
160 -																	
SS (d																	
Deviator stress (01'-03') kPa								•		++							
/iator																	
6 80 -																	
40 -																	
o -l	2		1	6	8	10	12 1	4	16	18	20	22	24	26	28	30	ε%
7.0				Ť	Ī		1	_									
6.0 -																	
13.																	
5.0 -																	
Principal stress ratio (σ1' / σ3') 3.0 - 0.5					+			-		1							
\$ 4.0 -																	
oal str	/																
rincip 3.0 -																	
ш.																	
2.0 -																	
	_/																
1.0 -	2		4	6	8	10	12 1	4	16	18	20	22	24	26	28	30	ε %
330			-					•				$\overline{}$					
		~~															
325 -				\setminus													
a a																	
Pore water pressure kPa 310 -																	
ssur																	
315 -																	
vate																	
310 -								1		1							
	/								\sim								
305 -	/																
300 -	2	4	1	6	8	10	12 Axial s	4 train,	16 ε % (all p	18 plots)	20	22	24	26	28	30	
lef							x	±						Figu	ıre		
SLR8.1	ES			2				₩	D.	rinted:0	1/02/20	16 10	۰۸۵			U	
Rev 85			_ (6					ζΛs =	I "	 u.0	1/00/20	, 10 10	0	1	•	, 0	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH403 Project No A5085-15 Depth (m BGL) 2.30-2.75 Project Name No 6 Туре UT A63 CASTLE STREET ID Spec Ref **Mohr Circles** 100 80 Shear stress kPa 60 40 20 n 20 60 100 120 140 160 180 200 220 240 260 280 300 320 MIT Stress field Effective stresses kPa Compression stages 2 3 Specimen Cell pressure 345 kPa 80 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa 45 Initial σ_3 ' kPa 60 0.72 %/hr Rate of strain 40 Failure conditions Criterion Maximum deviator stress 20 Axial strain 15.02 % 4.407 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 123.0 (σ_1 ' - σ_3 ') _f kPa 20 180 200 40 100 140 160 s' $(\sigma_1' + \sigma_3')/2$ kPa 309 kPa 36 Cambridge stress field $\sigma_3{'}_f$ kPa 200 159 kPa $\sigma_1'_f$ 0.07 $\boldsymbol{A}_{\boldsymbol{f}}$ 160 Time to failure 20.8 (σ₁'-σ₃') kPa **Shear Strength Parameters** 120 Linear regression 80 с' kPa not assessed σ Ø' degrees not assessed 40 Manual re-assessment kPa с' Ø' degrees 40 0 80 120 160 200 240 280 320 360 400 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.594 mm thick rubber membrane(s) Notes: Ref **Figure SLR8.1** CU Printed:01/03/2016 10:48 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Project No Hole No BH403 A5085-15 3.60-4.60 Depth (m BGL) Project Name Туре Nο 10 A63 CASTLE STREET ID Spec Ref **Specimen Details** 2 3 Soil Description Soft to firm brown silty CLAY. Length 191.05 mm Specimen Type UNDISTURBED 97.38 /Preparation Diameter mm **Bulk Density** 1.81 Mg/m3 Method of Saturation Water Content **Saturation Details** Dry density 1.26 Increments of cell and back pressure Mg/m³ 187.46 Length mm Cell pressure increments kPa consolidation Diameter 95.54 Differential Pressure kPa 0 Bulk Density* 1.85 kPa 210 Final Cell Pressure Mg/m³ Water Content* 209.4 39 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 0.98 for undrained test, after consolidation and after test are the same 1.0 0.8 o.0 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 360 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure kPa Pore pressure at start of consolidation 350 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation C_{vi} 0.25 m²/year parameters Coefficient of Compressibility M_{vi} 0.51 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 4.0E-11 m/s pt 8, clause 6.3.4) k_{vi} Root time minutes 20 40 60 80 100 120 140 160 0 mL (-ve if swell) Volume change 1 0 0 0 50 Ref **Figure** SLR8.1 CU Printed:18/03/2016 10:00 Rev 85 May 09 sheet 1 of 3

	Cor	nsolic	dated U	Indrai	ned T	riaxia	al Com (B	pres	ssion 77 : P	tesi art 8	t with 3 : 19	Meas 90)	uren	nent	of Po	re W	ater P	ress	ure	
Project	No		A5085-	-15						s	ample	Details:	Hole	No		BH	403			
Project	Name									┪			Deptl	n (m B	GL)	3.6	0-4.60)		
			A C 2 C A	CTLE	CTDEE	_							No		10		Type		Р	
			A63 CA	SILE	SIKEE	ı							ID							
													Spec	Ref						
Shea	ring s	stages	- graphic	cal data	a													o fail	lure poin	nts
æ	50																		+	
.) кР																				
- 93	40																		+	
s (σ1									_ 1											
stres	30																			
Deviator stress (σ1' - σ3') kPa																				
Dev	20		/																_	
		/																		
	10	/																	_	
		1																		
		0	0.5	1	1.5	2	2.5	3	3.5		4	4.5	5	5.5	6		6.5	7	7.5	ε% 8
	4.0																			
	3.5																			
	3.3																			
(03,)	3.0																			
(01' /	0.0																			
Principal stress ratio (σ1' / σ3')	2.5						_													
stress																				
ıcipal	2.0		/																	
Prii																				
	1.5	+	<u> </u>																_	-
	1.0	0	0.5	1	1.5	2	2.5	3	3.5		4	4.5	5	5.5	6		6.5	7	7.5	ε% 8
	340		0.0	·	1.0	<u> </u>	2.0	٠				1.0		0.0				<u>,</u>	7.0	
				سر ا																
	335		+/																	
æ																				
Pore water pressure kPa	330		/																	
ssur		/	/																	
r pre	325	/																		
wate	320																			
Pore	320	/																		
_	315																			
	310																			
		0	0.5	1	1.5	2	2.5	3 Ах	3.5 ial strai	η, ε %	4 6 (all p	4.5 lots)	5	5.5	6	(6.5	7	7.5	8
Ref									مئم							Fi	gure			
SLR	8.1		C	- 4	7				*		Р	rinted:1	8/03/2	016 10	0:00			CI	П	
Rev May	85		SC		3				1157		•								2 of 3	}

-,-	ct No	U	ニハちひ	85-15						ISam	ple Detail	ls:I Ha	ole No		BH4	()3		
roio		ame	ASC	763-13	,					-		_	epth (m BC	GL)		-4.60		
Oje	CLIN	anie										No		10		Туре	Р	
			A63	CAST	LE STR	EET						ID				,,		_
												Sp	ec Ref					
		Mohr C	rcles							-								
	50 -		. 0.00															
	40 -																	\exists
3																		
2	30 -																	\exists
5	20 -																	\exists
)																		
	10 -																	
				/														
	0 -	0 10	2	20	30 4	10 !	↓ <u>↓</u> 50	60	70	80	90 1	00	110 1	20	130	140	150	16
		MIT Stre	ss fiel	d					Effective	e stresses	kPa							
	50 -]	Compres	sion s	tages			
													Specimer	ī	1	2	3	_
	40											-	Cell press	ŀ	360			
													Initial pwp Initial σ_3 '	'	311 49			
	30 -											-	Rate of st	rain	0.42			-
?																		
	20 -											-	Failure co	onditio	ns			
					1	7							Criterion		Maximu	ım devia	tor stress	
	10 -					\vdash						-			0.00			4
													Axial strai (σ_1' / σ_3')		2.96		_	-
	0 -					<u> </u>						_	$(\sigma_1' - \sigma_3')$	1	36.3			
	(0 10		20		40 σ ₁ ' + σ ₃ ') <i>i</i>	50 / 2 kPa	60	70	80	90 1	00	u _f		339			
	50	Cambrio	lge str	ess fiel		., , .							$\sigma_3{'}_f$		21			
	50 -												$\sigma_1{}^{\prime}{}_f$		58			
	4.0												A _f		0.77			4
	40 -				,								Time to fa	illure	7.0			
					4								Shear Sti	ength	Parame	ters		
	30 -																	
-	00				\											Line	ear regres	sior
	20 -												c'		kPa		ot assess	
	10												Ø'		degrees		ot assesse al re-asses	
	10 -												с'		kPa	iviarius	-	20111
						\							Ø'		degrees		-	
	0 -) 10	2	20 ;	30 4	0 5	50	60	70	80	90 10	00				II		
					p'	(σ1'+2	σ ₃ ')/3 Ι	kPa								Mode of	failure	
Vote	es:	Deviat	or stresse	es correcte	ed for area	change, ve	ertical sid	e drains	and 0.616	mm thick rul	ober membra	ne(s)					1	1
		SPLIT	AND DE	SCRIBE											1			
															1	2	3	
															T			_
f															Fig	ure		
f SL	.R8. ev 8	1									Printed	:18/0:	3/2016 10	:00	Fig	ure	CU	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH403 A5085-15 5.00-6.00 Depth (m BGL) Project Name Туре Nο 12 A63 CASTLE STREET ID Top Spec Ref Sample 2 **Specimen Details** 2 3 Soil Description Soft to firm greyish brown clayey SILT Length 191.28 mm Specimen Type UNDISTURBED 97.02 /Preparation Diameter mm **Bulk Density** 1.83 Mg/m3 Method of Saturation Water Content 41 **Saturation Details** Dry density 1.30 Increments of cell and back pressure Mg/m³ 187.97 Length 50 mm Cell pressure increments kPa consolidation Diameter 95.32 Differential Pressure kPa 10 Bulk Density* 1.88 kPa 260 Final Cell Pressure Mg/m³ Water Content* 256.4 37 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 0.98 for undrained test, after consolidation and after test are the same Specimen 1 -1.0 0.8 0.6 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 370 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 70 kPa Pore pressure at start of consolidation 361 kPa Pore pressure at end of consolidation 303 kPa Pore pressure dissipation at end of consolidation 96 % Consolidation Coefficient of Consolidation C_{vi} 1.13 m²/year parameters Coefficient of Compressibility M_{vi} 0.79 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 2.8E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 5 10 15 20 25 30 35 40 0 mL (-ve if swell) 40 Volume change 60 80 100 Ref **Figure** SLR8.1 CU Printed:18/03/2016 09:49 Rev 85 May 09 sheet 1 of 3

	Coi	nsolic	dated U	ndrai	ned Ti	riaxial	l Com _l (B	pressi S1377	on te	est wit rt 8 : 1	th Meas 990)	surem	ent	of Por	e Wate	r Pres	sure	
Project	t No		A5085-	-15						Sampl	e Details:	Hole N	Vo		BH403	3		
Project	t Name									1		Depth	(m Bo	GL)	5.00-6	5.00		
			A C 2 C A	CTLE	TDEET	-						No		12	Ту	ре	Р	
			A63 CA	SILES	OIKEE							ID		Тор				
												Spec F	Ref	Samp	le 2			
She	aring s	stages	- graphic	cal data	1											o fa	ailure po	ints
	100																	
Deviator stress (σ1' - σ3') kPa																		
33	80 -																	
9.											•	1						
ress	60 -																	
tor st																		
Devia	40	/	/															
	20 -																	
	0 -	_																
	4.0)	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	ε% 32
	3.5	<u> </u>			_												_	
											•	1						
/ 03,	3.0		\perp / \perp															
(91,																		
Principal stress ratio (σ1' / σ3')	2.5	<u> </u>																
stress			/															
ıcipal	2.0																	
P		1 /																
	1.5	\sqcup																
	1.0	\angle																
	360	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	ε % 32
	350																_	
кРа	340							_	+		•	_						
Pore water pressure kPa		1																
ress	330																	
ter p																		
e wa	320																	
Por																		
	310 -																	
		/																
	300	<u>/</u>	2 .	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32
										ε% (al								
Ref									da						Figur	re		
SLF	R8.1		SC		**				\$ ↓ UKAS		Printed:1	8/03/20	16 09	:49		C	:U	
Rev May	/ 85 / 09		7		U				1157								et 2 of	3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Project No BH403 Hole No A5085-15 5.00-6.00 Depth (m BGL) Project Name No 12 Type A63 CASTLE STREET ID Top Spec Ref Sample 2 **Mohr Circles** 40 Shear stress kPa 30 20 10 0 160 Effective stresses kPa MIT Stress field Compression stages Specimen 2 3 Cell pressure 370 kPa 40 300 kPa Initial pwp 70 Initial σ_3 ' kPa 30 $(\sigma_{1}' - \sigma_{3}')/2$ 0.95 Rate of strain %/hr 20 Failure conditions Criterion Maximum deviator stress 10 17.04 Axial strain % 3.336 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ (σ_1 ' - σ_3 ') _f 70.1 kPa 10 20 40 50 70 80 90 100 340 kPa s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ 30 Cambridge stress field $\sigma_3{'}_f$ kPa 100 $\sigma_1{}'_{\,f}$ kPa 0.57 A_{f} 80 Time to failure 17.9 **Shear Strength Parameters** 60 ($\sigma_1' - \sigma_3'$) Linear regression 40 с' kPa not assessed Ø' degrees not assessed 20 Manual re-assessment kPa с' Ø' degrees 0 0 120 200 40 100 140 160 180 p' $(\sigma_1' + 2 \sigma_3')/3$ kPa Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.48 mm thick rubber membrane(s) SPLIT AND DESCRIBE Ref **Figure SLR8.1** Printed:18/03/2016 09:49 CU Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH403 A5085-15 5.00-6.00 Depth (m BGL) Project Name No 12 Type A63 CASTLE STREET ID Base Spec Ref Sample 2 2 **Specimen Details** 1 3 Soil Description Soft brown slightly sandy CLAY Length 190.21 mm Specimen Type UNDISTURBED 97.24 /Preparation Diameter mm **Bulk Density** Mg/m³ 1.82 Method of Saturation Water Content 40 Saturation Details Dry density 1.30 Increments of cell and back pressure Mg/m³ Length 185.44 Cell pressure increments kPa mm Diameter 94.77 Differential Pressure kPa 10 Bulk Density* 1.89 Final Cell Pressure kPa 160 Mg/m Water Content* 148.2 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 440 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 140 kPa Pore pressure at start of consolidation 399 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation 1.19 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.50 m^2/MN see note to BS1377: Coefficient of Permeability (calculated) 1.9E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 5 15 30 35 40 10 20 25 0 mL (-ve if swell 20 40 Volume change 60 80 100 Ref **Figure SLR8.1** CU Printed:01/03/2016 10:46 Rev 85 May 09 sheet 1 of 3

Projec	t No		A508!	5-15						Samp	le Details	: Hole N	No		BH4	-03			
Projec		е	7.500.							1		Depth		GL)	-)-6.00			
1 10,00	r rain					_						No		12		Туре		P	
			A63 C	ASTLE	STREE	:Т						ID		Base			-		
												Spec	Ref	Samp	le 2				
She	aring	stages	- graph	nical da	ta												o foilu	o noin	nto.
	120		9														o failui	e poin	ıs
a	100 -																		
" K								_	+		-					1			
<u>.</u>	80 -																		
,s (q		/																	
Deviator stress (σ1' - σ3') kPa	60 -	$\vdash \vdash$																	
riator																			
Dev	40 -	\vdash																	
		П																	
	20 -	-																	
		1																	
	0 -	0	1	2	3	4	5	6	7	8	9	10	11	12	1	g -	14	15	ε% 1
	4.0	T			1	1			,					12	'	<u> </u>	-	13	- 70 1
	3.5																		-
א''/פ	3.0															- 1			-
Principal stress ratio (01' / 03')																			
ess ra	2.5		-																-
al str		,																	
rincip	2.0	 																	-
ш.		/																	
	1.5	+																	
		<i>//</i>																	
	1.0	0	1	2	3	4	5	6	7	8	9	10	11	12	1	3 1	14	15	ε %1
	420			-		-												T	
	400 -										•					 1			
Ø																			
Pore water pressure kPa	380 -																		
ssur		/																	
, bre	360 -																		
vateı		/																	
ore \	340 -																		
Δ.		П																	
	320 -																		
		/																	
	300 -	0	1	2	3	4	5	6	7	8	. 9	10	11	12	1	3 1	14	15	1
								Axia	strain	,ε% (ε	ıll plots)								
Ref									GEO .						Fig	gure			
SLF			S		A				→		Printed:0	01/03/20	16 10	:46			CU		
re\	v 85 y 09				1			با -	K A S						1			of 3	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH403 Project No A5085-15 Depth (m BGL) 5.00-6.00 Project Name Туре No 12 A63 CASTLE STREET ID Base Spec Ref Sample 2 **Mohr Circles** 50 40 Shear stress kPa 30 20 10 0 0 10 40 50 70 90 100 110 120 130 140 150 160 MIT Stress field Effective stresses kPa 100 Compression stages 2 3 Specimen Cell pressure 440 kPa 80 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa 140 Initial σ_3 ' kPa 60 1.00 %/hr Rate of strain 40 Failure conditions Criterion Maximum deviator stress 20 Axial strain 9.49 % 3.126 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 92.1 kPa 20 180 200 40 100 140 160 s' $(\sigma_1' + \sigma_3')/2$ kPa 397 kPa 43 Cambridge stress field $\sigma_3{'}_f$ kPa 100 135 kPa $\sigma_1'_f$ 1.05 $\boldsymbol{A}_{\boldsymbol{f}}$ 80 Time to failure 9.5 (σ₁'-σ₃') kPa **Shear Strength Parameters** 60 Linear regression 40 с' kPa not assessed Ø' degrees not assessed Manual re-assessment 20 kPa с' Ø' degrees 0 20 40 60 100 120 140 160 180 200 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.4 mm thick rubber membrane(s) Notes: Figure Ref **SLR8.1** CU Printed:01/03/2016 10:46 Rev 85 May 09 sheet 3 of 3

	ما	T.		45				Camarilla D	to:1- 1	Hala N		1.	11401		
ject N	NO	1	\5085-	·15				Sample De	taiis:				H403		
ject N	Name									Depth (-	.00-8		_
			\62 CA	CTLE	TDEET				- 1	No		14	Ту	pe	Р
			403 CA	SILLS	HILLI					ID					
										Spec R	ef				
		-													
		Specin	nen Detai	ils	1	2	3	Soil Descri	ption	Firm bro	own sa	ndy SILT.			
		Length		mm	190.22			Specimen	Туре	UNDIS		-D			
	_	Diamet	er	mm	98.04			/Preparat	ion	OINDIS	IUNDE	ט			
	Initial	Bulk De	ensity	Mg/m³	1.81										
	_=	Water 0	Content	%	41			O-t-		Dataila			Method	d of Satu	ration
		Dry der	nsity	Mg/m³	1.28			Satu	ration	Details		Increme	ents of	cell and b	ack pressu
	Ę	-		mm	186.00			Cell pressur	e incre	ments	kPa	50			
	After consolidation		or	mm	95.84			Differential F			kPa	0			
	Solic				1.86			Final Cell Pr			kPa	210			
	Sons			Mg/m³											
	ter (%	35			Final pore w		essure	kPa	201.8			
		_	-	Mg/m³	1.37			Final B Valu	е			1.00			
	^ for u	ndrained to	est, atter co	onsolidatio	n and after te	est are the sam	e.					-×	Specim	nen 1 🔫	<u> </u>
1.0 -		A63 Specimen E Length Diameter Bulk Density Water Conte Dry density Water Conte Bulk Density Water Conte To density Water Conte Dry density Mater Conte To density						×							
0.8 -			pecimen Details ength ameter alk Density Mater Content y density Mater Content* y density* Mater Content* y density* Mater Content* y density* Mater Consort 50 dation [] [] [] [] [] [] [] [
0.0															
0.6 -															
0.4 -															
0.2 -															
0.2 -															
				Draina	age Conditio	ons	Арріїес	cell pressure kPa	1		Fro	m radial bo	oundary	and one	e end
				Speci	men No.					1		2		3	
				Cell P	ressure app	olied				39	0				kPa
			n	Back	Pressure ap	plied				30	0				kPa
	Deta	IIIS		Effect	ive Pressure	e				90)				kPa
						start of conso	olidation			37					kPa
						end of conso				30					kPa
							nd of consolida	ation		10					%
	Cons	olidation			cient of Cor		na or consolida	uion	-	4.2					
		meters							C _{vi}						m²/yea
						npressibility			M _{vi}	0.6					m²/MN
	pt 8.	, clause	6.3.4)	Coeffi	cient of Per	meability (ca	alculated)		k _{vi}	8.9E	-10				m/s
	0		5		10		Roo 15	t time minutes 20	2	25		30		35	
0															
20 40 60 80	-	$\overline{}$													
		/													
40	+		$\backslash +$												
60	1		`												
00	T				_										
															→× 1
80	+														
100															
100								5					Fig	jure	

oject No		A508!	5-15						Sample Detai	s: Hole N	No		BH4	03		
oject Na									1	Depth		GL)	_	0-8.00		
0,000										No		14		Туре	Р	
		A63 C	ASTLE	STRE	ET					ID					-	
										Spec	Ref					
Shearin	g stages	- graph	nical da	ta												
120		9.46.													failure p	points
u 100	0															<u> </u>
81																
8	0															<u> </u>
									•					1		
60														'		
01	° /															
4																
40	°1/															
	/															
20	° #															
(0	0.5	1	1.5	2	2.5	3	3.5	4 4.5	5	5.5	6	6.	5 7	7	.5 ε 9
4.		1	<u> </u>	1.5		2.5		0.0	7 4:5		3.5		0	1	-	.5 6 /
3.	5										+					
_																
3.	0													1		
3. 2. 2. 2.						-										
2.	5															
Ś																
2.																
	٠̈ /															
	_ /															
1.	5 //															
	V															
1.		0.5	1	1.5	2	2.5	3	3.5	4 4.5	5	5.5	6	6.5	5 7	7	.5 ε'
360		J.,	·	1.0	-			1			0.0					
									•		_			1		
350	0			_												
			1													
340	0 /	1														
330	0 -															
	/															
320	0 /															
330																
310																
311																
200																
300		0.5	1	1.5	2	2.5	3 A x	3.5 ial strain	, ε % (all plots)	5	5.5	6	6.5	5 7	7.	.5
								ශ්ය	1				Fig	jure		
SLR8.1		C						[(}	Printed	:01/03/20	016 10	:47			CU	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH403 Project No A5085-15 7.00-8.00 Depth (m BGL) Project Name Туре No 14 Ρ A63 CASTLE STREET ID Spec Ref **Mohr Circles** 50 40 Shear stress kPa 30 20 10 0 0 10 30 40 50 70 90 100 120 130 140 150 160 MIT Stress field Effective stresses kPa 50 Compression stages 2 3 Specimen Cell pressure 390 kPa 40 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa Initial σ_3 ' 90 kPa 2.00 %/hr Rate of strain 20 Failure conditions Criterion Maximum deviator stress 10 Axial strain 4.09 % 3.014 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 70.9 kPa s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ 90 100 0 20 80 355 kPa 35 Cambridge stress field $\sigma_3{'}_f$ kPa 100 $\sigma_1'_f$ 106 kPa 0.77 80 Time to failure 2.0 (σ₁'-σ₃') kPa **Shear Strength Parameters** 60 Linear regression 40 с' kPa not assessed Ø' degrees not assessed Manual re-assessment 20 kPa с' Ø' degrees 80 100 120 p' $(\sigma_1' + 2\sigma_3')/3$ kPa 20 0 40 60 140 160 180 200 Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.616 mm thick rubber membrane(s) Notes: Figure Ref **SLR8.1** CU Printed:01/03/2016 10:47 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH403 A5085-15 8.65-9.30 Depth (m BGL) Project Name UΤ Nο 18 Туре A63 CASTLE STREET ID Spec Ref **Specimen Details** 2 3 Soil Description Very soft brown CLAY Length 201.64 mm Specimen Type UNDISTURBED 102.59 /Preparation Diameter mm **Bulk Density** 1.82 Mg/m3 Method of Saturation Water Content 40 **Saturation Details** Dry density 1.31 Increments of cell pressure only Mg/m³ 194.31 Length 50 mm Cell pressure increments kPa consolidation Diameter 98.79 Differential Pressure kPa 10 Bulk Density* 1.92 kPa 260 Final Cell Pressure Mg/m³ Water Content* 255.7 31 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 0.98 for undrained test, after consolidation and after test are the same Specimen 1 --1.0 0.8 o.0 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 400 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 100 kPa Pore pressure at start of consolidation 398 kPa Pore pressure at end of consolidation 301 kPa Pore pressure dissipation at end of consolidation 99 % Consolidation Coefficient of Consolidation C_{vi} 0.61 m²/year parameters Coefficient of Compressibility M_{vi} 0.97 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 1.8E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 10 20 30 40 50 60 70 80 0 mL (_-ve if swell) lume change 250 Ref **Figure** SLR8.1 CU Printed:18/03/2016 09:50 Rev 85 May 09 sheet 1 of 3

Shearing stage 120 100 80 40 40	A5085 A63 CA	ASTLE S	STREET				_		Depth	(m B0	aL)	8.65	-9.30		
120			STREET	-						`	,				
120			SIKEEI						No		18	-	Туре	UT	
120	es - graphi	cal data							ID						
120	es - graphi	cal data							Spec F	Ref					
120			1										0	failure poi	nte
ж Ма 100														landro por	
ж Ба															
. К															
												•	— 1		
g 80															
<u>6</u>															
60	-/-														
ator s															
40	/														
	/														
20															
/															
。 <u>/</u>															
4.0	1	2 :	3 4	4	5	6 7		8 9	10	11	12	13	3 14	15	ε%
3.5				1											
		/										•			
Principal stress ratio (01' / 03')															
(σ1,															
2.5	-														
stres	/														
2.0															
E															
1.5	/														
/	′														
1.0															
420 	1	2	3	4	5	6 7		8 9	10	11	12	13	3 14	15	ε %
400															
380															
a a			_												
Pore water pressure kPa 340										+		•			
er Dr															
340 A															
Pore /	/														
320															
300															
0	1	2 :	3 4	4	5	6 7		8 9	10	11	12	13	3 14	15	
, 1						AXIdi Str	a111, E 7	% (all plots)				1			
ef						d	2 =					Fig	jure		
SLR8.1 Rev 85	ESC	16				UK.	s I	Printed	18/03/20	16 09	:50		(CU	

roie	ct N	0	Λ5Ω ⁴	35-15						Samp	le Details:	Hole No	<u> </u>	RH	403		
		ame	ASU	33-13	,					-			m BGL)		5-9.3	0	
Oje	CLIN	ane										No	18		Туре	<u> </u>	
			A63	CAST	LE STI	REET						ID					
												Spec R	ef				
		Mohr C	ircles										-				
	50																
	40																
3																	
מוכמי פונכטים וא	30																
5																	
	20																
,						/								\			
	10																
	0	0 10) 20)	30	40	50	60	70 8	30 9	0 100	110	120	130	140	150	16
		MIT Stre	ess field	ı				E	ffective st	resses kl	Pa						
	50												npressio	_			
												•	cimen	1	2	3	_
	40												pressure	400 300		_	
													al pwp al σ_3 '	100			
	30								+				e of strain				
,																	
	20								+			Fail	ure cond	itions			
									\			Crit	erion	Maxii	num dev	iator stress	3
	10											Avia	ul atraia	12.40	.		\dashv
													l strain ' / σ ₃ ') _f	3.301	_		_
	0				00	40	50	00	70	20 ((σ.	- σ ₃ ') _f	92.3			
		0 10) 20	J	30 s'	40 $(\sigma_1' + \sigma_3')$	50 / 2 kPa	60	70	80 9	90 100	u _f		360			
	100 -	Cambri	lge stre	ss fie								σ_3 ' f		40			
	100 -											$\sigma_1'_f$		132			
					/							A _f		0.65		_	
	80 -			4								ıım	e to failur	e 26.8			
	00				\							She	ar Streng	th Param	eters		
	60 -																
	40 -														L	inear regres	ssior
	40 -												c'	kPa		not assess	
	00				\								Ø'	degree		not assess nual re-asse	
	20 -												с'	kPa	iviai	-	200111
	•												Ø'	degree	es	-	
	0 -	0 20	40) (60	80 1	00	120	140 1	60 18	30 200			1 -	1		
					ı	ο' (σ ₁ ' + 2	σ ₃ ')/3 k	кРа							Mode	of failure	
Note	es:	Deviat	or stresses	correcte	ed for are	a change, ve	ertical side	e drains an	id 0.308 mm	thick rubb	er membrane	e(s)			7		
		SPLIT	AND DES	CRIBE)=	£)		
																2 3	3
f														F	igure		
		1 _	-)				1					-		
SI	.R8.	1 I	S								Printed:1	0/00/004	6 00,50			CU	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Project No Hole No BH404 A5085-15 1.50-1.95 Depth (m BGL) Project Name UT Nο Туре A63 CASTLE STREET ID Spec Ref **Specimen Details** 1 2 3 Soil Description Firm brown slightly gravelly Silty CLAY Length 205.17 mm Specimen Type UNDISTURBED 104.23 /Preparation Diameter mm **Bulk Density** 1.96 Mg/m3 Method of Saturation Water Content 30 **Saturation Details** Dry density 1.52 Increments of cell and back pressure Mg/m³ 205.09 Length 50 mm Cell pressure increments kPa consolidation Diameter 104.18 Differential Pressure kPa 10 Bulk Density* 1.96 kPa 160 Final Cell Pressure Mg/m³ Water Content* 147.5 29 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 0.95 for undrained test, after consolidation and after test are the same Specimen 1 -1.0 0.8 o.0 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 340 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 40 kPa Pore pressure at start of consolidation 325 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation C_{vi} 0.76 m²/year parameters Coefficient of Compressibility M_{vi} 0.40 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 9.4E-11 m/s pt 8, clause 6.3.4) k_{vi} Root time minutes 20 40 60 80 100 120 140 160 0 mL (-ve if swell) Volume change r 25 Ref **Figure** SLR8.1 CU Printed:18/03/2016 10:45 Rev 85 May 09 sheet 1 of 3

roject	Nο		A5085	1 [9	Sample [Details:	Hole I	VIΩ		BH404			
roject			A3063	-12					— `	Jampio L	otano.		(m BC		1.50-1			
TOJECT	ivairie											No	(= -	3	Тур		UT	
			A63 C/	ASTLE S	STREE'	Т						ID						
												Spec	Ref					
Shea	rina s	lanes	- graphi	cal data	a				•			•		•			, .,	
Onca	120 T	lages	grapin	Tar date												0	failure p	oints
<u>r</u> g	100																	
Deviator stress (O1 - O3) AFA																		
3	80										_		_					
5																		
	60																	
i i	40	-	/															
	20	-																
	0 1								,			10		40	40		4.5	
	7.0 7		1	2	3	4	5	6	7	8	9	10	11	12	13	14	18	ε 9
	6.0 -																	
_																		
20 /	5.0 -																	
Гр) с																		
s rail	4.0 -		_/				$\overline{}$	_										
Principal stress ratio (01 / 03)																_	-	_
ncipa	3.0 -		/															
Ē																		
	2.0 -	\perp																
	1.0 -	_																
	330 _T)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	3 ε
	325												\perp					
Pa	320																	
Pore water pressure kPa		1	/				_											
ress	315	\perp					_	_										
ter p										+								
e wat	310	\perp											\					
Por																		_
	305																	
		/																
	300	/																
	0		1	2	3	4	5		, rain. ε	8 % (all pl	9 lots)	10	11	12	13	14	15	5
f								niui 3l		, c (un pi	,				Figure	<u> </u>		
ı SLR	.		SC		2			(\ \	\ } 	_		• Is = ::			''9u''			
					_ //)				ンニ	ı Pr	inted:1	8/03/20	J16 10	.45	1	(UC	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Project No BH404 Hole No A5085-15 1.50-1.95 Depth (m BGL) Project Name UT No Type A63 CASTLE STREET ID Spec Ref **Mohr Circles** 40 Shear stress kPa 30 20 10 0 160 Effective stresses kPa MIT Stress field Compression stages Specimen 2 3 Cell pressure 340 kPa 40 300 kPa Initial pwp Initial σ_3 ' 40 kPa 30 $(\sigma_1' - \sigma_3')/2$ 0.55 Rate of strain %/hr 20 Failure conditions Criterion Maximum deviator stress 10 11.32 Axial strain % 3.738 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ (σ_1 ' - σ_3 ') _f 82.7 kPa 10 20 40 50 70 80 90 100 310 kPa s' (σ_1 ' + σ_3 ') / 2 kPa 30 Cambridge stress field $\sigma_3{'}_f$ kPa 113 $\sigma_1{'}_f$ kPa 0.12 A_{f} 80 Time to failure 20.7 **Shear Strength Parameters** 60 $(\sigma_1' - \sigma_3')$ Linear regression 40 с' kPa not assessed Ø' degrees not assessed 20 Manual re-assessment kPa с' Ø' degrees 0 0 20 120 200 40 100 140 160 180 p' $(\sigma_1' + 2 \sigma_3')/3$ kPa Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.54 mm thick rubber membrane(s) SPLIT AND DESCRIBE Ref **Figure SLR8.1** Printed:18/03/2016 10:45 CU Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH404 A5085-15 3.00-4.00 Depth (m BGL) Project Name Туре Nο A63 CASTLE STREET ID Spec Ref **Specimen Details** 2 3 Soil Description Soft light brownish black organic clayey sandy SILT. Length 191.03 mm Specimen Type UNDISTURBED 97.52 /Preparation Diameter mm **Bulk Density** 1.80 Mg/m3 Method of Saturation Water Content 44 **Saturation Details** Dry density 1.25 Increments of cell pressure only Mg/m³ 187.41 Length 50 mm Cell pressure increments kPa consolidation Diameter 95.66 Differential Pressure kPa 0 Bulk Density* 1.85 kPa 260 Final Cell Pressure Mg/m³ Water Content* 246.2 39 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 0.96 for undrained test, after consolidation and after test are the same Specimen 1 -1.0 0.8 0.6 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 355 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 55 kPa Pore pressure at start of consolidation 346 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation C_{vi} 0.60 m²/year parameters Coefficient of Compressibility M_{vi} 2.15 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 4.0E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 5 10 15 20 25 30 35 40 0 mL (_-ve if swell) lume change 250 Ref **Figure** SLR8.1 CU Printed:18/03/2016 09:51 Rev 85 May 09 sheet 1 of 3

oject No	A5085-15								Sample Details:		Hole No			BH404			
oject Name	1							1			Depth (m l	3.0	3.00-4.00				
-,										Ν	No	7	- I	Туре	Р		
	A63 CA	ASTLE S	TREET	-						П	D						
										5	Spec Ref						
Chaaring atas		inal data										•					
Shearing stag	es - grapni	cai data	1											-	o failure	points	
50										•				1			
30																	
40																	
;																	
		/															
30																	
20																	
10																	
0 1	0.5	1 1	.5	2	2.5	3	3.5	4	4.5		5 5.5	5	6 (6.5 7	,	7.5 ε%	
7.0																	
6.0																	
<u></u>																	
5.0 —						-											
b 0																	
8 4.0 —						_				•							
li stre																	
5.0 - 4.0 - 3.0 -		+ /	1														
2.0		$\overline{}$															
1.0																	
360	0.5	1 .	1.5	2	2.5	3	3.5	4	4.5		5 5.5	5	6 (6.5 7		7.5 ε 9	
350																	
340																	
<u>5</u>		/							_	•				1			
330																	
d																	
wate																	
330																	
310																	
300	0.5	1 1	.5	2	2.5	3	3.5	4	4.5		5 5.5	5 (6 6	6.5 7		7.5	
<u> -</u> .						Axial	strain,	ε% (a	II plots)								
							ala						Fi	gure			
SLR8.1 Rev 85			*				*		Printed	:18/	/03/2016 (9:51			CU		
Rev 85 May 09	ESG & UKAS											sheet 2 of 3					

Project No A5085-15 S							Samp	e Details:	Hole No BH404							
		03-13)					-	o 20tao.	Depth (m	BGI)		3.00-4.00			
roject Name										No	7	15.0	Type	Р		
	A63	CAST	LE STR	EET						ID	+		.) 0	!·		
										Spec Ref						
										1 - 1						
50 Mo	hr Circles						T								\neg	
40															\dashv	
_																
20															4	
S S S S S S S S S S S S S S S S S S S																
20 E																
10						,	\									
							1									
0 1	10 2	20 :	30 4	10 5	50	60	70	80 9	0 100	110	120	130	140	150	—— 16	
МІТ	Stress fiel	d				E	ffective s	tresses kF	Pa							
50										Comp	ression	stages				
										Specin	nen	1	2	3		
40										Cell pr	essure	355			ı	
.										Initial p	wp	300			ı	
30										Initial o	^{'3}	55			١	
				7						Rate o	f strain	0.48			9	
30																
										Failure	conditi	ons			٦	
•			/							Criterio	n	Maxim	um devia	tor stress		
10										Axial s	train	4.76		T		
			_							(σ ₁ '/σ	Մ 3 [']) ք	4.000				
0 1	10 2	20	30 4	40	50	60	70	80 9	0 100	(σ ₁ ' - α	σ ₃ ') _f	53.4			ŀ	
				$\sigma_1' + \sigma_3')$						u_f		337			ŀ	
Car	nbridge str	ess fiel	ld							σ_3 ' f		18			ŀ	
.50										σ ₁ ' _f		71		4	ŀ	
										A _f	a fall:	0.70		1	4	
80										I ime ti	o failure	10.0				
										Shear	Strengt	n Parame	ters			
60	T															
60													Line	ear regres	sion	
. 40											с'	kPa	n	ot assess	ed	
											ø'	degrees		ot assesse		
20												1	Manua	al re-asses	ssm	
											c'	kPa		-		
0 —	00 4		20 0	10 1	00 1	00 1	10	100 10			Ø'	degrees	i	-		
0	20 4	.0 6		$(\sigma_1' + 2)$			40	160 18	0 200							
													Mode of	failure		
	Deviator stresse		ed for area	change, ve	ertical side	drains and	d 0.308 m	m thick rubb	er membrane	e(s)		ļ~				
	SPLIT AND DES	SCRIBE													J	
												1	2	3		
f												Fig	gure		_	
SLR8.1 Rev 85	ES								Printed:1	8/03/2016	09:51			CU		

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Project No Hole No BH404 A5085-15 6.00-7.00 Depth (m BGL) Project Name Nο 10 Туре A63 CASTLE STREET ID Spec Ref **Specimen Details** 2 3 Soil Description Very soft brown sandy clayey SILT. Length 184.16 mm Specimen Type UNDISTURBED 97.29 /Preparation Diameter mm **Bulk Density** 1.85 Mg/m3 Method of Saturation Water Content 40 **Saturation Details** Dry density 1.32 Increments of cell pressure only Mg/m³ 179.98 Length 50 mm Cell pressure increments kPa consolidation Diameter 95.05 Differential Pressure kPa 0 Bulk Density* 1.91 kPa 210 Final Cell Pressure Mg/m³ Water Content* 204.8 35 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same - Specimen 1 ---1.0 0.8 o.0 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 380 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure kPa Pore pressure at start of consolidation 378 kPa Pore pressure at end of consolidation 306 kPa Pore pressure dissipation at end of consolidation 93 % Consolidation Coefficient of Consolidation C_{vi} 0.53 m²/year parameters Coefficient of Compressibility M_{vi} 1.13 m^2/MN see note to BS1377: Coefficient of Permeability (calculated) 1.8E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 5 10 15 20 25 30 35 40 0 mL (_-ve if swell) lume change 250 Ref **Figure** SLR8.1 CU Printed:18/03/2016 09:51 Rev 85 May 09 sheet 1 of 3

ject No	A5085	-15					Sample Details	Hole No		BH	BH404				
ject Name							7				6.00-7.00				
,		CT! F C						No	10		Туре	Р	,		
	A63 CA	V21FF 2	IKEEI					ID							
								Spec Ref	:						
hearing stag	es - graphi	cal data										o failure	o noint	te	
240												- C Idilare	Point		
200													-		
160													-		
120													+		
80													+-		
40													+-		
/															
o														_	
7.0	1	2 3	3 4		5	6 7	8 9	10	11	12	13	14	15 8	٤ %	
6.0													+		
5.0		/					1						_		
5.0	-												\perp	_	
3.0													_	_	
2.0	/														
/															
1.0													\perp		
360 	1	2	3 4	1	5	6 7	8 9	10	11	12	13 1	14	15	3	
						•									
350															
340	/														
<u> </u>															
330															
5															
320															
340 330 330 320															
310															
010															
300															
300 1	1	2 3	3 4		5	6 7	8 9	10	1	12	13 1	14	15		
i						Axiai strai	n, ε % (all plots)							_	
										F	igure				
SLR8.1 Rev 85	ESC					(≯≮)	Printed:18/03/2016 09:51					CU			

Ref Street Ref Rest Ref Rest Ref Rest Ref Ref															
Compression stages Part				_											
Ref Sumple Details Hole No BH404 Depth (m BCL) 6.00-7.00 No 10 Type Depth (m BCL) Sumple Details Hole No Depth (m BCL) 6.00-7.00 No 10 Type Depth (m BCL) Sumple Details Type Depth (m BCL) Sumple Type Depth (m BCL) Sumple Type Type Depth (m BCL) Type T		Р													
Residence Resi			_												
Residence Resi															
Record R															
50															
40									$\overline{}$						\exists
5			1						\						
30															\exists
5															
20		/								+					\dashv
	/										\				
10	+ + +										+				\dashv
	10 20	30 4	40 50	60	7	0 8	80 9	0 100	, ,	110 1	20	130	140	150	16
			.0	00							_0	.00	0	.00	
Ref Street Ref R															
					<	5			;	Specimen	l	1	2	3	
40					-/										_
															-
30											rain				-
,										iale of st	ıaııı	0.11			۱,
20					\rightarrow					Failure co	onditio	ons			
I					`					Criterion		Maximi	ım deviatı	or stress	
10						\vdash								1	_
															4
															┨.
0	10 20				7	70 8	30	90 100	,		T				-
Camb	ridge stress fi		01 + 03 // 2	κι α								24			-
100		7							(σ ₁ ' _f		123]
)													
80									•	Time to fa	ilure	16.8			╛
										Shear Str	enath	Paramet	ore		
60										onour ou	ong	i urumo	0.0		
	\												Line	ar regres	sior
40												kPa	no	t assess	ed
										Ø'		degrees			
20									Г	0.1		kPa.	Manua		ssm
									-						
	20 40	60 8	30 100	120) 14	10 10	60 1	BO 200	L			uog. ooo			
		p'	(σ ₁ ' + 2 σ ₃ ')/3 kPa									Mode of	failure	
Notes: Dev	ator stresses correc	cted for area	change, verti	cal side dr	ains and	0.318 mm	thick rubb	er membrane	e(s)]		٦
Ref Ref															
												1	2	3	_
Project No															
MIT Stress field															
Manual re-asses c' kPa - Ø' degrees not assesse c' kPa - Ø' degrees - Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.318 mm thick rubber membrane(s) SPLIT AND DESCRIBE Ref SLR8.1 Rev 85 Figure Printed:18/03/2016 09:51 CU															
Milit Stress field			et 3 of 3	3											

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH404 A5085-15 8.00-9.00 Depth (m BGL) Project Name Nο 14 Туре A63 CASTLE STREET ID Spec Ref **Specimen Details** 2 3 Soil Description Soft brown clayey SILT. Length 192.71 mm Specimen Type UNDISTURBED /Preparation Diameter 97.62 mm **Bulk Density** 1.75 Mg/m3 Method of Saturation Water Content 46 **Saturation Details** Dry density 1.20 Increments of cell and back pressure Mg/m³ 187.02 Length 50 mm Cell pressure increments kPa consolidation Diameter 94.69 Differential Pressure kPa 0 Bulk Density* 1.82 kPa 260 Final Cell Pressure Mg/m³ Water Content* 38 251.1 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 0.99 for undrained test, after consolidation and after test are the same Specimen 1 --1.0 0.8 o.0 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 398 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure kPa Pore pressure at start of consolidation 390 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation C_{vi} 0.64 m²/year parameters Coefficient of Compressibility M_{vi} 0.84 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 1.7E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 10 20 30 40 50 60 70 80 mL (_-ve if swell) lume change 250 Ref **Figure** SLR8.1 CU Printed:18/03/2016 09:53 Rev 85 May 09 sheet 1 of 3

	Co	nsoli	dated l	Jndrai	ned T	riaxial	Comp (BS	oressio 31377 :	n te Par	st wit t 8 : 1	h Meas 990)	surem	ent o	of Por	e Wate	er Pres	sure	
Project	t No		A5085	-15						Sample	e Details:	Hole N	No		BH40	4		
Project	t Name											Depth	(m B0	GL)	8.00-9			
,				A CTL F	CTDEE-	-						No		14	Ty	уре	Р	
			A63 C	ASILE	SIKEE							ID						
												Spec I	Ref					
She		stages	- graph	ical data	а											o f	failure po	ints
	60																	
кРа	50																	
33.)	40																	
<u>-</u> -	40																	
) ss	20										_		\rightarrow	1				
or stre	30																	
Deviator stress (σ1' - σ3') kPa	20																	
ă	20																	
	10																	
	10	/																
	0	/																
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε% 16
	3.5	-																
_																		
, / a3,	3.0	-																
ο (σ1																		
Principal stress ratio (σ 1' / σ 3')	2.5	-																
l stres											_	+	\rightarrow	1				
incipa	2.0																	
Ğ																		
	1.5		4															-
	1.0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε % 16
	390		·			<u>.</u>	Ī		<u> </u>									
	380																	
_																		
Pore water pressure kPa	370																	
ssure																		
. bre	360	/																
vater																		
ore v	350																	
ď		/																
	340																	
	-2.																	
	330	0	1	2	3	4	5		7 tuoin a	8	9	10	11	12	13	14	15	16
Def								Axial st	train, 8	ε% (all	piots)				F;			
Ref	20.4														Figu			
SLF Rev	<i>t</i> 85		SC						KAS STING		Printed:1	8/03/20	16 09	:53		C	CU	
May	/ 09							11	157	1						shee	et 2 of	3

roie	ct N	10	Λ50	25_15						San	nple Det	ails: I	Hole No		ВН4	04		
A63 CASTLE STREET D Spoc Ref																		
oje	CL IV	Name															Р	
			A63	CAST	TLE STI	REET						Ī	D			71	I	
												5	Spec Ref					
		Mohr C	ircles							-								
	50		0.00															
	40																	\neg
5																		
?	30																	\exists
5																		
5	20																	
)																		
	10			/			+											
								\										
	0		0 2	20	30	40	50	60	70	80	90	100	110	120	130	140	150	16
		MIT Str	ess fiel	d					Effective	stresses	kPa							
	50												Compres	sion s	tages			
													•			2	3	_
	40											\dashv						
)				-
	30											\dashv		rain				
,																		
-	20											-	Failure c	onditio	ons			
						1							Criterion		Maximu	ım devia	tor stress	
	10					_	$\overline{}$					-						_
																		-
	0																	
		0 1	0 2	20					70	80	90	100		, ,				
		Cambri	dge str	ess fie									$\sigma_3{'}_f$		26			
	50																	
	40												I ime to ta	allure	17.6			
	00				\								Shear St	rength	Parame	ters		
	30																	
	00														ī	Line	ear regres	sior
	20																	
	40												Ø		degrees			
	10												c'		kPa	Iviarius		55111
	•						\											
		0 1	0 2	0	30	40	50	60	70	80	90	100				II		
					ţ	ο' (σ ₁ ' + 2	2 σ ₃ ')/3	kPa								Mode of	failure	
Vot	es:	Devia	tor stresse	es correct	ted for area	a change, v	vertical sid	de drains	and 0.54 m	ım thick rub	ber memb	rane(s)			===	1		
		SPLIT	AND DES	SCRIBE											=======================================	1		
															1	2	3	_
f															Fig	ure		
	_R8	.1				7					Drint	d-10/	03/2016 00	·E0	`		CII	
Notes: Deviator stresses corrected for area charge, vertical side drains and 0.54 mm thick rubbor membrane(s) Figure SLRB.1 Subscription Subsc																		
ı۷I	ay U	າອ I 📉				-										٥h	ant a af	2

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH405 A5085-15 4.00-5.00 Depth (m BGL) Project Name Nο Туре A63 CASTLE STREET ID Spec Ref **Specimen Details** 1 2 3 Soil Description Soft greyish brown slightly sandy silty CLAY Length 183.23 mm Specimen Type UNDISTURBED /Preparation Diameter 99.48 mm **Bulk Density** 2.12 Mg/m3 Method of Saturation Water Content 55 **Saturation Details** Dry density 1.37 Increments of cell pressure only Mg/m³ 171.11 Length 50 mm Cell pressure increments kPa consolidation Diameter 92.67 Differential Pressure kPa 10 Bulk Density* 2.27 kPa 210 Final Cell Pressure Mg/m³ Water Content* 34 206.1 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same Specimen 1 -1.0 0.8 0.6 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 363 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure kPa Pore pressure at start of consolidation 362 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation C_{vi} 1.58 m²/year parameters Coefficient of Compressibility M_{vi} 0.90 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 4.4E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 5 10 15 20 25 30 35 40 0 mL (-ve if swell) 40 Volume change 60 80 100 Ref **Figure** SLR8.1 CU Printed:18/03/2016 10:02 Rev 85 May 09 sheet 1 of 3

	Coı	nsoli	dated U	ndraiı	ned Tr	iaxial	Comp (BS	oressio 31377 :	on te : Par	st with t 8 : 19	Meas	urem	ent o	f Pore	Wate	r Pres	sure		
Project	No		A5085-	 -15						Sample	Details:	Hole N	lo		BH405				_
Project	Name											Depth	(m BG	L)	4.00-5.	.00			
			\	CTLE	TDEET							No		8	Тур	е	Р		
			A63 CA	SILES	SIKEEI							ID							
												Spec F	Ref						_
Shea	aring s	stages	- graphic	cal data	1											o fa	ilure po	ints	
	240																		
	200																		
кРа	200																		
o3')	160																		
۹.'																			
ress	120													•					
Deviator stress (σ1' - σ3') kPa								_											
Devia	80 -																		-
	40																		-
	0 -	0	1 :	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε% 1	16
	12.0								Ī					<u> </u>				E /0	
	10.0																		
73')																			
σ1./ σ	8.0																		
Principal stress ratio (σ 1' / σ 3')																			
tress	6.0												_	•		1			
ipal s	4.0																		
Princ	4.0			/															
	2.0																		
	0.0																		
	360	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε % 1	6
	350																		-
кРа	340											$\overline{}$							-
Pore water pressure kPa														•		1			
pres	330																		
ater																			
ore w	320																		-
ď																			
	310 -																		
	300	0	1 :	2	3 .	4	5		7 train. a	8 8 (all p	9 plots)	10	11	12	13	14	15	1	16
Ref		l								, , , un p					Figure				_
SLF	₹8.1		C		2			()	→		rinted:1	g/na/an	16 10.	0 2			U		
Rev May	85	E	SC		3			1	KAS STING 157		tou. I	5,00,20	10 10.	~ <i>L</i>			t 2 of	3	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Project No BH405 Hole No A5085-15 4.00-5.00 Depth (m BGL) Project Name No Type A63 CASTLE STREET ID Spec Ref **Mohr Circles** 80 Shear stress kPa 60 40 20 0 120 320 Effective stresses kPa MIT Stress field 100 Compression stages Specimen 2 3 Cell pressure 362.5 kPa 80 300 kPa Initial pwp Initial σ_3 ' 63 kPa 60 $(\sigma_{1}' - \sigma_{3}')/2$ 2.00 Rate of strain %/hr 40 Failure conditions Criterion Maximum deviator stress 20 11.69 Axial strain % 5.453 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ (σ_1 ' - σ_3 ') _f 121.6 kPa 20 60 120 40 80 100 140 160 180 200 335 kPa s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ 27 Cambridge stress field $\sigma_3{'}_f$ kPa 200 149 $\sigma_1{'}_f$ kPa 0.29 A_{f} 160 Time to failure 5.8 **Shear Strength Parameters** 120 ($\sigma_1' - \sigma_3'$) Linear regression 80 с' kPa not assessed Ø' degrees not assessed 40 Manual re-assessment kPa с' Ø' degrees 0 0 40 240 400 80 120 160 200 280 320 360 p' $(\sigma_1' + 2 \sigma_3')/3$ kPa Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.504 mm thick rubber membrane(s) SPLIT AND DESCRIBE Ref **Figure SLR8.1** Printed:18/03/2016 10:02 CU Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH405 A5085-15 6.00-7.00 Depth (m BGL) Project Name Туре Nο 11 A63 CASTLE STREET ID Top Spec Ref Sample 1 **Specimen Details** 2 3 Soil Description Very soft dark brown clayey SILT. Length 189.80 mm Specimen Type UNDISTURBED 97.07 /Preparation Diameter mm **Bulk Density** 1.85 Mg/m3 Method of Saturation Water Content 41 **Saturation Details** Dry density 1.31 Increments of cell and back pressure Mg/m³ 185.11 Length 50 mm Cell pressure increments kPa consolidation Diameter 94.64 Differential Pressure kPa 0 Bulk Density* 1.91 kPa 210 Final Cell Pressure Mg/m³ Water Content* 200.5 36 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 0.99 for undrained test, after consolidation and after test are the same Specimen 1 --1.0 0.8 0.6 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 380 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure kPa Pore pressure at start of consolidation 370 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation C_{vi} 2.21 m²/year parameters Coefficient of Compressibility M_{vi} 0.89 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 6.1E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 5 10 15 20 25 30 35 40 0 mL (-ve if swell) 40 Volume change 60 80 100 Ref **Figure** SLR8.1 CU Printed:18/03/2016 10:02 Rev 85 May 09 sheet 1 of 3

	Coi	nsolic	dated U	Indrai	ned Tr	iaxial	Comp (BS	oressio	on te : Par	st with t 8 : 19	n Meas 990)	sureme	nt of	Pore	Wateı	Pres	sure	
Project	t No		A5085	-15						Sample	Details:	Hole No			BH405			
Project	t Name)										Depth (r	n BGI	_)	6.00-7.	00		
			VC3 CV	CTIF	TDEET	_						No		11	Тур	е	Р	
			A63 CA	ASTLE 3	SIKEEI							ID		Гор				
												Spec Re	ef S	Sampl	e 1			
She	aring	stages	- graphi	cal data	1											o fa	ilure poi	ints
	120																	
	100																	
кРа												_	_	- 1				
93.)	80																	
σ1'.																		
ress (60																	
Deviator stress (σ1' - σ3') kPa		/																
Devia	40																	
		/																
	20																	
		/																
	0	<u>/</u>																
	4.0	0 T	1 :	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε% 16
	3.5	-										-						
														1				
' / 03'	3.0	-																
Principal stress ratio (σ1' / σ3')																		
ss rati	2.5	-																
ıl stre		1 ,	/															
incipa	2.0	+																
<u>r</u>		/																
	1.5	+																-
		/																
	1.0	V	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε % 16
	360			_		<u> </u>			1			10	1	12	10	- 17	15	70 10
	350					_												
											_	_						
Pore water pressure kPa	340												$\overline{}$	- 1				
sure		/	'															
pres	330																	
/ater																		
ore w	320																	
۾																		
	310																	
		/																
	300	0	1	2	3	4	5		7	8	9	10	11	12	13	14	15	16
Ref		1						Axial s	irain, a	e% (all p	DIOTS)				Figure			
	70.4				2				**/						ligure			
SLF Rev	v 85		SC						KAS ISTING	1 F	rinted:1	8/03/201	6 10:0)2		С		
May	y 09							'	157	1					1	shee	t 2 of :	3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Project No BH405 Hole No A5085-15 6.00-7.00 Depth (m BGL) Project Name No 11 Type A63 CASTLE STREET ID Тор Spec Ref Sample 1 **Mohr Circles** 40 Shear stress kPa 30 20 10 0 160 Effective stresses kPa MIT Stress field Compression stages Specimen 2 3 Cell pressure 380 kPa 40 300 kPa Initial pwp Initial σ_3 ' 80 kPa 30 $(\sigma_{1}' - \sigma_{3}')/2$ 1.85 Rate of strain %/hr 20 Failure conditions Criterion Maximum deviator stress 10 10.54 Axial strain % 3.465 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ (σ_1 ' - σ_3 ') _f 93.2 kPa 10 20 40 50 70 80 90 100 342 kPa s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ 38 Cambridge stress field $\sigma_3{'}_f$ kPa 100 131 $\sigma_1{}'_{\,f}$ kPa 0.45 A_{f} 80 Time to failure 5.7 **Shear Strength Parameters** 60 ($\sigma_1' - \sigma_3'$) Linear regression 40 с' kPa not assessed Ø' degrees not assessed 20 Manual re-assessment kPa с' Ø' degrees 0 0 120 200 40 100 140 160 180 p' $(\sigma_1' + 2 \sigma_3')/3$ kPa Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.34 mm thick rubber membrane(s) SPLIT AND DESCRIBE Ref **Figure SLR8.1** Printed:18/03/2016 10:02 CU Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH405 A5085-15 6.00-7.00 Depth (m BGL) Project Name Туре Nο 11 A63 CASTLE STREET ID Base Spec Ref Sample 2 **Specimen Details** 2 3 Soil Description Soft brown silty CLAY Length 204.01 mm Specimen Type UNDISTURBED 101.81 /Preparation Diameter mm **Bulk Density** 1.76 Mg/m3 Method of Saturation Water Content 38 **Saturation Details** Dry density 1.28 Increments of cell pressure only Mg/m³ 199.26 Length 50 mm Cell pressure increments kPa consolidation Diameter 99.41 Differential Pressure kPa 0 Bulk Density* 1.85 kPa 210 Final Cell Pressure Mg/m³ Water Content* 35 207 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same Specimen 1 -1.0 0.8 o.0 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 340 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 40 kPa Pore pressure at start of consolidation 339 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation C_{vi} 2.14 m²/year parameters Coefficient of Compressibility M_{vi} 0.92 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 6.1E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 10 20 30 40 50 60 70 80 0 mL (-ve if swell 40 Volume change 60 80 100 Ref **Figure** SLR8.1 CU Printed:18/03/2016 10:03 Rev 85 May 09 sheet 1 of 3

Project N	No.		A5085	-15						Sam	ole Details:	Hole N	No		BH405	5		
Project N	lame									1		Depth	(m B	GL)	6.00-7	.00		
,			462.6	A C.T. F	CTDEE	-						No		11	Ту	ре	Р	
			A63 C	ASILE	SIKEE	: I						ID		Base				
												Spec	Ref	Samp	ole 2			
Shear	ing s	tages	- graphi	ical dat	а											o fa	ailure poi	ints
	120																	
Ра	100																	
3.) k																		
- '-	80 -																	
ss (a																		
stre	60										- 1							
Deviator stress (σ1' - σ3') kPa																		
Ď	40																	
	20	1																
)																
	0 +)	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	ε% 3
	7.0																	
	6.0																	
α3.)	5.0																	-
σ1'/																		
Principal stress ratio (σ1' / σ3')	4.0	1					$\overline{}$	•			- 1							
tress	3.0										_ '							
sipal s		/																
Princ	2.0	\vdash																
		П																
	1.0																	
	0.0																	
		0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	ε%3
	325 -	,	\perp															
		ہر																
Ъ	320 -	\perp																
Pore water pressure kPa		1					\leftarrow											
ressi	315 -	\perp							\rightarrow		- 1							
ē																		
wat	310 -																	
Pore																		
	305	1																
		1																
	300																	
	O)	2	4	6	8	10	12 Axia	14 I strain	16 , ε% (8	18 all plots)	20	22	24	26	28	30	3
Ref		<u> </u>								.	. ,				Figur	·е		
SLR8.	1		SC		2				()		D	0.100.15	0.4.6.4.5		''94'			
ULI 10.	35								UKAS HISTING 1157		Printed:1	8/03/20	J16 1():03		shee	U	
J_1 10.	 DE								UKAS TESTING		rintea:1	0/03/20	טוט ז(J.U3			,U	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Project No BH405 Hole No A5085-15 6.00-7.00 Depth (m BGL) Project Name No 11 Type A63 CASTLE STREET ID Base Spec Ref Sample 2 **Mohr Circles** 40 Shear stress kPa 30 20 10 0 160 Effective stresses kPa MIT Stress field Compression stages Specimen 2 3 Cell pressure 340 kPa 40 300 kPa Initial pwp Initial σ_3 ' 40 kPa 30 $(\sigma_{1}' - \sigma_{3}')/2$ 1.71 Rate of strain %/hr 20 Failure conditions Criterion Maximum deviator stress 10 12.30 Axial strain % 3.767 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ (σ_1 ' - σ_3 ') _f 63.6 kPa 10 20 40 50 70 80 90 100 317 kPa s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ 23 Cambridge stress field $\sigma_3{'}_f$ kPa 87 $\sigma_1{}'_{\,f}$ kPa 0.27 A_{f} 80 Time to failure 7.2 **Shear Strength Parameters** 60 ($\sigma_1' - \sigma_3'$) Linear regression 40 с' kPa not assessed Ø' degrees not assessed 20 Manual re-assessment kPa с' Ø' degrees 0 0 20 40 200 60 100 120 140 160 180 p' $(\sigma_1' + 2 \sigma_3')/3$ kPa Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.485 mm thick rubber membrane(s) SPLIT AND DESCRIBE Ref **Figure SLR8.1** Printed:18/03/2016 10:03 CU Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH405 A5085-15 8.00-9.00 Depth (m BGL) Project Name Nο 15 Туре A63 CASTLE STREET ID Spec Ref **Specimen Details** 1 2 3 Soil Description Soft to firm brownish grey clayey SILT Length 203.59 mm Specimen Type UNDISTURBED /Preparation Diameter 101.43 mm **Bulk Density** 1.69 Mg/m3 Method of Saturation Water Content 45 **Saturation Details** Dry density 1.16 Increments of cell pressure only Mg/m³ 197.89 Length 50 mm Cell pressure increments kPa consolidation Diameter 98.55 Differential Pressure kPa 10 Bulk Density* 1.79 kPa 210 Final Cell Pressure Mg/m³ Water Content* 41 205 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same Specimen 1 --1.0 0.8 o.0 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 398 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure kPa Pore pressure at start of consolidation 390 kPa Pore pressure at end of consolidation 304 kPa Pore pressure dissipation at end of consolidation 96 % Consolidation Coefficient of Consolidation C_{vi} 0.86 m²/year parameters Coefficient of Compressibility M_{vi} 0.85 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 2.3E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 10 20 30 40 50 60 70 80 0 mL (_-ve if swell) lume change 250 Ref **Figure** SLR8.1 CU Printed:18/03/2016 10:04 Rev 85 May 09 sheet 1 of 3

	Cor	nsoli	dated U	ndrai	ned T	riaxia	l Com (B	pressi S1377	ion te	est with	n Meas 190)	sureme	ent c	f Poi	e W	ater P	ress	ure	
Project	No		A5085-	-15						Sample	Details:	Hole No)		BH4	405			
Project	Name)								1		Depth (m BG	iL)	8.0	0-9.00			
,			1,62,64	CTLE		-						No		15		Туре		Р	
			A63 CA	SILE:	SIKEE	ı						ID							
												Spec R	ef						
Shea	aring s	stages	- graphic	cal data	3												o fail	lure poin	ts
	120																		
	100																		
кРа																			
· 03')	80																		
(91' .																			
ress	60										•		+		1				
itor si															ı				
Deviator stress (σ1' - σ3') kPa	40		+/-																
	20	/	/															_	
		/																	
	0	<u>/</u>	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6		6.5	7	7.5	
	4.0	<u> </u>	0.5	1	1.5		2.5	3	3.5	4	4.5	, 	5.5			5.5	/	7.5	ε% 8
	3.5	-									_							_	
)													_						
Principal stress ratio (σ1' / σ3')	3.0														1				
io (a																			
ss ra	2.5	-																-	-
al stre																			
rincip	2.0			1															
а.																			
	1.5																	_	
	1.0	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	(6.5	7	7.5	ε% 8
	420																		
	400																		
ā																			
e kP	380																		
issar	222						+-								1				
Pore water pressure kPa	360																		
wate	240																		
ore	340																		
	320	/																	
	320																		
	300	/																	
	300	0	0.5	1	1.5	2	2.5	3 Axial	3.5 strain,	4 ε% (all μ	4.5 plots)	5	5.5	6	6	5.5	7	7.5	8
Ref									cho,	, ,	- /				Fi	gure			
SLR	R8.1		C	- 4	7				**************************************		Printed·1	8/03/201	6 10-	04			Cl	I	
Rev May	85		SC		3				1157									2 of 3	

A63 CASTLE STREET No 15 Type D Spec Ref			05															
Ref Ref																		
Ref Ref			Р															
			A63	CAST	LE STF	REET						ID		<u> </u>	<u>i</u>	71		
												Sp	ec Ref					
		Mohr (Circles															
	50	,																
	40	,																
3																		
3	30	,																
5																		
	20)																
,				/														
	10	7								T '	\							
											1							
	0		0 2	0	30	40	50	60	70	80	90	100	110	120	130	140	150	16
		MIT St	ess field	d				l	Effective st	tresses k	(Pa							
	50	,										7	-		_			
													•			2	3	٦.
	40																	
														,				
	30						-					-		train				
,																		
-	20								+			-	Failure c	onditi	ons			
													Criterion		Maximi	ım devia	or stress	
	10											-	Avial etra	in	4 73			_
										`								_
	0		0 2	20	30	40	50	60	70	80	90	100						1
		O	0 2	.0					70	00	90	100			371			
	100	Cambr	idge str	ess fiel								_			27			
	100																	
	80	,												niluro				
	00												Time to i	allule	0.3			
	60	, 📗		Δ									Shear St	rength	Parame	ters		
	00			′ –														
	40	, 📗																
	20	, 📙			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										degrees			
													с'		kPa		-	
	0	, 📗											Ø		degrees		-	
	Ū		0 4	0 6					140 1	60 1	80 2	200						
					р	$\sigma_{1}' + 2$	σ ₃ ')/3	kPa								Mode of	failure	
Vot	tes :	Devi	ator stresse	s correcte	ed for area	a change, v	ertical sid	de drains a	nd 0.516 mr	n thick rubl	ber membr	ane(s)			F >	[
MIT Stress field																		
Depth (m BGL) B.00-9.00 No 15 Type P DEPTH Type T		3																
)									Fig	ure		
SI P	LR8	3.1 85			6						Printed	d:18/0	3/2016 10	:04			CU	
MIT Stress field																		

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Project No Hole No BH405 A5085-15 9.00-10.00 Depth (m BGL) Project Name Nο 17 Туре A63 CASTLE STREET ID Spec Ref **Specimen Details** 2 3 Soil Description brown clayey silty amorphous PEAT towards base of Length 193.94 mm Specimen Type UNDISTURBED /Preparation Diameter 98.85 mm **Bulk Density** 1.28 Mg/m3 Method of Saturation Water Content 120 **Saturation Details** Dry density 0.58 Increments of cell and back pressure Mg/m³ 187.29 Length 50 consolidation mm Cell pressure increments kPa Diameter 95.40 Differential Pressure kPa 10 Bulk Density* 1.40 kPa 310 Final Cell Pressure Mg/m³ Water Content* 295.3 120 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 0.95 for undrained test, after consolidation and after test are the same Specimen 1 -1.0 0.8 0.6 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 405 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 105 kPa Pore pressure at start of consolidation 387 kPa Pore pressure at end of consolidation 303 kPa Pore pressure dissipation at end of consolidation 97 % Consolidation Coefficient of Consolidation C_{vi} 4.74 m²/year parameters Coefficient of Compressibility M_{vi} 0.11 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 1.6E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 5 10 15 20 25 30 35 40 0 Volume change mL (-ve if swell) 10 15 20 25 Ref **Figure** SLR8.1 CU Printed:18/03/2016 10:04 Rev 85 May 09 sheet 1 of 3

	Cor	nsolic	dated U	Indra	ined T	riaxia	l Com (B	pressi S1377	ion te	est witl rt 8 : 19	n Meas 990)	suren	nent	of Po	re W	ater F	Pres	sure	
Projec	t No		A5085	-15						Sample	Details:	Hole	No		BH4	405			
Projec	t Name)								1		Depth	ı (m B	GL)	9.0	0-10.0	00		
			\ C2 C4	CTLE	CTDEE	_						No		17		Туре		Р	
			A63 CA	SILE	SIKEE	. 1						ID							
												Spec	Ref						
She	earing s	stages	- graphi	cal dat	а												o fa	ilure poin	its
	200																		
) kP																			
o3'	160																		
σ (σ											-					1			
stress	120																	_	-
Deviator stress (σ1' - σ3') kPa																			
Devi	80 -																		
	40																		
		0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	(6.5	7	7.5	ε% 8
	12.0																		
	40.0															1			
	10.0																		
a3')	8.0																		
Principal stress ratio (σ 1' / σ 3')	6.0																		
ratio	6.0																		
stress																			
cipal	4.0					<u> </u>	/												
Prin																			
	2.0				1_														
	0.0		0.5		1.5				2.5		1.5						<u> </u>		- 2/ 2
	420	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6		5.5	7	7.5	ε% 8
	400																	_	
												_			1	1			
Pore water pressure kPa	380																	_	
ssure																			
. bre	360																	_	
vater					1														
ore \	340																		
•	000																		
	320																		
	300																		
	300	0	0.5	1	1.5	2	2.5	3 Axial	3.5 strain,	4 ε% (all	4.5 plots)	5	5.5	6	6	6.5	7	7.5	8
Ref									do	T	•				Fi	gure			
SLI	R8.1		SC		A				*	F	Printed:1	8/03/2	016 10):04			С	U	
Re ^s Ma	v 85 y 09		7						1157									t 2 of 3	š

Ref Ref																	
Compression stages Compres)														
Ref Strate Stra																	
				_													
Project Nome																	
Ref Project Name A5085-15 Sample Details Hole No BH405 Depth (m BGL) 9.00-10.00 No 17 Type P Depth (m BGL) 9.00-10.00																	
	100		ICICS														\neg
	80																\dashv
ช						_											
2	60				1		_										\dashv
3	40		-/-						\								_
5																	
	20																
		/															
	0																
		0 20	4	10	60	80	100	120 1	140 1	60 18	0 200	220	240	260	280	300	32
		MIT Stre	ss fiel	d				E	ffective st	resses kF	°a						
	100											-		_			
												-			2	3	٦.
	80													-			_
						\sim											-
	60					+								-			-
,							l					riate or	Strain	2.00			١.
-	40						1					Failure	conditi	ons			
							1					Critorion	,	Maximi	ım doviat	or etroce	
(BS1377 : Part 8 : 1990) Project Name A63 CASTLE STREET A63 CASTLE STREET A63 CASTLE STREET A64 CASTLE STREET A65 CASTLE STREET A66 So 200 270 240 240 240 240 240 240 240 240 240 24																	
	0																4.
			2	40				120	140	60 18	30 200	,	3') f				-
		Cambria	lao etr	occ fic		$(\sigma_1' + \sigma_3')$	/ 2 kPa										-
	200	Cambrid	ige sii	C33 110	JIU												_
																	1
	160	-											failure	2.3			1
Project Name				_													
MIT Stress field Effective stresses kPa Compression stresses stream Cell pressure Initial pwp Initial org's Rate of strain Failure condition Criterion Axial strain (3','/3')1; A; Time to failure Shear Strength I C' g'				n Parame	ters												
			\	\											Line		
MIT Stress field September September																	
## A63 CASTLE STREET D Spoc Ref																	
	40			\Box										dogrood			
	10											С	•	kPa			
	0											e e	, '	degrees		-	
		0 40	8	80	120	160	200	240 2	80 3	20 36	0 400				ı		
						p' (σ ₁ ' + 2	σ ₃ ')/3	кРа							Mode of	failure	
Vot	es:	Deviate	or stresse	es correc	ted for ar	ea change, v	ertical sid	e drains and	d 0.486 mn	thick rubbe	er membrane	e(s)		-			٦
Ref Sura Residue R																	
Despth (m BGL) 9.00-10.00 No 17 Type P																	
Ref Street Ref Street Ref Ref																	
MIT Stress field																	
C ' kPa - Ø' degrees - Ø' degrees - Ø'																	
## A63 CASTLE STREET No			_														

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH406 A5085-15 Depth (m BGL) 3.00 - 3.45 Project Name UT No 11 Type A63 CASTLE STREET Spec Ref 2 **Specimen Details** 1 3 Soil Description Soft brown silty CLAY Length 197.88 Specimen Type UNDISTURBED 103.97 /Preparation Diameter mm **Bulk Density** Mg/m³ 1.84 Method of Saturation Water Content 85 Saturation Details Dry density 0.99 Increments of cell and back pressure Mg/m³ Length 171.79 Cell pressure increments kPa mm Diameter 89.21 Differential Pressure kPa Bulk Density* 2.06 Final Cell Pressure kPa 260 Mg/m³ Water Content* 260.7 33 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 350 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 50 kPa Pore pressure at start of consolidation 357 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation 2.01 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.92 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 5.8E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 5 10 15 30 35 40 20 25 0 mL (-ve if swell 20 40 Volume change 60 80 100 Ref **Figure SLR8.1** CU Printed:13/02/2016 11:01 Rev 85 May 09 sheet 1 of 3

Project	t No		A5085	5-15						Sampl	e Details:	Hole N	No		BH4	106		
Project	t Nam	e								1		Depth	(m B	GL)	+) - 3.45		
						_						No		11		Туре	UT	
			A63 C	ASTLE	STREE	T						ID					•	
												Spec	Ref					
She	aring	stages	- graph	ical dat	ta												failura na	-into
	120 -		9													0	failure po	JITIS
a	100 -																	
 K								+	+	-	1							
, <u>.</u>	80 -				-													
Deviator stress (σ1' - σ3') kPa																		
stres	60 -																	
iator		/																
Dev	40 -	+/-																
		/																
	20 -	$\vdash\vdash$																
		1/																
	0 -	/		-				_										
	4.0	0	2	4	6	8	10	12	14	16	18	20	22	24	2	6 28	30	ε% (
									\rightarrow	•	1							
	3.5				4													
<u> </u>																		
Principal stress ratio (σ 1' / σ 3')	3.0																	
o (d		/																
ss rati	2.5																	
stres		/																
ncipa	2.0	$\vdash \vdash$																
Ę.																		
	1.5	\vdash																
		1/																
	1.0	<u>/</u>																
	330 -	0	2	4	6	8	10	12	14	16	18	20	22	24	2	6 28	30	ε %3
	325 -																	
Ра	320 -																	
Pore water pressure kPa									+									
ress	315 -										1							
ter p																		
wa	310 -																	
Por		П																
	305 -																	
	300 -																	
		0	2	4	6	8	10	12 Axi	14 al strai	n, ε % (al	18 I I plots)	20	22	24	2	6 28	30) 3
Ref									cto	.					Fig	gure		
SLF			S		1				(⊁⊀)		Printed:1	3/02/20)16 11	:01			CU	
	v 85							3	UKAS hering						- 1		-	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH406 Project No A5085-15 Depth (m BGL) 3.00 - 3.45 Project Name No 11 Туре UT A63 CASTLE STREET ID Spec Ref **Mohr Circles** 50 40 Shear stress kPa 30 20 10 0 0 10 30 40 50 70 100 120 130 140 150 160 MIT Stress field Effective stresses kPa 50 Compression stages 2 3 Specimen Cell pressure 350 kPa 40 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa 50 Initial σ_3 ' kPa 1.86 %/hr Rate of strain 20 Failure conditions Criterion Maximum deviator stress 10 Axial strain 16.42 % 3.750 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 90.8 kPa 40 50 s' $(\sigma_1' + \sigma_3') / 2$ kPa 10 90 100 0 20 70 80 317 kPa 33 Cambridge stress field $\sigma_3{'}_f$ kPa 100 124 kPa $\sigma_1'_f$ 0.19 $\boldsymbol{A}_{\boldsymbol{f}}$ 80 Time to failure 8.8 (σ₁'-σ₃') kPa **Shear Strength Parameters** 60 Linear regression 40 с' kPa not assessed Ø' degrees not assessed Manual re-assessment 20 kPa с' Ø' degrees 20 0 40 60 100 120 140 160 180 200 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.4 mm thick rubber membrane(s) Split and Describe after testing. Figure Ref **SLR8.1** CU₀ Printed:13/02/2016 11:01 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH406 A5085-15 4.50 - 4.95 Depth (m BGL) Project Name UT No 14 Type A63 CASTLE STREET ID Spec Ref 2 **Specimen Details** 1 3 Soil Description Very soft brown slightly sandy clayey SILT Length 198.34 mm Specimen Type UNDISTURBED /Preparation Diameter 104.69 mm **Bulk Density** Mg/m³ 1.87 Method of Saturation Water Content 91 Saturation Details Dry density 0.98 Increments of cell pressure only Mg/m³ Length 168.92 kPa Cell pressure increments 50 mm consolidation Diameter 87.80 Differential Pressure kPa 10 Bulk Density* 2.13 Final Cell Pressure kPa 260 Mg/m Water Content* 30 256 Final pore water pressure kPa Dry density Mg/m³ 1.63 Final B Value 1.00 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 361 kPa Consolidation Back Pressure applied kPa 300 Details Effective Pressure kPa Pore pressure at start of consolidation 362 kPa Pore pressure at end of consolidation 303 kPa Pore pressure dissipation at end of consolidation 95 % Consolidation Coefficient of Consolidation 0.22 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 2.11 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 1.4E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 10 30 50 60 70 80 20 40 0 mL (-ve if swell 50 100 Volume change 150 200 250 Ref **Figure SLR8.1** CU Printed:01/03/2016 10:54 Rev 85 May 09 sheet 1 of 3

Proje	ct No		A508	5-15						Sample	Details	: Hole No		BH	1406			
Proie	ct Nan	ne								•		Depth (r	n BGL)		50 - 4.	95		
-,-			1.60	0 A CT. F	· C TDEE	_						No	14		Туре		UT	
			A63 (CASTLE	STREE	. 1						ID						
												Spec Re	ef					
She	earing	stage	s - grapl	hical da	ta											. 10	:1	nto
	60 -	, .	- 3 · F	1	T								T	-	1	0 ia	ilure poi	1115
a	50 -																	
<u>.</u>																		
	40 -																	
9																		
tress	30 -																	
Deviator stress (σ1' -σ3') kPa																		
Devi	20 -				1													
_																		
	10 -																	
		/	1															
	0 -																	
	(1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε%
	4.0																	
	3.5																	
33,														-	1			
ط. / و	3.0	+																
Principal stress ratio (σ 1' / σ 3')																		
ssra	2.5	+				1												
al stre																		
incipa	2.0	-																
Ā																		
	1.5	-																
		/																
	1.0																	
	360	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε %1
	300																	
	050																	
	350																	
a						+												
Pore water pressure kPa	340									_								
ssur														-	1			
. bre	330																	
/ater																		
re v	320	+																
P																		
	310	+																
	300	1																
		0	1	2	3	4	5	6 Axial	7 strain,	,ε% (all	9 plots)	10	11	12	13	14	15	1
Ref										1				T.	igure			
	R8.1														iguie	_		
	ro. i ev 85	J H	S						KAS	F	rinted:0	1/03/201	6 10:54			С	U	
	ay 09							U K TES 1.1	ING	1						shee	t 2 of 3	3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH406 Project No A5085-15 4.50 - 4.95 Depth (m BGL) Project Name No 14 Туре UT A63 CASTLE STREET ID Spec Ref **Mohr Circles** 50 40 Shear stress kPa 30 20 10 0 0 10 40 50 70 80 100 120 130 140 150 160 MIT Stress field Effective stresses kPa 50 Compression stages 2 3 Specimen Cell pressure 361 kPa 40 303 kPa Initial pwp (σ₁'-σ₃')/2 kPa 58 Initial σ_3 ' kPa 0.59 %/hr Rate of strain 20 Failure conditions Criterion Maximum deviator stress 10 Axial strain 12.43 % 3.165 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 58.5 kPa 90 100 0 20 70 80 s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ 334 kPa 27 Cambridge stress field $\sigma_3{'}_f$ kPa 100 $\sigma_1'_f$ 85 kPa 0.53 80 Time to failure 21.2 (σ₁' - σ₃') kPa **Shear Strength Parameters** 60 Linear regression 40 с' kPa not assessed Ø' degrees not assessed Manual re-assessment 20 kPa с' Ø' degrees 0 20 40 60 100 120 140 160 180 200 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.616 mm thick rubber membrane(s) Notes: Ref **Figure SLR8.1** CU Printed:01/03/2016 10:54 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH406 A5085-15 6.50-7.50 Depth (m BGL) Project Name No 21 Type A63 CASTLE STREET ID Sample 2 Spec Ref Base 2 **Specimen Details** 1 3 Soil Description Soft brown sandy SILT Length 191.94 Specimen Type mm UNDISTURBED 97.71 /Preparation Diameter mm **Bulk Density** Mg/m³ 1.80 Method of Saturation Water Content 57 Saturation Details Dry density 1.15 Increments of cell and back pressure Mg/m³ Length 190.76 Cell pressure increments kPa 50 mm Diameter 97.11 Differential Pressure kPa 0 Bulk Density* 1.82 Final Cell Pressure kPa 260 Mg/m Water Content* 55 258 Final pore water pressure kPa Dry density Mg/m³ 1.17 Final B Value 1.00 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 340 kPa Consolidation Back Pressure applied kPa 300 Details Effective Pressure kPa Pore pressure at start of consolidation 330 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation 1.56 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.76 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 3.7E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 5 10 15 25 30 35 40 20 0 mL (-ve if swell) 10 20 Volume change 30 40 50 Ref **Figure SLR8.1** CU Printed:01/03/2016 10:50 Rev 85 May 09 sheet 1 of 3

Projec	ct No		A508	5-15						Sample De	etails:	Hole N	0		BH4	-06			
Projec		ne								1		Depth (GL)	-)-7.50			
-,					CTDEE:	_						No		21		Туре			
			A63 (LASTLE	STREE	l						ID		Samp	le 2		·		
												Spec F	Ref	Base					
She	earing	stages	- grapi	nical dat	ta												o failure	nointe	c
	⁶⁰ 1		J .														o laliule	Points	,
									-			_ 1							
Ба	50 -																	-	
3.)																			
-	40 -																	+	
ss (a		/																	
stre	30 -	-/																+-	-
Deviator stress (σ1' - σ3') kPa																			
De	20 -																		
	10 -																	+	
	0 -)	1	2	3 4	1	5	6	7	8 9		10	11	12	1	3 1	4	15	ε% 1
	4.0							_	-										
Principal stress ratio (01' / 03')												1							
	3.5																		\neg
	3.0		1/																\neg
ratio (
tress	2.5																		
ipal s	2.0	/																	
Princ	2.0																		
	1.5																		
	1.5																		
	1.0																		
		0	1	2	3	4	5	6	7	8 9)	10	11	12	1	3 1	4	15	ε %16
	330																		
	005																		
	325																		
Ра	320								•			_ 1							
Pore water pressure kPa	320																		
ารรอ.	315																		
er pr	010	/																	
wat	310																		
Pore	0.0																		
	305																		
		/																	
	300	/											\perp					\perp	
		0	1	2	3	4	5	6 Axia	7 Il strain	ε % (all plo	ots)	10	11	12	1	3 1	4	15	16
Ref									cia.	1					Fig	gure			
	SLR8.1 Rev 85 May 09							**************************************	Prin	nted:0	1/03/201	16 10	:50			CU			
		_						3	1551ING	1	sheet 2 of 3								

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH406 Project No A5085-15 Depth (m BGL) 6.50-7.50 Project Name No 21 Туре Ρ A63 CASTLE STREET ID Sample 2 Spec Ref Base **Mohr Circles** 50 40 Shear stress kPa 30 20 10 0 0 10 40 50 70 100 110 120 130 140 150 160 MIT Stress field Effective stresses kPa 50 Compression stages 2 3 Specimen Cell pressure 340 kPa 40 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa Initial σ_3 ' 40 kPa 1.28 %/hr Rate of strain 20 Failure conditions Criterion Maximum deviator stress 10 Axial strain 7.13 % 3.884 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 55.7 kPa 40 50 s' $(\sigma_1' + \sigma_3')$ / 2 kPa 90 100 0 80 321 kPa 19 Cambridge stress field $\sigma_3{'}_f$ kPa 100 $\sigma_1'_f$ 75 kPa 0.37 $\boldsymbol{A}_{\boldsymbol{f}}$ 80 Time to failure 5.6 (σ₁' - σ₃') kPa **Shear Strength Parameters** 60 Linear regression 40 с' kPa not assessed Ø' degrees not assessed Manual re-assessment 20 kPa с' Ø' degrees 0 20 40 60 100 120 140 160 180 200 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.57 mm thick rubber membrane(s) Notes: Ref **Figure SLR8.1** CU Printed:01/03/2016 10:50 Rev 85 May 09 sheet 3 of 3

	551			J	ina			test with N Part 8 : 1990		J. 01110	0	01	J 110		- JJul 0		
Project N	No		A5085	5-15				Sample De	etails:	Hole N	0		BH	406			
Project N	Vame							-		Depth	(m BC	aL)	6.50-7.50				
	t arrio									No		21		Туре	Р		
			A63 C	ASTLE S	STREET					ID		TOP		1 ''	l.		
										Spec F	Ref	101					
										<u>' ' </u>							
		Speci	men Det	ails	1	2	3	Soil Descr	iption								
		Length	1	mm	192.85			Specimen	Туре	LINIDIO	TUDDI						
	l _	Diame	ter	mm	96.81			/Prepara	tion	UNDIS	TURB	=υ					
	Initial	Bulk D	ensity	Mg/m³	1.77												
	=	Water	Content	%	49			Sati	ıration	Details			Me	thod of Sa	turation		
		Dry de	nsity	Mg/m³	1.18			Sall	iration	Details		Incr	ements	s of cell an	d back pres	ssure	
	io	Length	1	mm	189.62			Cell pressur	e incre	ements	kPa						
	idati	Diame	ter	mm	95.17			Differential	Pressu	ire	kPa						
	lsol	Bulk D	ensity*	Mg/m³	1.81			Final Cell Pressur		9	kPa						
	8	Water	Content	* %	45			Final pore w	ater p	ressure	kPa						
	After consolidation	Dry de	nsity*	Mg/m³	1.25			Final B Valu									
		-			on and after te	st are the sam	e.	<u> </u>							_		
1.0 -								×					× —Sp	ecimen 1 -	2	 3	
0.0							*										
0.8 -																	
9.0 - 0.0 - 0.4 - 0.4 -																	
≫ 20.4 -																	
0.2 -																	
0.0 -																	
				Drain	age Conditio	ons	Applied	I cell pressure kP	а		Fro	m radia	al boun	dary and c	ne end		
				Speci	imen No.					1		2	2	3			
	Con	solidatio	nn.	Cell F	Pressure app	lied				37	75				kl	Pa	
	Deta		J 11	Back	Pressure ap	plied				30	00				kl	Pa	
				Effect	tive Pressure	Э				7:	5				kl	Pa	
				Pore	pressure at s	start of conso	olidation								kl	Pa	
				Pore	pressure at e	end of conso	lidation			30)3				kl	Pa	
				Pore	pressure dis	sipation at e	nd of consolida	ation		9	6				9	%	
		solidatio	n	Coeff	icient of Con	solidation			C_{vi}	0.5	58				m ² /	year	
		meters	BS1377	Coeff	icient of Con	npressibility			M _{vi}	0.6	68				m ² /	MN	
	`	note to , clause			icient of Perr	meability (ca	alculated)		k _{vi}	1.2E	E-10					n/s	
	P. C	,						ot time minutes				l.					
0	0		5		10		15	20		25		30		35	5		
<u>=</u>																	
Volume change mL (-ve if swell) 08 09 07	+																
±																	
ψ - 40	1															_	
۳- ۲		-															
a e																	
60	+											\top	→× 1				
O C																	
80	1																
0																	
100																	
ef														Figure			
SLR8	3.1			- /	2		(F)	₹) ∰		40/02/-		4.04		. iguic	011		
Rev 8	35	- '					UK	Pi	rınted	:13/02/2	2016 1	1:04			CU		
May 0	09	-					1 1	1NG 5 7							sheet 1 c	of 3	

Projec	ct No		A508	5-15					Sample Detail	s: Hole	No No		BH4	BH406					
	ct Nam	ıe.	, 1300						⊢ `		th (m B	GL)	_	6.50-7.50					
1 10,00	Ji Haii									No		21		Туре	F)			
			A63 C	CASTLE	STREE	T				ID		TOP							
										Spe	c Ref								
She	earing	stages	- graph	nical da	ta										- 4-11	! - 4 -			
00	⁶⁰ T		3.26.												o failur	e points	_		
a	50 -									_					— 1				
3. K																			
Deviator stress (σ1' - σ3') kPa	40					1											\dashv		
, G																			
stres	30			$\overline{}$															
iator			/																
Dev	20 -																		
	10	/																	
	0 +	<u>/</u>	.5	1	1.5	2	2.5	3 3.5	4 4.5	5	5.5	6	6	5	7	7.5 ε'	%		
	4.0			1	1.5		2.5	0.5	4 4.5		3.5			.5		7.5 €			
	3.5	-													_ 1		\dashv		
3,																			
Principal stress ratio (01' / 03')	3.0	-															\dashv		
atio (1											
ess ra	2.5	_															\exists		
oal str																			
Princi	2.0	†																	
_																			
	1.5																		
	1.0	0	0.5	1	1.5	2	2.5	3 3.5	4 4.5	5	5.5	6	6	.5	7	7.5 ε	:% 8		
	360																		
										_					1				
	350																		
a																			
Pore water pressure kPa	340																		
Inss																			
r pre	330		/																
wate																			
ore	320																		
-	0.10	/																	
	310																		
	000																		
	300	0	0.5	1	1.5	2	2.5	3 3.5 Axial stra	in, ε % (all plots)	5	5.5	6	6	.5	7	7.5	8		
Ref								cto .	.				Fig	gure			_		
SLR8.1 Rev 85 May 09						**	Printed	13/02/	2016 11	:04			CU						
г.								= UKA	- 1				- 1	sheet 2 of 3					

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH406 Project No A5085-15 Depth (m BGL) 6.50-7.50 Project Name No 21 Туре Ρ A63 CASTLE STREET ID TOP Spec Ref **Mohr Circles** 50 40 Shear stress kPa 30 20 10 0 0 10 20 40 50 70 100 120 130 140 150 160 **MIT Stress field** Effective stresses kPa 50 Compression stages 2 3 Specimen Cell pressure 375 kPa 40 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa Initial σ_3 ' 75 kPa 0.50 %/hr Rate of strain 20 Failure conditions Criterion Maximum deviator stress 10 Axial strain 4.98 % 3.358 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 50.2 kPa 40 50 s' $(\sigma_1' + \sigma_3')$ / 2 kPa 70 90 100 0 20 80 354 kPa 21 Cambridge stress field $\sigma_3{'}_f$ kPa 100 $\sigma_1'_f$ 72 kPa 1.07 $\boldsymbol{A}_{\boldsymbol{f}}$ 80 Time to failure 10.0 (σ₁'-σ₃') kPa **Shear Strength Parameters** 60 Linear regression 40 с' kPa not assessed Ø' degrees not assessed Manual re-assessment 20 kPa с' Ø' degrees 20 0 40 60 100 120 140 160 180 200 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.4 mm thick rubber membrane(s) Ref **Figure SLR8.1** CU Printed:13/02/2016 11:04 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH406 A5085-15 8-9.1 Depth (m BGL) Project Name Nο 25 Туре A63 CASTLE STREET ID **BOTTOM** Spec Ref Soft to firm brown silty organic CLAY. Contains frequent **Specimen Details** 2 3 Soil Description wood fragments. Length 193.22 mm Specimen Type UNDISTURBED 97.32 /Preparation Diameter mm **Bulk Density** 1.54 Mg/m3 Method of Saturation Water Content 77 **Saturation Details** Dry density 0.87 Increments of cell and back pressure Mg/m³ 190.73 Length 50 consolidation mm Cell pressure increments kPa Diameter 96.06 Differential Pressure kPa 10 Bulk Density* 1.57 kPa 210 Final Cell Pressure Mg/m³ Water Content* 72 197 Final pore water pressure kPa Dry density* Mg/m³ 0.91 Final B Value 0.96 for undrained test, after consolidation and after test are the same Specimen 1 -1.0 0.8 0.6 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 480 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 180 kPa Pore pressure at start of consolidation 364 kPa Pore pressure at end of consolidation 303 kPa Pore pressure dissipation at end of consolidation 95 % Consolidation Coefficient of Consolidation C_{vi} 0.03 m²/year parameters Coefficient of Compressibility M_{vi} 0.71 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 5.8E-12 m/s pt 8, clause 6.3.4) k_{vi} Root time minutes 0 20 40 60 80 100 120 140 160 mL (-ve if swell) Volume change 100 Ref **Figure** SLR8.1 CU Printed:23/03/2016 11:48 Rev 85 May 09 sheet 1 of 3

	Cor	nsolic	dated l	Jndra	ined T	riaxial	Comp (BS	ressio	n te	st with t 8 : 199	Meas 90)	surem	ent d	of Por	e Wat	er Pres	sure	
Project	No		A5085	5-15						Sample [Details:	Hole N	No.		BH4C)6		
Project	Name)							$\neg \uparrow$			Depth	(m BC	GL)	8-9.1			
			462.6	A CT. F	CTDEE	_						No		25	Т	уре	Р	
			A63 C	ASILE	SIKEE	1						ID		BOTT	ГОМ			
												Spec	Ref					
Shea	aring s	stages	- graph	ical dat	ta											o f	ailure poi	nts
	120																	
	100 -											$\overline{}$		- 1				
кРа																		
03.)	80 -																	
(م1'.																		
ress (60 -		ļ.,															
Deviator stress (σ1' - σ3') kPa			/															
Devia	40 -																	
	20 -																	
		/																
	0 -	<u>/</u>	<u> </u>				<u> </u>		<u> </u>									
	7.0) 	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε% 16
	6.0	-																
<u>.</u>																		
1'/ 03	5.0	-																
Principal stress ratio (σ1' / σ3')																		
ss rat	4.0	-									_	$\overline{}$		1				
al stre									+									
rincipi	3.0	-																
_																		
	2.0	 																
		_																
	1.0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε % 16
	600 -																	
	550 -																	
æ																		
Pore water pressure kPa	500 -																	
ssur																		
r pre	450 -								_		-			• 1				
wate																		
ore	400 -																	
<u> </u>	050																	
	350 -																	
	200																	
-	300 -)	1	2	3	4	5		7	8	9	10	11	12	13	14	15	16
	(AXIAI e	train s	% (all ni	ots)							
Ref								Axial s	train, ε	% (all pl	ots)				Figu	ıre		
Ref SLR Rev	8.1	 -	SC		<u></u>			Axial s	train, ε			23/03/20)16 11	·48	Figu		:U	

roie	ct N	0	۸۵۸	85-15	;					Samr	le Details:	Hole No		BH406					
		ame	A30	00-13	,					-		Depth (m B0	GL)	8-9.					
oje	UL IN	ame										No	25		- Туре	Р			
			A63	CAST	LE ST	REET						ID	-	том	71				
												Spec Ref							
		Mahii O	:									!							
	100 -	Mohr C	ircies														\neg		
	80 -																\dashv		
ช																			
מוכמי פונכטים וא	60 -																\dashv		
3	40			_/	1_			\rightarrow									4		
5								\											
	20 -			/					\perp								4		
									\										
	0 -																		
		0 2			60	80	100	120	140		80 200	220 2	240	260	280	300	32		
		MIT Str	ess field	t					Effective	stresses k	Pa	_							
	100 -											Compres		_	0	0			
												Specimer Cell press		1 480	2	3	7		
	80 -											Initial pwp		303					
(σ ₁ ' - σ ₃ ')/2 kPa												Initial σ_3 '		177					
	60 -											Rate of st	rain	0.02			ç		
5	40 -								$\overline{}$		+	Failure c	onditio	ons			_		
												Criterion		Maximu	ım deviat	or stress			
	20 -									$\overline{}$		Axial stra	in	9.23			_		
												(σ ₁ ' / σ ₃ ')		4.135			-		
	0 -				00	00	100	100	110	100	100 000	(\alpha \cdot' - \alpha \cdot'		109.7			_		
	,	0 2) 4	U	60 s'	80 (σ_1 ' + σ_3 '	100) / 2 kPa	120 a	140	160 1	180 200	u _f		445					
		Cambri	dge stre	ess fie		(-13	,, =					σ_3 ' f		35					
-	200 -											$\sigma_1{'}_f$		145			ا		
												A_f		1.29					
	160 -											Time to fa	ailure	417.6					
												Shear St		Davama					
	120 -		~									Sileai St	engu	i Fai ailiei	.613				
			1	\											Line	ar regres	sior		
	80 -											С'		kPa	n	ot assess	ed		
												Ø'		degrees	no	ot assesse	ed		
	40 -				— `									T	Manua	l re-asses	ssm		
												c'		kPa		-			
	0				100	100	000	042	000	000		Ø'		degrees		-			
	(0 40) 80	٠ ,	120	160 p' (σ ₁ '+:	200 2 (r.') / 3	240 kPa	280	320 3	60 400								
									1						Mode of	tailure	_		
Vote	es:	Devia	or stresse	s correct	ed for are	ea change,	vertical si	de drains	and 0.409 r	nm thick rubb	oer membrane	e(s)							
														===)		╝		
														1	2	3	_		
f														Fig	ure				
C.	R8.	1	S			+										CU			
ŌΓ	.no. ev 85	<u>:</u>								- 1	Printed:2	3/03/2016 11	:48			CU			

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH406 A5085-15 8-9.1 Depth (m BGL) Project Name No 25 Type A63 CASTLE STREET ID TOP Spec Ref Soft to firm brown slightly sandy silty organic CLAY 2 **Specimen Details** 1 3 Soil Description containing frequent wood fragments Length 192.77 mm Specimen Type UNDISTURBED /Preparation Diameter 96.98 mm **Bulk Density** 1.48 Mg/m³ Method of Saturation Water Content 230 Saturation Details Dry density 0.44 Increments of cell and back pressure Mg/m³ Length 160.12 Cell pressure increments kPa mm consolidation Diameter 78.86 Differential Pressure kPa 10 Bulk Density* 1.56 Final Cell Pressure kPa 210 Ma/m Water Content* 94 150 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 0.97 for undrained test, after consolidation and after test are the same -X-Specimen 1 **-**2 ▲ 3 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 370 kPa Consolidation Back Pressure applied kPa 300 Details Effective Pressure 70 kPa Pore pressure at start of consolidation 353 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation 0.30 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 1.50 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 1.4E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 5 15 30 35 40 10 20 25 0 mL (-ve if swell 20 40 Volume change 60 80 100 Ref **Figure SLR8.1** CU Printed:01/03/2016 10:50 Rev 85 May 09 sheet 1 of 3

	Co	nsoli	dated	Undra	ined T	riaxial		pression			h Meas 990)	suren	nent o	of Por	e Wate	er Pres	sure				
Project	t No		A508	5-15						Sampl	e Details	: Hole	No		BH40	BH406					
Project		<u> </u>											h (m B0	GL)	8-9.1						
		•		. A CT. E	CTDEE:	_						No		25		/ре	Р				
			A63 C	ASTLE.	STREE	I						ID		TOP							
												Spec	Ref								
She	aring	stages	- graph	ical dat	a											o fa	ailure poi	nts			
<i>a</i>	100 -								•		1										
Deviator stress (σ1' - σ3') kPa																					
- 03,	80 -					1															
(σ1'				/																	
tress	60 -																				
ator s			/																		
Devia	40 -		\perp / \perp																		
	20 -		4																		
	0 -	<u>/</u>																			
	12.0		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε% 16			
	10.0	-							٠,	4	1										
١/ مع	8.0	-															\rightarrow				
Principal stress ratio (σ1' / σ3')																					
ss rati	6.0	-					1														
l stre																					
incipa	4.0	-															_				
P																					
	2.0	-		4													_				
																					
	0.0																				
	360 -	0	1	2	3	4	5	6	7	8	9 1	10	11	12	13	14	15	ε %16			
	350 -																				
Pore water pressure kPa	340 -																				
sure																					
pres	330 -			<u> </u>													-				
ater																					
N N	320 -																				
Po-		/																			
	310 -																				
	300 -)	1	2	3	4	5	6 Axial	7 strain	8 5% (a	9 Il plots)	10	11	12	13	14	15	16			
Ref		Т						AAIGI	>	- / · (a	p.o.o ,				Figu	re					
SLF	₹8.1		C		1			[(**\ <u>\</u>	1	Printed:0)1/0º/º	016 10	·50			U				
Rev May	/ 85		2					E Fu	KAS	1		, 00, 2	.5.5 10	.55			et 2 of 3	2			
■ ivia)	, US							11	5.7	1					1	snee	:ı ∠ 0ĭ ∂)			

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH406 Project No A5085-15 8-9.1 Depth (m BGL) Project Name No 25 Туре Ρ A63 CASTLE STREET ID TOP Spec Ref **Mohr Circles** 100 80 Shear stress kPa 60 40 20 n 80 100 120 140 160 180 200 220 240 260 280 300 320 MIT Stress field Effective stresses kPa Compression stages 2 3 Specimen Cell pressure 370 kPa 80 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa 70 Initial σ_3 ' kPa 60 0.38 %/hr Rate of strain 40 Failure conditions Criterion Maximum deviator stress 20 Axial strain 7.07 % 8.917 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 102.9 (σ_1 ' - σ_3 ') _f kPa 20 180 200 40 100 140 160 s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ 357 kPa 13 Cambridge stress field $\sigma_3{'}_f$ kPa 200 116 kPa $\sigma_1'_f$ 0.55 $\boldsymbol{A}_{\boldsymbol{f}}$ 160 Time to failure 18.6 **Shear Strength Parameters** 120 $(\sigma_1' - \sigma_3')$ Linear regression 80 с' kPa not assessed σ Ø' degrees not assessed 40 Manual re-assessment kPa с' Ø' degrees 0 40 80 120 160 200 240 280 320 360 400 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.504 mm thick rubber membrane(s) Notes: Ref **Figure SLR8.1** CU Printed:01/03/2016 10:50 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH406 A5085-15 Depth (m BGL) 14-14.45 Project Name UT No 45 Type A63 CASTLE STREET ID Spec Ref Firm to stiff brown slightly sandy slightly gravelly 2 **Specimen Details** 1 3 Soil Description CLAY.Gravel FMC Length 203.90 mm Specimen Type UNDISTURBED /Preparation Diameter 104.68 mm **Bulk Density** 2.22 Ma/m³ Method of Saturation Water Content 13 Saturation Details Dry density 1.96 Increments of cell and back pressure Mg/m³ Length 203.49 kPa Cell pressure increments 50 mm consolidation Diameter 104.48 Differential Pressure kPa 10 Bulk Density* 2.22 Final Cell Pressure kPa 360 Mg/m Water Content* 13 342 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 0.96 for undrained test, after consolidation and after test are the same Specimen 1 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 445 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 145 kPa Pore pressure at start of consolidation 430 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation 1.27 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.18 m^2/MN see note to BS1377: Coefficient of Permeability (calculated) 7.1E-11 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 10 20 30 60 70 80 50 0 mL (-ve if swell) 10 20 Volume change 30 40 50 Ref **Figure SLR8.1** CU Printed:13/02/2016 11:04 Rev 85 May 09 sheet 1 of 3

Projec	t No		A508	5-15						Samp	le Details	: Hole I	No		BH4	06		
Projec	t Nam	e								┪		Depth	ı (m B	GL)	_	L4.45		
		•										No		45		Туре	UT	-
			A63 C	ASTLE	STRE	ET						ID					-	
												Spec	Ref					
She	aring	stages	- graph	nical da	ta												foilure p	ointo
	240 -		9													0	failure po	OITIES
Ба	200 -																	
3. k																		
<u>'</u>	160 -										1							
Deviator stress (σ1' - σ3') kPa																		
stres	120 -																	
iator																		
Dev	80 -																	
		/																
	40 -	/																
		1																
	0 -	0	2	4	6	8	10	12	14	16	18	20	22	24	2	6 28	30) ε%
	4.0		1	1		1		12	14	10	10	20	- 22	24		0 20	30	2 6
	3.5																	
۲- / ٥	3.0																	
Principal stress ratio (σ 1' / σ 3')																		
ess re	2.5		_						•									
al str		/									1							
rincip	2.0																	
ш		/																
	1.5	/																
		1																
	1.0	0	2	4	6	8	10	12	14	16	18	20	22	24	2	6 28	30) ε%
	420 -														_			
	400 -																	
Pore water pressure kPa	380 -																	
ssur																		
. bre	360 -																	
vateı		/																
ore v	340 -																	
Δ.								$\overline{}$	-									
	320 -										1							
	300 -	0	2	4	6	8	10	12	14	16	18	20	22	24	2	6 28	30) ;
								Ax	ial strai	n,ε% (a	all plots)							
Ref									ර්දා						Fig	jure		
SLF			S		4						Printed:	13/02/20	016 11	:04			CU	
He/	v 85		. 7		1			î	UKAS	! 					- 1		et 2 of	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH406 Project No A5085-15 14-14.45 Depth (m BGL) Project Name UT No 45 Type A63 CASTLE STREET ID Spec Ref **Mohr Circles** 100 80 Shear stress kPa 60 40 20 n 20 80 100 120 140 160 180 200 220 240 260 280 300 320 MIT Stress field Effective stresses kPa 150 Compression stages 2 3 Specimen Cell pressure 445 kPa 120 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa 145 Initial σ_3 ' kPa 90 0.89 %/hr Rate of strain 60 Failure conditions Criterion Maximum deviator stress 30 Axial strain 14.31 % 2.397 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 167.7 kPa 120 $s' = (\sigma_{1}' + \sigma_{3}') / 2 \text{ kPa}$ 280 400 80 320 360 325 kPa 120 Cambridge stress field $\sigma_3{'}_f$ kPa 200 288 kPa $\sigma_1'_f$ 0.15 $\boldsymbol{A}_{\boldsymbol{f}}$ 160 Time to failure 16.1 **Shear Strength Parameters** 120 $(\sigma_1' - \sigma_3')$ Linear regression 80 с' kPa not assessed σ Ø' degrees not assessed 40 Manual re-assessment kPa с' Ø' degrees 0 40 80 120 160 200 240 280 320 360 400 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.54 mm thick rubber membrane(s) Ref **Figure SLR8.1** CU Printed:13/02/2016 11:04 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH406 A5085-15 Depth (m BGL) 16.00 - 16.45 Project Name No 53 Type UT A63 CASTLE STREET ID Spec Ref 2 **Specimen Details** 1 3 Soil Description Stiff brown CLAY Length 203.30 mm Specimen Type UNDISTURBED 102.98 /Preparation Diameter mm **Bulk Density** Mg/m³ 2.07 Method of Saturation Water Content 23 Saturation Details Dry density 1.69 Increments of cell and back pressure Mg/m³ Length 203.99 kPa Cell pressure increments 50 mm Diameter 103.33 Differential Pressure kPa 10 Bulk Density* 2.06 Final Cell Pressure kPa 210 Mg/m Water Content* 199.8 23 Final pore water pressure kPa Dry density* Mg/m³ 1.67 Final B Value 0.95 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 370 kPa Consolidation Back Pressure applied kPa 300 Details Effective Pressure 70 kPa Pore pressure at start of consolidation 358 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation 1.30 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.28 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 1.1E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 10 20 30 60 70 80 50 0 mL (-ve if swell) 10 20 Volume change 30 40 50 Ref **Figure SLR8.1** CU Printed:13/02/2016 11:06 Rev 85 May 09 sheet 1 of 3

С	consoli	dated l	Jndrai	ined T	riaxia		pressi S1377				surem	ent d	of Por	e Wa	ter Pr	essui	'e	
Project No)	A5085	5-15						Sampl	e Details:	: Hole N	lo		BH4	06			
Project Na									1		Depth		GL)	_	0 - 16	.45		_
,		162 C	ACTIF	CTDEE	т						No		53		Туре	U	Т	
		A63 C	ASILE	SIKEE	ı						ID							
											Spec F	Ref						
Shearin	g stages	- graph	ical data	a	I								-			o failure	points	1
Deviator stress (01' - 03') kPa	0																	
20	0																	
3.4	0.0	0.5	1 1	.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.	5 7	7	7.5 ε% 8	3
Principal stress ratio (σ 1 ' / σ 3')	0																1	
1.		0.5	1 1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	5 7	7	7.5 ε% 8	3
Pore water pressure kPa																	1	
	0 0).5	1 1	.5	2	2.5	3 Axial	3.5 strain,	ε % (al	4.5 I plots)	5	5.5	6	6.5	5 7	,	7.5 8	}
Ref	<u> </u>							*	T					Fig	jure			_
SLR8.1		C		2				**************************************		Printed:1	3/02/20	16 11	.06	ו "	-	CU		
Rev 85 May 09		SC		3				UKAS KAS STING			. J, JL/LU		.00		s	heet 2	of 3	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH406 Project No A5085-15 Depth (m BGL) 16.00 - 16.45 Project Name No 53 Type UT A63 CASTLE STREET ID Spec Ref **Mohr Circles** 100 80 Shear stress kPa 60 40 20 n 20 100 120 140 160 180 200 220 240 260 280 300 320 MIT Stress field Effective stresses kPa 100 Compression stages 2 3 Specimen Cell pressure 370 kPa 80 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa 70 Initial σ_3 ' kPa 60 0.95 %/hr Rate of strain 40 Failure conditions Criterion Maximum deviator stress 20 Axial strain 5.98 % 2.957 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 119.8 kPa 20 180 200 40 100 140 160 s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ 309 kPa 61 Cambridge stress field $\sigma_3{'}_f$ kPa 200 181 kPa $\sigma_1'_f$ 0.07 $\boldsymbol{A}_{\boldsymbol{f}}$ 160 Time to failure 6.3 к Ра **Shear Strength Parameters** 120 $(\sigma_1' - \sigma_3')$ Linear regression 80 с' kPa not assessed σ Ø' degrees not assessed 40 Manual re-assessment kPa с' Ø' degrees 40 0 80 120 160 200 240 280 320 360 400 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.54 mm thick rubber membrane(s) Notes: Figure Ref **SLR8.1** CU Printed:13/02/2016 11:06 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Project No Hole No BH407 A5085-15 3.10 - 3.55 Depth (m BGL) Project Name UΤ Nο Туре A63 CASTLE STREET ID Spec Ref **Specimen Details** 2 3 Soil Description Soft dark brown slightly sandy silty CLAY Length 199.83 mm Specimen Type UNDISTURBED /Preparation Diameter 103.86 mm **Bulk Density** 1.90 Mg/m3 Method of Saturation Water Content 35 **Saturation Details** Dry density 1.41 Increments of cell pressure only Mg/m³ 195.71 Length 50 consolidation mm Cell pressure increments kPa Diameter 101.69 Differential Pressure kPa 0 Bulk Density* 1.97 kPa 210 Final Cell Pressure Mg/m³ Water Content* 31 204 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same Specimen 1 --1.0 0.8 o.0 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 350 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 50 kPa Pore pressure at start of consolidation 345 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation C_{vi} 0.41 m²/year parameters Coefficient of Compressibility M_{vi} 2.34 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 3.0E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 10 20 30 40 50 60 70 80 0 mL (_-ve if swell) lume change 250 Ref **Figure** SLR8.1 CU Printed:05/04/2016 08:29 Rev 85 May 09 sheet 1 of 3

Project Name A63 CASTLE STREET Shearing stages - graphical data Shearing stages - graphical data O tailure point A63 CASTLE STREET Shearing stages - graphical data O tailure point A63 CASTLE STREET Shearing stages - graphical data O tailure point A63 CASTLE STREET Shearing stages - graphical data O tailure point A63 CASTLE STREET Shearing stages - graphical data O tailure point A64 CO	S
Depth (m BGL) 3.10 - 3.55 No 9 Type UT	5
A63 CASTLE STREET No	S
Shearing stages - graphical data o failure point and and o failure point and and and and and and and a	S
Shearing stages - graphical data o failure point and of the point o	S
120 100 80 80 40 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	S
BAY (20.10) 80	
80 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7.0 6.0	
80 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7.0 6.0	
20	
20	
20	
20	
20	
20	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
6.0	
6.0	
	£% 16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\dashv
5.0 5.0 4.0 state stress and out of the stre	
b ojour 4.0 3.0 3.0	\dashv
ter	
sts pad oiou 3.0	\dashv
<u>a</u> 3.0	
	\dashv
2.0	\dashv
	ε % 16
360	
350	
g	
320 340 340 1	
<u>u</u> 330	
320	
310	
300	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Axial strain, ε % (all plots)	16
Ref Figure	
SLR8.1 Rev 85 May 09	

Mohr C Solution Solution Mohr C A A A B A B B A B B B B B	20 30	STREET		Sample Details	Depth (m BGL) No 9 ID Spec Ref		- 3.55	UT
Mohr C 40 40 40 40 40 40 40 40 MIT Streen	ircles 20 30	STREET			No 9			UT
40 40 40 WIT Street	ircles 20 30	STREET						
40 40 40 30 20 10 0 10 MIT Street	20 30				Spec Ref			
40 40 30 20 10 0 10 MIT Street	20 30							
40 40 30 10 0 10 MIT Stree	20 30							
3 30 20 10 MIT Street								_
30 20 10 0 10 MIT Stre								
10 0 10 MIT Stre								-
10 0 10 MIT Stre								
10 0 10 MIT Stre								
10 0 10 MIT Stre								
0 0 10 MIT Stre				\setminus				
0 0 10 MIT Stre				\				
0 10								
0 10								
	ess field	40 50	60 70	30 90 10	0 110 120	130	140 150	16
50			Effective st	resses kPa				
					Compression	-	0 (
					Specimen Cell pressure	350	2 3	s
40					Initial pwp	300		·
					Initial σ_3 '	50		ŀ
30					Rate of strain	0.28		9
30 20								
20					Failure condi	tions		
40					Criterion	Maximu	ım deviator stre	ss
10					Axial strain	11.89		
					(σ_1 ' / σ_3 ') $_f$	4.069		
0 10		40 50	60 70	80 90 10		63.5		
Cambrio	dge stress field	s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$			u _f σ ₃ ' _f	329 21		_
100	age stress field				$\sigma_{1'f}$	84		·
					A_f	0.46		
80					Time to failure	42.8		
					Oh Oh	Als Davison of		
60					Shear Streng	ın Paramet	ers	
							Linear reg	ression
40					С'	kPa	not asse	ssed
					Ø'	degrees	not asse	ssed
20	1					L-D-	Manual re-as	sessm
					c' Ø'	kPa degrees	-	
0 1 20	40 60	80 100	120 140 1	60 180 20		dogrood		
		p' $(\sigma_1' + 2 \sigma_3')/3$	«Ра				Mode of failure	
otes: Deviat	or stresses corrected for a	area change, vertical side	e drains and 0.4 mm th	nick rubber membrane((s)			
						1	2	3
						Fig	ure	
SLR8.1	SG &	2						
Rev 85	- 6			Printed:	05/04/2016 08:29	I .	CU	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Project No Hole No BH407 A5085-15 6.05 - 7.05 Depth (m BGL) Project Name Nο 15 Туре A63 CASTLE STREET ID Spec Ref **Specimen Details** 2 3 Soil Description Soft brown clayey SILT Length 191.58 mm Specimen Type UNDISTURBED /Preparation Diameter 96.50 mm **Bulk Density** 1.84 Mg/m3 Method of Saturation Water Content 41 **Saturation Details** Dry density 1.30 Increments of cell and back pressure Mg/m³ 189.13 Length 50 mm Cell pressure increments kPa consolidation Diameter 95.25 Differential Pressure kPa 10 Bulk Density* 1.87 kPa 210 Final Cell Pressure Mg/m³ Water Content* 206.2 38 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 0.98 for undrained test, after consolidation and after test are the same Specimen 1 -1.0 0.8 0.6 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 360 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure kPa Pore pressure at start of consolidation 354 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation C_{vi} 2.28 m²/year parameters Coefficient of Compressibility M_{vi} 0.56 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 4.0E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 5 10 15 20 25 30 35 40 0 mL (-ve if swell) 20 Volume change 30 40 50 Ref **Figure** SLR8.1 CU Printed:03/03/2016 09:44 Rev 85 May 09 sheet 1 of 3

							(B	S1377	: Pa	rt 8 : 1	h Meas 990)							
Project	t No		A508	5-15						Sample	e Details:	Hole N	No		BH407			
Project	t Name)								1		Depth	m BC	aL)	6.05 - 7			
			۸63 ر	`^STIF	STREE	т						No		15	Тур	е	Р	
			A03 C	A31 LL	JINLL	'						ID						
												Spec	Ref					
She		stages	- graph	nical da	ta											o fa	ilure po	ints
	120																	
	400																	
кРа	100																	
33.	00																	
<u>2</u>	80																	
) SS								_	•	_				1				
Deviator stress (σ1' - σ3') kPa	60																	
eviato	40	/																
ă	40																	
	20	/																
	20																	
	0																	
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε% 1
	.0.0																	
	8.0																	
/ a 3')																		
σ1.	6.0	-																
ratio																		
Principal stress ratio (σ1' / σ3')	4.0																	
icipal	4.0													1				
P.		/																
	2.0																	
		Y																
	0.0																	
	360	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε % 1
	350																	
⟨Pa	340												_					
Pore water pressure kPa									•				+	— 1				
ress	330	/	4				-					-	_					
ter p		/																
e wa	320	$\vdash \vdash$																
Por																		
	310																	
		1																
	300	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
							-			ε% (all								
Ref									曲						Figure	•		
SLF Rev	R8.1		CI	G ((≯≮) UKAS		Printed:0	3/03/20	016 09	:44		С	U	
May	, 03 , 09							_	1157							ahaa	t 2 of	0

		A508	5-15						Sar	nple Details	Hole No		BH4	.07		
oject No oject Nar	no	AJU8	2-12						—		Depth (m B	GL)		5 - 7.05		
oj o ci ival	ii c										No	15		Type	P	
		A63 (CASTL	E STR	EET						ID					
											Spec Ref					
	Mohr Cire	clos									•					
50		Jies														\neg
40																-
J							+									
30 -															_	\dashv
20									$+ \setminus$							-
;																
10										\rightarrow						\dashv
										1						
0			Щ				<u> </u>									
0	10 UT O	20	3	0 4	40	50	60	70 Effective	80 e stresses	90 100 kPa	110	120	130	140	150	16
50 T	IIT Stres	S TIEIO							000000		Compre	ssion s	stages			
											Specime		1	2	3	
40											Cell pres		360			
											Initial pw	p	300			
30						ہم					Initial σ_3		60			
. 30											Rate of s	strain	2.00			9
30 -						\					Fallons .	!!!!				
						,					Failure (conaiti	ons			7
٠											Criterion		Maxim	um devia	tor stress	
10											Axial stra	ain	6.83			1
							/				(σ_1 ' / σ_3) _f	4.024			
0 0	10	20	3	0 -	+ 40	50	60	70	80	90 100	(σ ₁ ' - σ ₃	') _f	68.6			_ !
_					$\sigma_1' + \sigma_3'$)	/ 2 kPa					u _f		337		_	_
100	ambridg	je stres	ss field	<u> </u>							σ ₃ ' _f		23 91		_	_
											σ ₁ ' _f Α _f		0.54		-	
80											Time to	failure	3.4		+	
			,											1		
60		(Shear S	trength	n Parame	ters		
		'	\setminus													
60 -											_	,	kPa		ear regres	
.											c Ø		degrees		ot assess	
20													50g.000		al re-asses	
			1								С	'	kPa		-	
0											Ø	•	degrees		-	
0	20	40	6	3 0	30 1	00	120	140	160	180 200						
				p'	(σ ₁ ' + 2	σ ₃ ')/3	kPa							Mode of	f failure	
Notes:	Deviator	stresses	corrected	d for area	change, v	ertical sic	de drains	and 0.308	mm thick re	ıbber membrane	e(s)		[~·		7	٦
													~	-}		
													1	2	3	,
													Fic	jure		
•																
f SLR8.1										D: / :-	3/03/2016 09	2.44	`		CU	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Project No Hole No BH407 A5085-15 7.60 - 8.05 Depth (m BGL) Project Name UΤ Nο 18 Туре A63 CASTLE STREET ID Spec Ref **Specimen Details** 2 3 Soil Description Very soft organic CLAY Length 200.13 mm Specimen Type UNDISTURBED 105.29 /Preparation Diameter mm **Bulk Density** 1.57 Mg/m3 Method of Saturation Water Content 53 **Saturation Details** Dry density 1.03 Increments of cell and back pressure Mg/m³ 189.91 Length mm Cell pressure increments kPa consolidation Diameter 99.77 Differential Pressure kPa 10 Bulk Density* 1.74 kPa 160 Final Cell Pressure Mg/m³ Water Content* 150.7 45 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same 1.0 0.8 o.0 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 376 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 76 kPa Pore pressure at start of consolidation 367 kPa Pore pressure at end of consolidation 302 kPa Pore pressure dissipation at end of consolidation 97 % Consolidation Coefficient of Consolidation C_{vi} 0.02 m²/year parameters Coefficient of Compressibility M_{vi} 1.26 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 9.6E-12 m/s pt 8, clause 6.3.4) k_{vi} Root time minutes 20 40 60 80 100 120 140 160 (Live if swell) ᇻ lume change 250 Ref **Figure** SLR8.1 CU Printed:18/03/2016 10:05 Rev 85 May 09 sheet 1 of 3

	Coi	nsoli	dated U	Indrai	ned Tr	iaxial	Comp (BS	ressio 1377 :	n te Pari	st with t 8 : 19	Meas 90)	surem	ent o	of Por	e Wate	r Pres	sure		
Projec	t No		A5085	-15						Sample	Details:	Hole N	No		BH407	7			_
Projec	t Name											Depth	(m B0	GL)	7.60 -	8.05			
			\ C2 C4	CTI F (TDEET	_						No		18	Ту	ре	UT		
			A63 CA	ASILES	DIKEEI							ID							
												Spec	Ref						
She		stages	- graphi	cal data	ı											o f	ailure po	ints	
	120																		
	100																		
кРа	100																		
თ3')	80																		
σ1'-	00																		
ress (60								•		1								
Deviator stress (σ1' - σ3') kPa																			
Devia	40																		
_																			
	20																		
	0	V	1	2	3	4	5	6 7	,	8	9	10	11	12	13	14	15		
	4.0	T	1		<u> </u>	4	<u> </u>			•	9	10	- 11	12	13	14	15	ε% 1	0
									/• -		1								
	3.5								,										
3.																			
זו'/ס	3.0							1											
Principal stress ratio (σ1' / σ3')						/													
ress ra	2.5																		
pal str																			
Princi	2.0																		
	1.5																		
	1.5																		
	1.0																		
	360	Ó	1	2	3	4	5	6 7	7	8	9	10	11	12	13	14	15	ε%1	6
	000																		ì
	350								<u> </u>		1								ì
																			ì
кРа	340																		ì
aure																			ì
oress	330																		ì
aterı																			ì
Pore water pressure kPa	320																		ì
8		/																	ì
	310																		ì
		/																	Ì
	300	0	1 :	2	3	4	5	6 7		8	9	10	11	12	13	14	15	1	6
		•						Axial str	ain, ε	:% (all p	lots)								
Ref								- G	⊋ _						Figur				
SLF Rev	R8.1 v 85	IF	SC	1				UK TISTI	≰) As	Р	rinted:1	8/03/20	016 10	:05		C	:U		
May	y 09							115	57						1	shee	et 2 of	3	

roject No	A5085-15		Sample Details	Hole No	BH	407		
roject Name	A3083-13		+	Depth (m BC		0 - 8.05		
roject ivallie				No	18	Туре	UT	
	A63 CASTLE STREET			ID			•	
				Spec Ref				
Mohr	Circles							
50								
40								\exists
s								
30								
20								
10			\					
0	10 20 30 40 50	60 70	80 90 100	110 1	20 130	140	150	16
	tress field	Effective s	tresses kPa					
50				-	sion stages	0	0	
				Specimen Cell press		2	3	
40				Initial pwp				
		7		Initial σ_3 '	76			
30				Rate of st	rain 0.05			(
30								
				Failure co	onditions			7
				Criterion	Maxin	num deviato	r stress	
10				Axial strai	n 7.35			1
		Z		($\sigma_1{}^\prime/\sigma_3{}^\prime$)				
0	10 20 30 40 50	60 70	80 90 100					
Comb	$s' (\sigma_{1}{}' + \sigma_{3}{}') / 2 \ kPa$ ridge stress field			u _f σ ₃ ' _f	351 25			
100	riage stress field			σ ₁ ' _f	92			
				A_{f}	0.76			-
80				Time to fa	ilure 139.9			
	,							
60				Shear Str	ength Param	eters		
						Linea	ar regress	sior
40	 			с'	kPa	no	t assesse	∍d
				Ø'	degree	s not	assesse	d
20						Manual	re-asses	sm
				c' Ø'	kPa degree	c	-	
0 1	20 40 60 80 100	120 140 1	60 180 200		degree	3		
	p' (σ_1 ' + 2 σ_3 ') / 3					Mode of f	ailure	
Notes: De	iator stresses corrected for area change, vertical sic	de drains and 0.308 mr	n thick rubber membrane	e(s)		7		7
	•				(==	=)		
					1	2	3	_
f					Fi	gure		—
	rcc A		_	_,,		_	~	
Rev 85	ESG 🔗		Printed:1	8/03/2016 10:	:05		CU	
May 09			1		1	she	et 3 of 3	3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH407 A5085-15 9.00-10.00 Depth (m BGL) Project Name No 22 Type A63 CASTLE STREET ID **BASE** Spec Ref Firm dark brown silty CLAY. Contains frequent large 2 **Specimen Details** 1 3 Soil Description wood fragments Length 204.09 mm Specimen Type UNDISTURBED 99.37 /Preparation Diameter mm **Bulk Density** 1.44 Mg/m³ Method of Saturation Water Content 80 Saturation Details Dry density 0.80 Increments of cell and back pressure Mg/m³ Length 199.17 Cell pressure increments kPa 50 mm Diameter 96.95 Differential Pressure kPa 10 Bulk Density* 1.53 Final Cell Pressure kPa 410 Mg/m Water Content* 79 396.1 Final pore water pressure kPa Dry density Mg/m³ Final B Value 0.98 for undrained test, after consolidation and after test are the same 1.0 0.8 B value 0.6 0.4 0.2 0.0 100 200 300 400 600 700 800 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 448 kPa Consolidation Back Pressure applied 350 kPa Details Effective Pressure 98 kPa Pore pressure at start of consolidation 433 kPa Pore pressure at end of consolidation 352 kPa Pore pressure dissipation at end of consolidation 97 % Consolidation Coefficient of Consolidation 0.39 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.60 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 7.3E-11 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 10 30 60 70 80 20 40 50 0 mL (-ve if swell 20 40 Volume change 60 80 100 Ref **Figure SLR8.1** CU Printed:01/03/2016 10:56 Rev 85 May 09 sheet 1 of 3

oject No	A5085	5-15						Sample Details	: Hole No		BH4	107		
oject Name								†	Depth (m	BGL)	_	0-10.00)	
, , , , , , , , , , , , , , , , , , ,									No	22	_	Type	Р	
	A63 C	ASTLE	STREE	ĒΤ					ID	BAS	 E			
									Spec Ref					
Shearing stage	s - graph	ical dat	ta					•						
120		Tour du											o failure	points
s 100														
80														
80														
							\dashv			1				
60														
40														
.														
20														
20														
. /														
0	0.5	1	1.5	2	2.5	3	3.5	4 4.5	5 5.5	5 6	6	.5 7	7	- 1 7.5 ε%
7.0														
6.0														
5.0														
4.0										1				
4.0														
3.0														
2.0														
1.0														-
0 460 	0.5	1	1.5	2	2.5	3	3.5	4 4.5	5 5.5	6	6	.5 7	7	7.5 ε
.00														
440														
440														
420										1				
420														
400														
400														
420														
360														
340 +	0.5	1	1.5	2	2.5	3	3.5	4 45	5 5.5	6	6	.5 7	, -	7.5
U	0.0		1.0	_	2.0	Axia	al strain	, ε % (all plots)	5 5.5	. 0	0.	.5 /	,	.5
						_	*	1			Fig	gure		
SLR8.1	S							.			_ [``	-	CU	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH407 Project No A5085-15 Depth (m BGL) 9.00-10.00 Project Name No 22 Туре A63 CASTLE STREET ID **BASE** Spec Ref **Mohr Circles** 50 40 Shear stress kPa 30 20 10 0 0 10 40 50 70 100 120 130 140 150 160 MIT Stress field Effective stresses kPa 50 Compression stages 2 3 Specimen Cell pressure 448 kPa 40 350 kPa Initial pwp (σ₁'-σ₃')/2 kPa Initial σ_3 ' 98 kPa 0.34 %/hr Rate of strain 20 Failure conditions Criterion Maximum deviator stress 10 Axial strain 4.86 % 3.723 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 76.5 kPa s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ 90 100 0 20 80 420 kPa 28 Cambridge stress field $\sigma_3{'}_f$ kPa 100 $\sigma_1'_f$ 105 kPa 0.91 80 Time to failure 14.3 (σ₁'-σ₃') kPa **Shear Strength Parameters** 60 Linear regression 40 с' kPa not assessed Ø' degrees not assessed Manual re-assessment 20 kPa с' Ø' degrees 80 100 120 p' $(\sigma_1' + 2\sigma_3')/3$ kPa 20 0 40 60 140 160 180 200 Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.57 mm thick rubber membrane(s) Ref **Figure SLR8.1** CU Printed:01/03/2016 10:56 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH407 A5085-15 9.00-10.00 Depth (m BGL) Project Name No 22 Type A63 CASTLE STREET ID TOP Spec Ref Firm dark brown peaty organic CLAY. Contains frequent 2 **Specimen Details** 1 3 Soil Description wood fragments. Length 192.65 mm Specimen Type UNDISTURBED 97.23 /Preparation Diameter mm **Bulk Density** Mg/m³ 1.54 Method of Saturation Water Content 77 Saturation Details Dry density 0.87 Increments of cell and back pressure Mg/m³ Length 192.09 Cell pressure increments kPa mm consolidation Diameter 96.95 Differential Pressure kPa 10 Bulk Density* 1.55 Final Cell Pressure kPa 160 Mg/m Water Content* 146.1 76 Final pore water pressure kPa Dry density Mg/m³ 0.88 Final B Value 0.95 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 345 kPa Consolidation Back Pressure applied kPa 300 Details Effective Pressure 45 kPa Pore pressure at start of consolidation 328 kPa Pore pressure at end of consolidation 301 kPa Pore pressure dissipation at end of consolidation 95 % Consolidation Coefficient of Consolidation 0.72 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.53 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 1.2E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 100 0 20 40 60 120 140 160 80 0 mL (-ve if swell) 5 10 Volume change 15 20 25 Ref **Figure SLR8.1** CU Printed:01/03/2016 10:57 Rev 85 May 09 sheet 1 of 3

rojec	t No		A5085	5-15						Samp	le Details:	Hole No		BH	407			
Project	t Name	<u> </u>								†		Depth (m	BGL)	_	0-10.0	0		
. 0,00						_						No	22		Туре		Р	
			A63 C	ASILE	STREE	:1						ID	TOI)		•		
												Spec Ref						
She	aring s	stages	- graph	ical da	ta							•	•					
0	120 T	nuges	y up.	Tour du											T	o failu	ire points	; —
a	100																	
<u>.</u> В									_		-							
- 0 3	80															1		
<u>6</u>																		
Deviator stress (σ1' - σ3') kPa	60 -																	
tor st																		
)evia	40 -																	
_																		
	20 -																	
	20]																	
	0 +	/																
	0		0.5	1	1.5	2	2.5	3	3.5	4	4.5	5 5.	5 6	6 6	6.5	7	7.5 ε	: %
	12.0																	_
	10.0																	_
33,																		
ط' ک	8.0								+		•	+						_
tio (_ 1		
ss ra	6.0															<u> </u>		_
Principal stress ratio ($\sigma 1' / \sigma 3'$)					/													
incip	4.0	-																_
ď																		
	2.0								_									_
		\vee																
	0.0																	_
	360 —	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5 5	5 6	6 6	6.5	7	7.5	٤ %
	350 -																	
	000																	
<u> </u>	340 -																	
5	340																	
nssa	220							_	4		-							
rg L	330 +															- 1		
wate																		
Pore water pressure KPa	320 -																	
_																		
	310 -																	
	300 		0.5	1	1.5	2	2.5	3 Axial	3.5 strain,	ε% (al	4.5 I plots)	5 5.	5 6	6 6	6.5	7	7.5	
ef									do	T				Fi	igure			
SLF			S		1				(**) ·		Printed:0	1/03/2016	10:57			CL	J	
Rev	/ 85		2						UKAS IKAS					- 1			2 of 3	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH407 Project No A5085-15 Depth (m BGL) 9.00-10.00 Project Name No 22 Туре A63 CASTLE STREET ID TOP Spec Ref **Mohr Circles** 50 40 Shear stress kPa 30 20 10 0 0 10 40 50 70 100 120 130 140 150 160 **MIT Stress field** Effective stresses kPa 50 Compression stages 2 3 Specimen Cell pressure 345 kPa 40 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa Initial σ_3 ' 45 kPa 0.60 %/hr Rate of strain Failure conditions Criterion Maximum deviator stress 10 Axial strain 4.61 % 8.150 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 92.2 kPa 40 50 s' $(\sigma_1' + \sigma_3')$ / 2 kPa 90 100 0 20 80 332 kPa 13 Cambridge stress field $\sigma_3{'}_f$ kPa 100 $\sigma_1'_f$ 105 kPa 0.35 80 Time to failure 7.7 (σ₁'-σ₃') kPa **Shear Strength Parameters** 60 Linear regression 40 с' kPa not assessed Ø' degrees not assessed Manual re-assessment 20 kPa с' Ø' degrees 20 0 40 60 100 120 140 160 180 200 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.308 mm thick rubber membrane(s) Notes: Ref **Figure SLR8.1** CU Printed:01/03/2016 10:57 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH407 A5085-15 10.5 - 10.85 Depth (m BGL) Project Name UT No 25 Type A63 CASTLE STREET ID Spec Ref Firm brownish grey peaty organic CLAY containing 2 **Specimen Details** 1 3 Soil Description regular wood fragments. Length 203.43 mm Specimen Type UNDISTURBED 102.85 /Preparation Diameter mm **Bulk Density** 1.39 Mg/m³ Method of Saturation Water Content 100 Saturation Details Dry density 0.68 Increments of cell and back pressure Mg/m³ Length 199.34 Cell pressure increments kPa 50 mm consolidation Diameter 100.76 Differential Pressure kPa 10 Bulk Density* 1.45 Final Cell Pressure kPa 310 Mg/m Water Content* 302.5 100 Final pore water pressure kPa Dry density* Mg/m³ 0.73 Final B Value 0.96 for undrained test, after consolidation and after test are the same Specimen 1 --2 -----3 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 405 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 105 kPa Pore pressure at start of consolidation 332 kPa Pore pressure at end of consolidation 303 kPa Pore pressure dissipation at end of consolidation 92 % Consolidation Coefficient of Consolidation 0.48 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.71 m^2/MN see note to BS1377: Coefficient of Permeability (calculated) 1.1E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 10 30 60 70 80 20 40 50 0 mL (-ve if swell 50 100 Volume change 150 200 250 Ref **Figure SLR8.1** CU Printed:01/03/2016 10:59 Rev 85 May 09 sheet 1 of 3

Project No		A5085	5-15					Sample [Details:	Hole No		E	3H407			
Project Na								-		Depth (r			L0.5 - 1	0.85		
. 0,000					_					No	25		Туре		UT	
		A63 C	ASTLE	STREET	Ī					ID			•		•	
										Spec Re	ef					
Shearin	g stages	s - graph	ical data	а				-		_	Ī			- 1-		
120		J 31-4-1							Т					0 18	ilure poi	TILS
& 100	0					_		\rightarrow	1							
3. ×																
- 80 F	0															
Deviator stress (σ1' - σ3') kPa 99 99																
Stres 60	0		$\overline{}$													
/iator																
40	0 +															
20	0	/														
(0 	1	2	3 4	4	5	6 7	8	9	10	11	12	13	14	15	ε %
12	2.0															
10	0.0															
a3')																
<u>Б</u>	3.0								1							
Principal stress ratio (σ 1' / σ 3')						مر										
tress	5.0															
ipal s	1.0															
Princ	+.0															
9	2.0															
ſ	0.0															
420	0	1	2	3	4	5	6 7	8	9	10	11	12	13	14	15	ε %
420																
400	0															
400																
6 380	0					_										
ure																
Se 360	0															
ter p																
Pore water pressure kPa	0	\perp														
Por																
320	0	/														
300												_				
	0	1	2	3 4	4	5	6 Axial stra	in, ε ⁸ (all p	9 lots)	10	11	12	13	14	15	
ef								<u> </u>					Figure			
SLR8.1		S		2				_		1 100 15 = 1			guie	_		
Rev 85			- 6	シン			UKA	E I Pr	ırıted:0	1/03/201	0 10:59			C	U	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH407 Project No A5085-15 Depth (m BGL) 10.5 - 10.85 Project Name No 25 Туре UT A63 CASTLE STREET ID Spec Ref **Mohr Circles** 100 80 Shear stress kPa 60 40 20 n 100 120 140 160 180 200 220 240 260 280 300 320 MIT Stress field Effective stresses kPa Compression stages 2 3 Specimen Cell pressure 405 kPa 80 303 kPa Initial pwp (σ₁'-σ₃')/2 kPa 102 Initial σ_3 ' kPa 60 0.36 %/hr Rate of strain 40 Failure conditions Criterion Maximum deviator stress 20 Axial strain 5.69 % 6.587 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 103.4 kPa 80 100 s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ 20 180 200 40 140 160 387 kPa 19 Cambridge stress field $\sigma_3{'}_f$ kPa 200 122 kPa $\sigma_1'_f$ 0.81 $\boldsymbol{A}_{\boldsymbol{f}}$ 160 Time to failure 15.8 **Shear Strength Parameters** 120 $(\sigma_1' - \sigma_3')$ Linear regression 80 с' kPa not assessed σ Ø' degrees not assessed 40 Manual re-assessment kPa с' Ø' degrees 0 40 80 120 160 200 240 280 320 360 400 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.616 mm thick rubber membrane(s) Notes: 3 Ref **Figure SLR8.1** CU Printed:01/03/2016 10:59 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH407 A5085-15 Depth (m BGL) 14.00 - 14.45 Project Name No 39 Type UT A63 CASTLE STREET ID Spec Ref Stiff brown slightly gravelly slightly sandy CLAY. Gravel 2 **Specimen Details** 1 3 Soil Description fine to medium. Length 203.45 mm Specimen Type UNDISTURBED 103.87 /Preparation Diameter mm **Bulk Density** 2.23 Ma/m³ Method of Saturation Water Content 14 Saturation Details Dry density 1.96 Increments of cell and back pressure Mg/m³ Length 203.34 kPa Cell pressure increments 50 mm consolidation Diameter 103.81 Differential Pressure kPa 10 Bulk Density* 2.23 Final Cell Pressure kPa 360 Mg/m Water Content* 342.6 14 Final pore water pressure kPa Dry density Mg/m³ 1.96 Final B Value 0.97 for undrained test, after consolidation and after test are the same Specimen 1 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 445 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 145 kPa Pore pressure at start of consolidation 434 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation 0.81 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.20 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 5.1E-11 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 5 10 15 25 30 35 40 20 0 mL (-ve if swell) 10 20 Volume change 30 40 50 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:00 Rev 85 May 09 sheet 1 of 3

Projec	t No		A5085	5-15						Sample [etails:	Hole No)		BH4	107			
Projec	t Nam	e										Depth (m BG			00 - 14.	45		
,			A C 2 C	A CT. F	CTDEE	-						No		39		Туре	L	ΙΤ	
			A63 C	ASILE	SIKEE	: 1						ID					_		
												Spec R	ef						
She	aring	stages	- graph	ical dat	ta											(o failure	points	.s
	600 -																		_
кРа	500 -																		
3. 3.	400																		
<u>-</u>	400 -																		
) ssa	300 -														— 1				
Deviator stress (σ1' - σ3') kPa	300																		
eviat	200 -																		
_																			
	100 -	_/																	
	0 -	/		-															
	4.0	0	1	2	3	4	5	6	7	8	9	10	11	12	1	3 14	1	15	ε %
	3.5																		
3,																			
π', Ά	3.0										_								
Principal stress ratio (σ 1' / σ 3')															– 1				
ess ra	2.5																		
al str		/																	
Princip	2.0																		
_		/																	
	1.5	//																	
	1.0	1																	
		0	1	2	3	4	5	6	7	8	9	10	11	12	1	3 14	ļ	15	ε %
	380 -																		
	360 -																		
	300																		
Ра	340 -																		
nre																			
Pore water pressure kPa	320 -																		
ater p									+										
re wa	300 -												+						
_o																			
	280 -												\downarrow						
													•		- 1				
	260 -	0	1	2	3	4	5	6	7	8	9	10	11	12	1	3 14		15	
	,	-		_	-		•	Axia	strain,	ε% (all p	ots)			12		_ 14	-		
ef								J	<u></u>						Fig	gure			
	R8.1 v 85		S						(≱≰) [‡] UKAS	Pr	nted:0	1/03/201	6 11:	00			CU		
110	y 09								K A S	1					1		neet 2		

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH407 Project No A5085-15 Depth (m BGL) 14.00 - 14.45 Project Name No 39 Type UT A63 CASTLE STREET ID Spec Ref **Mohr Circles** 200 160 Shear stress kPa 120 80 40 n 40 120 160 200 240 280 320 360 400 440 480 520 560 600 640 MIT Stress field Effective stresses kPa 200 Compression stages 2 3 Specimen Cell pressure 445 kPa 160 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa 145 Initial σ_3 ' kPa 120 0.58 %/hr Rate of strain 80 Failure conditions Criterion Maximum deviator stress 40 Axial strain 11.34 % 2.851 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 320.8 (σ_1 ' - σ_3 ') _f kPa 120 $s' = (\sigma_{1}' + \sigma_{3}') / 2 \text{ kPa}$ 280 400 320 360 272 kPa 173 Cambridge stress field $\sigma_3{'}_f$ kPa 500 494 kPa $\sigma_1'_f$ -0.09 $\boldsymbol{A}_{\boldsymbol{f}}$ 400 Time to failure 19.7 kРа **Shear Strength Parameters** 300 · α3') Linear regression ь 200 с' kPa not assessed Ø' degrees not assessed 100 Manual re-assessment kPa с' Ø' degrees 0 100 200 300 400 500 600 700 800 900 1000 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.616 mm thick rubber membrane(s) 3 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:00 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH407 A5085-15 Depth (m BGL) 14.5 - 14.95 Project Name UT No 41 Type A63 CASTLE STREET ID Spec Ref Stiff brown slightly sandy slightly gravelly CLAY. Gravel 2 **Specimen Details** 1 3 Soil Description Length 203.59 mm Specimen Type UNDISTURBED 103.33 /Preparation Diameter mm **Bulk Density** 2.21 Ma/m³ Method of Saturation Water Content 13 Saturation Details Dry density 1.95 Increments of cell and back pressure Mg/m³ Length 203.37 Cell pressure increments kPa 50 mm Diameter 103.22 Differential Pressure kPa 10 Bulk Density* 2.22 Final Cell Pressure kPa 360 Mg/m Water Content* 14 351 Final pore water pressure kPa Dry density* Mg/m³ 1.95 Final B Value 0.96 for undrained test, after consolidation and after test are the same Specimen 1 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 450 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 150 kPa Pore pressure at start of consolidation 438 kPa Pore pressure at end of consolidation 303 kPa Pore pressure dissipation at end of consolidation 98 % Consolidation Coefficient of Consolidation 0.54 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.26 m^2/MN see note to BS1377: Coefficient of Permeability (calculated) 4.4E-11 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 5 10 15 30 35 40 20 25 0 mL (-ve if swell 20 40 Volume change 60 80 100 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:02 Rev 85 May 09 sheet 1 of 3

Project	t No		A5085	5-15						Sample	e Details:	Hole No		BH	407			
	t Name	<u> </u>	†									Depth (m	BGL)		5 - 14.	95		
. 0,00						_						No	41		Туре		UT	
			A63 C	ASTLE	STREE	I						ID				•		
												Spec Ref						
She	aring	stages	- graph	ical da	ta											o failu	ro pointe	
	240 7	3	J - 1				1									0 Iailu	re points	_
														•	1			
Ba	200 -																	
Deviator stress (σ1' - σ3') kPa									_									
<u>'</u>	160 -							1										_
s (a1																		
stres	120 -																	_
ator :																		
Devi	80 -																	_
	40 -																	_
	0 -																	_
	4.0 -)	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5 5.5	5 6	(6.5	7	7.5 ε	% —
	3.5 -																	_
_																		
/ 03	3.0 -													-	L .			
<u>p</u>																		
Principal stress ratio ($\sigma 1' / \sigma 3'$)	2.5 -																	_
stres				/														
ıcipal	2.0 -																	
Prir			/															
	1.5 -		\perp / \perp															
	1.0 -		1															
	420 -)	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5 5.5	6	6	3.5	7	7.5 ε	E %
	420 -																	
	400																	
	400 -																	
io D	200																	
5 Z	380 -																	
essn	200																	
Pore water pressure KPa	360 -																	
wate	0.40		/															
ore	340 -														1			
_	000																	
	320 -																	
	300 -)	0.5	1	1.5	2 :	2.5	3	3.5	ε% (all	4.5	5 5.5	6	6	3.5	7	7.5	
		_						Axial	strain,	٤% (all	piots)							_
ef			_						œ.					Fi	igure			
SLF Rev			S						≱⊀) - JKAS -		Printed:0	1/03/2016	11:02			CL	J	
	/ 09							Ų Į	K A S STING	1				- 1		sheet 2	2 of 2	

Project No A5085-15 Sample Details:									Івн4	3H407			
	7.0003 13				╡ `	1 1		iL)		14.5 - 14.95			
ojoot Hamo						41		Туре	UT				
	A63 CASTLI	ESIKEEI				ID							
							Spec Ref						
Mohr Ci	rcles												
200													
160													
100													
120													
80													
				\									
40					\perp							_	
0												_	
0 40	80 120	160	200 240		320 360	400	440 4	80	520	560	600	64	
MIT Stre	ss field			Effective	stresses kPa	_	Compress	sion s	tanes				
							Specimen		1	2	3		
160							Cell press	ure	450			k	
							Initial pwp		303			k	
120						_	Initial σ_3 '		0.39			k	
							Rate of str	ain	0.39			%	
80						_	Failure co	nditio	ns				
							Criterion		Maximi	um deviat	or stress		
40						-				I GOVIGE	T		
)					Axial strair (σ ₁ ' / σ ₃ ')		6.24 3.057				
0 1	00 100	100	200 04	0 000	000 000		(\alpha .' - \alpha -')	1	226.2			k	
0 40	80 120	160 s' $(\sigma_1' + \sigma_3)$	200 24 ')/ 2 kPa	0 280	320 360	400	u _f		340			k	
Cambrid	ge stress field						σ_3 ' f		110			k	
250							σ ₁ ' _f	ŀ	336			k	
200							A _f Time to fai	ilure	0.16 15.9				
							Timo to la	liulo [١.	
150							Shear Str	ength	Parame	ters			
150													
100						_	c'		kPa		ar regress		
-							Ø'		degrees		t assesse		
50						_				Manua	l re-asses	ssme	
							с'		kPa		-		
0							Ø'		degrees		-		
0 50	100 150		250 30 2 σ ₃ ')/3 kP		400 450	500				Mode of	failure		
Notes: Deviate	r stresses corrected	for area change	, vertical side d	Irains and 0.308 r	nm thick rubber mem	nbrane((s)					7	
									1	2	3		
					_				Ein				
									1 1 10	ure			
SLR8.1	SG	9			E Drint	ad-01	1/03/2016 11:	0 2	Fig	ure	CU		

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH407 A5085-15 Depth (m BGL) 16.00 - 16.45 Project Name No 47 Type UT A63 CASTLE STREET ID Spec Ref 2 **Specimen Details** 1 3 Soil Description Stiff brown CLAY Length 203.45 Specimen Type UNDISTURBED 103.55 /Preparation Diameter mm **Bulk Density** Mg/m³ 2.06 Method of Saturation Water Content 22 Saturation Details Dry density 1.69 Increments of cell and back pressure Mg/m³ Length 203.08 kPa Cell pressure increments 50 mm Diameter 103.36 Differential Pressure kPa 10 Bulk Density* 2.07 Final Cell Pressure kPa 210 Mg/m Water Content* 195.2 22 Final pore water pressure kPa Dry density Mg/m³ 1.70 Final B Value 0.96 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 625 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 325 kPa Pore pressure at start of consolidation 602 kPa Pore pressure at end of consolidation 305 kPa Pore pressure dissipation at end of consolidation 98 % Consolidation Coefficient of Consolidation 6.13 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.06 m^2/MN see note to BS1377: Coefficient of Permeability (calculated) 1.2E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 5 10 15 25 30 35 40 20 0 mL (-ve if swell) 10 20 Volume change 30 40 50 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:03 Rev 85 May 09 sheet 1 of 3

ject Name	A5085-15 S								ample Details:			IBU4	BH407				
,								1 [Depth (m B	_	00 - 16.4	1 5				
	A63 CASTLE STREET								Ī	No	47		Туре	UT			
									Ī	ID							
										Spec Ref							
hearing stage	es - graph	ical dat	а											failure points			
600	9		-											Tallure points			
500																	
400							a — 1										
300																	
400																	
200																	
100	-/-																
	\mathcal{A}																
0		-															
4.0	0.5	1 -	1.5	2	2.5	3	3.5	4 4.5		5 5.5	6	6	.5 7	7.5 ε 9			
3.5																	
2.5					-		1										
2.5																	
2.0																	
1.5	-/-																
	/																
1.0																	
600	0.5	1	1.5	2	2.5	3	3.5	4 4.5		5 5.5	6	6	.5 7	7.5 ε			
550																	
500																	
450																	
							1										
400	$\perp \perp$																
350	/																
300																	
0	0.5	1 1	1.5	2	2.5	3 Axial	3.5 strain,	ε % (all plots)	5 5.5	6	6	.5 7	7.5			
						, j	\$					Fig	Figure				
SLR8.1 Rev 85	ESC	- 6					(}\$\\	Printe	d:01	/03/2016 1	1:03		(CU			

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH407 Project No A5085-15 Depth (m BGL) 16.00 - 16.45 Project Name No 47 Type UT A63 CASTLE STREET ID Spec Ref **Mohr Circles** 200 160 Shear stress kPa 120 80 40 n 40 120 160 200 240 280 320 360 400 440 480 520 560 600 640 MIT Stress field Effective stresses kPa 200 Compression stages 2 3 Specimen Cell pressure 625 kPa 160 305 kPa Initial pwp (σ₁'-σ₃')/2 kPa 320 Initial σ_3 ' kPa 120 2.00 %/hr Rate of strain 80 Failure conditions Criterion 40 Axial strain 3.44 % 3.020 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 372.3 (σ_1 ' - σ_3 ') _f kPa 120 320 400 160 200 280 360 s' $(\sigma_1' + \sigma_3')/2$ kPa 441 kPa 184 Cambridge stress field $\sigma_3{'}_f$ kPa 500 557 kPa $\sigma_1'_f$ 0.36 $\boldsymbol{A}_{\boldsymbol{f}}$ 400 Time to failure 1.7 kРа **Shear Strength Parameters** 300 · α3') Linear regression ь 200 с' kPa not assessed Ø' degrees not assessed 100 Manual re-assessment kPa с' Ø' degrees 0 100 200 300 400 500 600 700 800 900 1000 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.616 mm thick rubber membrane(s) Notes: 3 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:03 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH408 A5085-15 Depth (m BGL) 3.35 - 3.80 Project Name UT No Type A63 CASTLE STREET ID Spec Ref 2 **Specimen Details** 1 3 Soil Description Soft to firm dark greyish brown gravelly clayey SILT Length 203.87 Specimen Type UNDISTURBED 103.18 /Preparation Diameter mm **Bulk Density** Mg/m³ 1.86 Method of Saturation Water Content 37 Saturation Details Dry density 1.36 Increments of cell and back pressure Mg/m³ Length 200.04 Cell pressure increments kPa 50 mm consolidation Diameter 101.22 Differential Pressure kPa 0 Bulk Density* 1.91 Final Cell Pressure kPa 210 Mg/m Water Content* 197.9 33 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 0.98 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 350 kPa Consolidation Back Pressure applied kPa 300 Details Effective Pressure 50 kPa 346 kPa Pore pressure at start of consolidation Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation 0.87 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 1.46 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 4.0E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 5 15 30 35 40 10 20 25 0 mL (-ve if swell 50 100 Volume change 150 200 250 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:09 Rev 85 May 09 sheet 1 of 3

Projec	t No		A508	5-15						Sample De	etails:	Hole No	0		BH40					
	t Name	<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							·		Depth (iL)		3.35 - 3.80				
	r rame					_						No		7			UT			
			A63 C	ASTLE	STREE	Г						ID					-			
												Spec R	lef							
She	aring s	stages	- graph	nical da	ta												failura na	ointo		
	¹²⁰ T		T .														ianure po			
Ба	100																			
3.) k																				
-	80 -																			
ss (a																				
stre	60 +												1							
Deviator stress (σ1' - σ3') kPa																				
De	40 -																			
	20 +																			
		J																		
	0 4 0		1	2	3	4	5	6	7	8 9	9	10	11	12	13	14	15	5 ε%		
	4.0 T																			
	3.5										_									
α3')						_						•	 1							
Principal stress ratio (σ 1' / σ 3')	3.0																			
ratio (
tress	2.5																			
ipal s	2.0																			
Princ	2.0	/																		
	1.5 -																			
	1.5																			
	1.0	_ لہ																		
	0		1	2	3	4	5	6	7	8 9	9	10	11	12	13	14	15	ε %		
	330 —																			
	205																			
	325 —												1							
Ра	320																			
Pore water pressure kPa	320	/																		
essı	315 —																			
er pr	010																			
wat	310	\perp																		
Pore	0.0	-																		
	305 -																			
		1																		
	300																			
	0		1	2	3	4	5	6 Axial	7 strain,	ε% (all plo	ots)	10	11	12	13	14	15	i		
Ref			Girls Girls												Fig	ure				
	₹8.1		S		1				**************************************	Prin	nted:0	1/03/201	16 11:	09		(CU			
He۱	v 85 y 09							=	KAS	1					1	she				

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH408 Project No A5085-15 3.35 - 3.80 Depth (m BGL) Project Name No Туре UT A63 CASTLE STREET ID Spec Ref **Mohr Circles** 50 40 Shear stress kPa 30 20 10 0 0 10 40 50 70 100 110 120 130 140 150 160 MIT Stress field Effective stresses kPa 50 Compression stages 2 3 Specimen Cell pressure 350 kPa 40 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa 50 Initial σ_3 ' kPa 0.65 %/hr Rate of strain 20 Failure conditions Criterion Maximum deviator stress 10 Axial strain 10.23 % 3.205 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 62.0 kPa 40 50 s' $(\sigma_1' + \sigma_3') / 2$ kPa 90 100 0 80 322 kPa 28 Cambridge stress field $\sigma_3{'}_f$ kPa 100 $\sigma_1'_f$ 90 kPa 0.35 $\boldsymbol{A}_{\boldsymbol{f}}$ 80 Time to failure 15.9 (σ₁'-σ₃') kPa **Shear Strength Parameters** 60 Linear regression 40 с' kPa not assessed Ø' degrees not assessed Manual re-assessment 20 kPa с' Ø' degrees 0 20 40 60 100 120 140 160 180 200 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.616 mm thick rubber membrane(s) Notes: 3 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:09 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH408 A5085-15 4.90 - 5.90 Depth (m BGL) Project Name No 11 Type A63 CASTLE STREET **Bottom** Spec Ref 2 **Specimen Details** 1 3 Soil Description Soft dark grey slightly sandy silty CLAY Length 192.37 Specimen Type mm UNDISTURBED /Preparation Diameter 96.88 mm **Bulk Density** Mg/m³ 1.84 Method of Saturation Water Content 100 Saturation Details Dry density 0.91 Increments of cell pressure only Mg/m³ Length 160.38 Cell pressure increments kPa 50 mm consolidation Diameter 79.15 Differential Pressure kPa 0 Bulk Density* 2.23 Final Cell Pressure kPa 210 Mg/m Water Content* 37 203 Final pore water pressure kPa Dry density* Mg/m³ 1.63 Final B Value 1.00 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 368 kPa Consolidation Back Pressure applied kPa 300 Details Effective Pressure kPa Pore pressure at start of consolidation 368 kPa Pore pressure at end of consolidation 302 kPa Pore pressure dissipation at end of consolidation 97 % Consolidation Coefficient of Consolidation 0.28 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 5.08 m^2/MN see note to BS1377: Coefficient of Permeability (calculated) 4.5E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 10 30 60 70 80 20 40 50 0 mL (-ve if swell) 100 200 Volume change 300 400 500 Ref **Figure SLR8.1** CU Printed:13/02/2016 11:02 Rev 85 May 09 sheet 1 of 3

Projec	t No	A508	5-15						Sample	Details	: Hole No	0		BH40	8		
Projec	t Name								1		Depth (m BC	GL)	4.90 -	5.90		
-,											No		11	Ту	/pe	Р	
		A63 C	ASTLE	STREE	<u> </u>						ID		Botto	m			
											Spec R	lef					
She	aring stag	es - graph	nical da	ta											o f	ailure poi	inte
	120														0 10	andre por	
Ба	100																
3.)																	
-	80						•										
Deviator stress (σ1' - σ3') kPa								`	1								
stre	60																
viator																	
De	40																
	20																
	. /																
	0 1	1	2	3	4	5	6	 	8	9	10	11	12	13	14	15	ε%
	12.0																
	10.0																
a3')																	
Principal stress ratio (σ 1' / σ 3')	8.0																
ratio (1								
tress	6.0						• /	\top									
ipal s	4.0																
Princ	4.0																
	2.0																
	2.0																
	0.0																
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	ε %1
	360								4								
	250								1								
	ممر						•										
Ра	340																
ıre k	340																
Pore water pressure kPa	330																
er pr																	
wat	320																
Pore	020																
	310																
	300				\perp												
	0	1	2	3	4	5	6 Axial s	7 strain,	,ε% (all	9 plots)	10	11	12	13	14	15	1
Ref								t decid						Figu	re		
SLF	R8.1	ESC		1				>⊀) . •	Р	rinted:1	3/02/201	6 11:	:02		C	U	
Rev	y 09	_3\		70			U K TEST	A S NG	1							et 2 of 3	^

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH408 Project No A5085-15 4.90 - 5.90 Depth (m BGL) Project Name No 11 Туре A63 CASTLE STREET ID **Bottom** Spec Ref **Mohr Circles** 50 40 Shear stress kPa 30 20 10 0 0 10 40 50 70 90 100 110 120 130 140 150 160 MIT Stress field Effective stresses kPa 50 Compression stages 2 3 Specimen Cell pressure 367.5 kPa 40 302 kPa Initial pwp (σ₁'-σ₃')/2 kPa Initial σ_3 ' 66 kPa %/hr Rate of strain Failure conditions Criterion Maximum deviator stress 10 Axial strain 5.80 % 5.104 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 75.9 (σ_1 ' - σ_3 ') _f kPa 40 50 s' $(\sigma_1' + \sigma_3')$ / 2 kPa 90 100 0 80 349 kPa 19 Cambridge stress field $\sigma_3{'}_f$ kPa 100 $\sigma_1'_f$ 94 kPa 0.62 $\boldsymbol{A}_{\boldsymbol{f}}$ 80 Time to failure 20.1 (σ₁' - σ₃') kPa **Shear Strength Parameters** 60 Linear regression 40 с' kPa not assessed Ø' degrees not assessed Manual re-assessment 20 kPa с' Ø' degrees 0 20 40 60 100 120 140 160 180 200 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.399 mm thick rubber membrane(s) Notes: Ref **Figure SLR8.1** CU Printed:13/02/2016 11:02 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH408 A5085-15 4.90 - 5.90 Depth (m BGL) Project Name No 11 Type A63 CASTLE STREET TOP Spec Ref 2 **Specimen Details** 1 3 Soil Description Soft dark grey silty CLAY Length 182.79 Specimen Type UNDISTURBED 100.23 /Preparation Diameter mm **Bulk Density** Mg/m³ 1.95 Method of Saturation Water Content 38 Saturation Details Dry density 1.41 Increments of cell and back pressure Mg/m³ Length 177.10 Cell pressure increments kPa mm Diameter 97.06 Differential Pressure kPa 0 Bulk Density* 2.04 Final Cell Pressure kPa 210 Mg/m³ Water Content* 31 204 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 1.06 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 332 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure kPa Pore pressure at start of consolidation 330 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation 0.46 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 3.48 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 4.9E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 5 15 30 35 40 10 20 25 0 mL (-ve if swell 50 100 Volume change 150 200 250 Ref **Figure SLR8.1** CU Printed:08/02/2016 14:33 Rev 85 May 09 sheet 1 of 3

Project	t No	A508	5-15						Sample D	etails:	Hole No	0		вн4	08			
Proiect	t Name										Depth (m BC	GL)		- 5.90			
											No		11		Туре	Р		
		A63 C	CASTLE	STREE	:Т						ID		TOP			•		
											Spec R	Ref						
She	aring stag	es - grapi	nical da	ta												failura	!	
	120	9.44														failure	points	_
a	100																	
 K																		
Deviator stress (σ1' - σ3') kPa	80																	—
s (9										•	1							
stres	60																	_
ator																		
Devi	40																	
	20																	
	/																	
	o <u>//</u>																	
	4.0	1	2	3	4	5	6 7		8 9	9	10	11	12	13	3 14		15 8	: %
	3.5										1							
<u>.</u>									1									
. / თვ	3.0																	
Principal stress ratio (σ 1' / σ 3')																		
ss rati	2.5																	
stres																		
ncipal	2.0																	
Pri																		
	1.5																	
	/																	
	1.0																	
	330	1	2	3	4	5	6 7		8 9	9	10	11	12	13	3 14	1	15	ε %
	325																	
Ра	320																	
Pore water pressure kPa																		
ress	315																	
ter p																		
e wa	310											4						
Pore																		
	305							_		•								
											1							
	300											\perp						
	0	1	2	3	4	5	6 Axial st	rain, ε	8 (all plo	ots)	10	11	12	13	3 14	1	15	1
Ref							ċċ	<u>, </u>						Fig	ure			
SLF	R8.1	ESC		4			*		Prir	nted:0	8/02/201	16 14	:33		C	CU 0		
Rev	/ 85	_ 7/					E UK	ž.s						1				

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH408 Project No A5085-15 4.90 - 5.90 Depth (m BGL) Project Name No 11 Туре A63 CASTLE STREET ID TOP Spec Ref **Mohr Circles** 50 40 Shear stress kPa 30 20 10 0 0 10 20 40 50 70 90 100 110 120 130 140 150 160 MIT Stress field Effective stresses kPa 50 Compression stages 2 3 Specimen Cell pressure 332 kPa 40 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa Initial σ_3 ' 32 kPa 0.32 %/hr Rate of strain 20 Failure conditions Criterion Maximum deviator stress 10 Axial strain 9.16 % 3.680 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 72.3 kPa s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ 90 100 0 20 70 80 305 kPa 27 Cambridge stress field $\sigma_3{'}_f$ kPa 100 $\sigma_1'_f$ 99 kPa 0.07 $\boldsymbol{A}_{\boldsymbol{f}}$ 80 Time to failure 29.1 (σ₁'-σ₃') kPa **Shear Strength Parameters** 60 Linear regression 40 с' kPa not assessed Ø' degrees not assessed Manual re-assessment 20 kPa с' Ø' degrees 20 0 40 60 100 120 140 160 180 200 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.399 mm thick rubber membrane(s) Notes: Figure Ref **SLR8.1** CU₀ Printed:08/02/2016 14:33 Rev 85 May 09 sheet 3 of 3

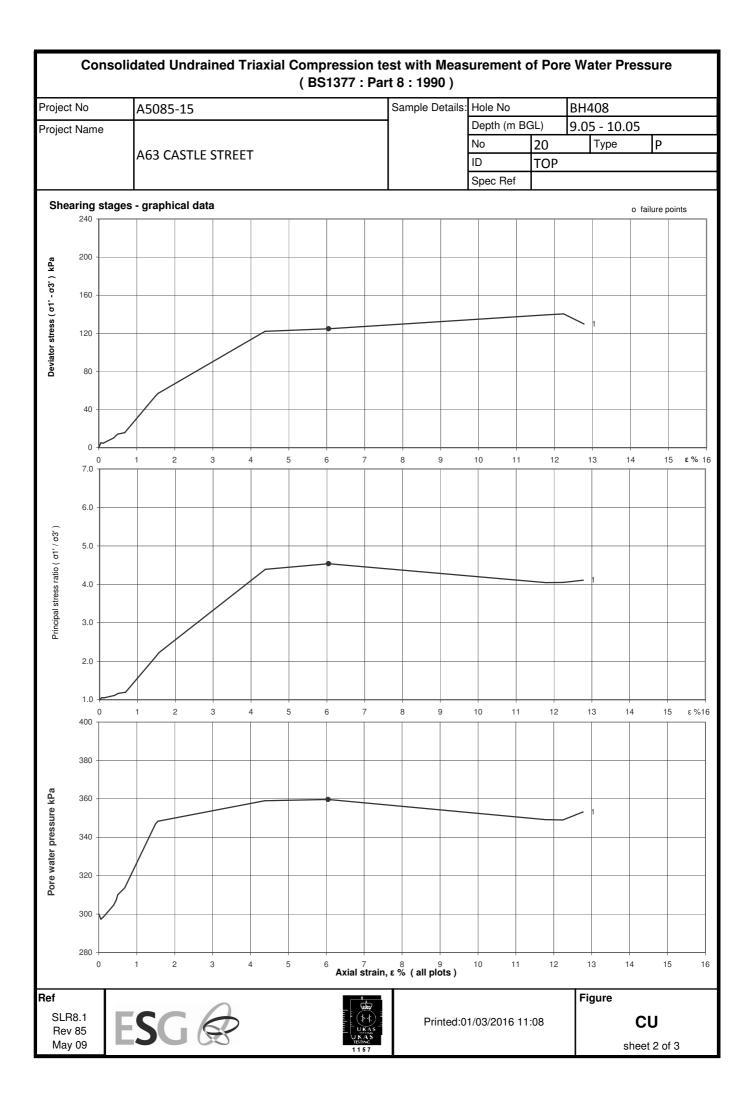
Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH408 A5085-15 6.7 - 7.15 Depth (m BGL) Project Name UΤ Nο 15 Туре A63 CASTLE STREET ID Spec Ref **Specimen Details** 2 3 Soil Description Very soft dark brown CLAY Length 199.87 mm Specimen Type UNDISTURBED /Preparation Diameter 103.60 mm **Bulk Density** 1.89 Mg/m3 Method of Saturation Water Content 38 **Saturation Details** Dry density 1.38 Increments of cell pressure only Mg/m³ 190.84 Length 50 mm Cell pressure increments kPa consolidation Diameter 98.81 Differential Pressure kPa 0 Bulk Density* 2.02 kPa 260 Final Cell Pressure Mg/m³ Water Content* 28 252.2 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same Specimen 1 -1.0 0.8 o.0 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From one end Specimen No. 2 3 Cell Pressure applied 450 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 150 kPa Pore pressure at start of consolidation 446 kPa Pore pressure at end of consolidation 307 kPa Pore pressure dissipation at end of consolidation 95 % Consolidation Coefficient of Consolidation C_{vi} 2.82 m²/year parameters Coefficient of Compressibility M_{vi} 0.89 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 7.7E-10 m/s pt 8, clause 6.3.4) k_{vi} Root time minutes 20 40 60 80 100 120 140 160 (Live if swell) ᇻ lume change 250 Ref **Figure** SLR8.1 CU Printed:18/03/2016 10:46 Rev 85 May 09 sheet 1 of 3

Project	No		A5085	-15						Sample I	Details:	Hole No)		BH4	-08		
Project	Name									1		Depth (m BGI	L)	6.7	- 7.15		
			462.64	· CT. F.	CTDEE	-						No		15		Туре	UT	-
			A63 CA	ASILE:	SIKEE	l						ID						
												Spec R	ef					
Shea	aring st	tages	- graphi	cal data	a												failure p	nints
	²⁴⁰ T																ianure p	OIIII
a	200																	
3.) KI																		
. <u>'</u>	160																	
s (σ1							_	-			1							
stres	120																	
Deviator stress (σ1' - σ3') kPa																		
Dev	80 +																	
	40																	
		/																
	0 1		2	4	6	8	10	12	14	16	18	20	22	24	2	6 28	3(ο ε%
	4.0]						\Box											
	3.5							-	\downarrow									
			/								1							
σ3')	3.0																	
Principal stress ratio (σ1' / σ3')	2.5																	
ratio (/																
tress	2.0																	
ipal s	1.5	+																
Princ	1.0																	
	1.0																	
	0.5																	
	0.0																	
	420 T		2	4	6	8	10	12	14	16	18	20	22	24	2	6 28	30) ε%
	400				_													
								-	_		1							
Pa	380	_/																
Pore water pressure kPa																		
ress	360	\perp																
ter p																		
e wa	340	_																
Por																		
	320	_																
	- 1																	
	300						10	10		10	10							
	0		2	4	6	8	10	12 Axial s	14 strain,	16 ε% (all p	18 lots)	20	22	24	20	6 28	30	J
Ref									nia -						Fig	gure		
SLR Rev	_{8.1}		SC		7				₩	D.	rinted:1	8/03/201	IS 10.	16	`		CU	
D	85								J K A S TESTING	I ''		J, JU, <u>L</u> U I	5 10.5		1		-	

roject No	(BS1377 : Part 8 : 1990 A5085-15 A63 CASTLE STREET Circles 20 40 60 80 100 120 140 160 180 Effective stresses kPa 21 40 60 80 100 120 140 160 180 Effective stresses kPa 22 40 60 80 100 120 140 160 180 Effective stresses kPa 23 40 60 80 100 120 140 160 180 Effective stresses kPa 24 40 80 120 160 200 240 280 320 360 Pi (σ ₁ '+2σ ₂ ')/3 kPa		ails: I	Hole No		BH4	08								
roject Name	(B\$1377 : Part 8 : 1990) A5085-15 A63 CASTLE STREET **Circles 20 40 60 80 100 120 140 160 180 Effective stresses kPa Stress field **Didge stress f		-	Depth (m BC	GL)		7.15								
ojeci Marrie	(BS1377 : Part 8 : 1990) A5085-15 A63 CASTLE STREET Tr Circles 20 40 60 80 100 120 140 160 180 20 Stress field Effective stresses kPa 20 40 60 80 100 120 140 160 180 20 Stress (o,'+o,') / 2 kPa		_ F	No	15		Туре	UT	-						
	A63 CAST	TLE STR	EET						Ī	D			71		
		(B\$1377 : Part 8 : 1990) A5085-15 A63 CASTLE STREET Sample Details ircles Effective stresses kPa 20 Effective stresses kPa dge stress field 120 140 160 180 20 20 20 20 20 20 20 20 20		5	Spec Ref										
Mohr	Circles	(B\$1377 : Part 8 : 1996 A5085-15 Sample Do A63 CASTLE STREET Sircles Effective stresses kPa D													
100															
	A5085-15 Sample Det A63 CASTLE STREET **Circles** 20 40 60 80 100 120 140 160 180 Stress field Effective stresses kPa bridge stress field 40 80 120 160 200 240 280 320 360 p' (\(\alpha_i + 2 \alpha_j\) / 3 kPa														
80	(B\$1377 : Part 8 : 1990 A5085-15 A63 CASTLE STREET Sample Det. A63 CASTLE STREET Stress field Effective stresses kPa 40 80 120 160 200 240 280 320 360 p' (o'+2o')/3 kPa														
<u> </u>	A5085-15 A63 CASTLE STREET Shr Circles T Stress field A63 CASTLE STREET Sample Detail Stress is Real Stresses kPa Effective stresses kPa Effective stresses kPa T Stress field A63 CASTLE STREET A63 CASTLE STREET Sample Detail Stresses kPa Effective stresses kPa Effective stresses kPa A64 A65 CASTLE STREET A65 CASTLE STREET A66 CASTLE STREET A67 Circles Effective stresses kPa A67 Circles A68 CASTLE STREET A68														
60	A5085-15 e A63 CASTLE STREET Ohr Circles T Stress field 20 40 60 80 100 120 T Stress field mbridge stress field														
40															
20		1						\perp							
								'							
0 1	20 40	60	80	100	120 1	40	160 1	180	200	220 2	240	260	280	300	32
	tress field				Ef	fective s	tresses k	Pa							
100										Compres		_			
										Specimer Cell press		1 450	2	3	
80										Initial pwp		307			
				/						Initial σ_3 '		143			
60				5						Rate of st	rain	0.25			9
60				L											
I										Failure c	onditio	ons			1
										Criterion		Maximu	ım deviat	or stress	
20										Axial strai	in	13.10			
										(σ_1 ' / σ_3 ')		3.485			
0	20 40	60	80	100	120 1	40	160	180	200	(σ ₁ ' - σ ₃ ') _f	139.2			
Comb	ridao otropo fio		$\sigma_1' + \sigma_3'$	/ 2 kPa						u _f σ ₃ ' _f		394 56			
200	riage stress ne	eiu –							7	$\sigma_{1}'_{f}$		195			
										A_f		0.63			
160									+	Time to fa	ailure	51.6			
												_			
120									+	Shear St	rength	Parame	iers		
	{												Line	ar regres	sior
120									\dashv	с'		kPa	n	ot assess	ed
										Ø'		degrees		ot assesse	
40									1			kPa	Manua	l re-asses	ssm
										c' Ø'		degrees		-	
0 1	40 80	120 1	60 2	200 2	240 28	80 3	320 3	 	 400			aog. ooo			
	A5085-15 A63 CASTLE STREET Mohr Circles MIT Stress field 20 40 60 80 100 120 140 160 180 Effective stresses RPa Effective stresses RPa Sample De A63 CASTLE STREET A64 CASTLE STREET A65 CASTLE STREET A65 CASTLE STREET A66 CASTLE STREET A67 CASTLE STREET A67 CASTLE STREET A68 CASTLE STREET A68 CASTLE STREET A68 CASTLE STREET A69 CASTLE STREET A60 CASTLE S							Mode of	failure						
	A5085-15 Sample E														
Notes: De	In the circles A63 CASTLE STREET														
Notes: De															_
Notes: De												1	2	3	
f													ure 2	3	
ıf		A	5					Prints	2d-10	03/2016 10	·46			CU	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH408 A5085-15 8.05 - 9.05 Depth (m BGL) Project Name No 19 Type A63 CASTLE STREET ID Spec Ref Soft brown slightly sandy SILT with pockets of brownish 2 **Specimen Details** 1 3 Soil Description grey clayey SILT Length 191.74 mm Specimen Type UNDISTURBED 97.67 /Preparation Diameter mm **Bulk Density** Mg/m³ 1.83 Method of Saturation Water Content 38 Saturation Details Dry density 1.32 Increments of cell pressure only Mg/m³ Length 191.88 kPa Cell pressure increments 50 mm consolidation Diameter 97.74 Differential Pressure kPa 0 Bulk Density* 1.83 Final Cell Pressure kPa 260 Mg/m Water Content* 261.5 39 Final pore water pressure kPa Dry density Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 345 kPa Consolidation Back Pressure applied kPa 300 Details Effective Pressure 45 kPa Pore pressure at start of consolidation 343 kPa Pore pressure at end of consolidation 302 kPa Pore pressure dissipation at end of consolidation 96 % Consolidation Coefficient of Consolidation 1.03 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.69 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 2.2E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 10 20 30 60 70 80 50 0 mL (-ve if swell) 10 20 Volume change 30 40 50 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:03 Rev 85 May 09 sheet 1 of 3

Project	No		A5085	5-15						Sample [Details:	Hole No)		BH40	08		
Project		<u> </u>										Depth (L)		- 9.05		
· ·ojoot	· ·	Ü				_						No		19		уре	Р	
			A63 C	ASTLE	STREE	Т						ID			•			
												Spec R	ef					
Shea	rina	etanes	- graph	ical dat	ta .								•					
Onco	120 7	l	grupn	Tour du												0	failure po	ints
<u>_</u> ra	100 -										-							
Deviator stress (σ1' - σ3') kPa																		
- 03	80 -																	
۹1'										-	1							
ess	60 -							1										
or str	00																	
eviate	40																	
Ŏ	40 -		/															
	20 -																	
	0 -	<u> </u>		-	-	4			,			10	44		10		45	- 9/
	7.0 -	, 	1	2	3	4	5	6		8	9	10	11	12	13	14	15	ε %
	6.0 -																	
_																		
/ 03'	5.0 -																	
Principal stress ratio (σ 1' / σ 3')	0.0								<u> </u>		1							
ratio	4.0 -] '							
tress	4.0 -																	
pal st																		
Princi	3.0 -																	
_																		
	2.0 -																	
	1.0 -	<u>/</u>																
	330 -	0	1	2	3	4	5	6		8	9	10	11	12	13	14	15	ε %
	325 -		/	/														
			/						~ (•	1							
Ра	320 -																	
Pore water pressure kPa	320																	
nsse	0.15		/															
r pre	315 -																	
wate		/																
ore	310 -																	
<u>а</u>		/																
	305 -																	
		/																
	300 -																	
	C	J	1	2	3	4	5	6 Axial s	train,	ε ⁸ (all p	lots)	10	11	12	13	14	15	
ef									ļ.v.	Т					Figu	ure		
SLR			S		7				**************************************	Dr	int≏d·∩	1/03/201	6 11.4	าส			CU	
Rev May			2		7			[] [] []	AS NS	1 ''		., 55, 201		- •			et 2 of :	_
11/101/	(1()				-			TEST									-+ 0 -4	4.1


Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH408 Project No A5085-15 8.05 - 9.05 Depth (m BGL) Project Name No 19 Туре A63 CASTLE STREET ID Spec Ref **Mohr Circles** 50 40 Shear stress kPa 30 20 10 0 0 10 20 40 50 70 80 90 100 110 120 130 140 150 160 MIT Stress field Effective stresses kPa 50 Compression stages 2 3 Specimen Cell pressure 345 kPa 40 302 kPa Initial pwp (σ₁'-σ₃')/2 kPa Initial σ_3 ' 43 kPa 0.83 %/hr Rate of strain Failure conditions Criterion Maximum deviator stress 10 Axial strain 8.54 % 4.554 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 76.4 (σ_1 ' - σ_3 ') _f kPa 40 50 s' $(\sigma_1' + \sigma_3') / 2$ kPa 90 100 0 20 80 324 kPa 22 Cambridge stress field $\sigma_3{'}_f$ kPa 100 $\sigma_1'_f$ 98 kPa 0.29 $\boldsymbol{A}_{\boldsymbol{f}}$ 80 Time to failure 10.4 (σ₁' - σ₃') kPa **Shear Strength Parameters** 60 Linear regression 40 с' kPa not assessed Ø' degrees not assessed Manual re-assessment 20 kPa с' Ø' degrees 0 20 40 60 100 120 140 160 180 200 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.4 mm thick rubber membrane(s) Notes: Ref **Figure SLR8.1** CU Printed:01/03/2016 11:03 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH408 A5085-15 9.05 - 10.05 Depth (m BGL) Project Name No 20 Type A63 CASTLE STREET ID **BASE** Spec Ref Soft to firm dark greyish brown slightly sandy clayey 2 **Specimen Details** 1 3 Soil Description SILT. Specimen is also laminated. Length 192.15 mm Specimen Type UNDISTURBED 97.04 /Preparation Diameter mm **Bulk Density** Mg/m³ 1.79 Method of Saturation Water Content 45 Saturation Details Dry density 1.24 Increments of cell and back pressure Mg/m³ Length 186.44 Cell pressure increments kPa 50 mm consolidation Diameter 94.12 Differential Pressure kPa 0 Bulk Density* 1.87 Final Cell Pressure kPa 210 Mg/m Water Content* 201.5 38 Final pore water pressure kPa Dry density Mg/m³ Final B Value 0.96 for undrained test, after consolidation and after test are the same -X-Specimen 1 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 500 kPa Consolidation Back Pressure applied kPa 300 Details Effective Pressure 200 kPa 495 kPa Pore pressure at start of consolidation Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation 1.06 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.37 m^2/MN see note to BS1377: Coefficient of Permeability (calculated) 1.2E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 10 30 60 70 80 20 40 50 0 mL (-ve if swell 50 100 Volume change 150 200 250 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:04 Rev 85 May 09 sheet 1 of 3

Projec	ct No		A5085	5-15						Sampl	e Details	: Hole N	No		BH4	08			
	ct Nam	е	7.500.							<u> </u>		Depth		GL)	+	5 - 10.0	5		
	ot i tairi					_						No		20		Туре	Р		
			A63 C	ASILE	STREE	l						ID		BASE					
												Spec I	Ref						
She	earing	stages	s - graph	ical dat	а											0	failure	points	i
	240 -																		
кРа	200 -																		\dashv
σ3')	100																		
<u>-</u> '-	160 -													_ 1					
ess (120 -																		
Deviator stress (σ1' - σ3') kPa	120																		
Devia	80 -		$\perp \perp$																
	40 -		//																_
	0 -	<u>/</u>	1	2		4	-		7			10		40		2 44		15	
	7.0	0			3	4	5	6	1	8	9	10	11	12	1;	3 14		15 8	E % 16
	6.0	-											+						\dashv
σ3')																			
Principal stress ratio (σ 1' / σ 3')	5.0																		\neg
ratio (4.0																		
stress	4.0												+	1					
cipal	3.0	ļ																	
Prir																			
	2.0	-	+ f										_						_
	1.0	<u> </u>	+									-10		10					
	600 -	0	1	2	3	4	5	6	7	8	9	10	11	12	13	3 14		15	ε %16
	550 -																		-
g																			
Pore water pressure kPa	500 -																		
Insse	450																		
er pr	450 -							•						— 1					
wat	400 -																		
Pore																			
	350 -		_/																
	300 -											1.						_	_
	(0	1	2	3	4	5	6 Axial	7 strain ,	,ε% (a	9 II plots)	10	11	12	13	3 14	1	15	16
Ref									ato_						Fig	jure			
	R8.1		S		A						Printed:0	1/03/20	16 11	:04			CU		
	v 85 ly 09		7					U K TES	AS TING	1							eet 2 c		

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH408 Project No A5085-15 9.05 - 10.05 Depth (m BGL) Project Name No 20 Туре A63 CASTLE STREET ID **BASE** Spec Ref **Mohr Circles** 100 80 Shear stress kPa 60 40 20 n 20 100 120 140 160 180 200 220 240 260 280 300 320 MIT Stress field Effective stresses kPa 200 Compression stages 2 3 Specimen Cell pressure 500 kPa 160 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa 200 Initial σ_3 ' kPa 120 0.90 %/hr Rate of strain 80 Failure conditions Criterion Maximum deviator stress 40 Axial strain 6.83 % 3.892 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 169.5 kPa 40 280 400 200 320 360 s' $(\sigma_1' + \sigma_3')/2$ kPa 441 kPa 59 Cambridge stress field $\sigma_3{'}_f$ kPa 200 228 kPa $\sigma_1'_f$ 0.83 $\boldsymbol{A}_{\boldsymbol{f}}$ 160 Time to failure 7.6 **Shear Strength Parameters** 120 $(\sigma_1' - \sigma_3')$ Linear regression 80 с' kPa not assessed σ Ø' degrees not assessed 40 Manual re-assessment kPa с' Ø' degrees 0 40 80 120 160 200 240 280 320 360 400 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.6 mm thick rubber membrane(s) 3 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:04 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH408 A5085-15 9.05 - 10.05 Depth (m BGL) Project Name No 20 Type A63 CASTLE STREET TOP Spec Ref 2 **Specimen Details** 1 3 Soil Description Soft dark greyish brown slightly sandy SILT Length 188.41 Specimen Type mm UNDISTURBED 97.91 /Preparation Diameter mm **Bulk Density** Mg/m³ 1.90 Method of Saturation Water Content 36 Saturation Details Dry density 1.40 Increments of cell and back pressure Mg/m³ Length 183.98 Cell pressure increments kPa 50 mm Diameter 95.58 Differential Pressure kPa 0 Bulk Density* 1.98 Final Cell Pressure kPa 210 Mg/m Water Content* 197.1 32 Final pore water pressure kPa Dry density Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 395 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 95 kPa Pore pressure at start of consolidation 390 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation 0.44 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 1.72 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 2.4E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 10 30 60 70 80 20 40 50 0 mL (-ve if swell 50 100 Volume change 150 200 250 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:08 Rev 85 May 09 sheet 1 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH408 Project No A5085-15 9.05 - 10.05 Depth (m BGL) Project Name No 20 Туре A63 CASTLE STREET ID TOP Spec Ref **Mohr Circles** 100 80 Shear stress kPa 60 40 20 n 20 60 100 120 140 160 180 200 220 240 260 280 300 320 MIT Stress field Effective stresses kPa Compression stages 2 3 Specimen Cell pressure 395 kPa 80 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa 95 Initial σ_3 ' kPa 60 0.33 %/hr Rate of strain 40 Failure conditions Criterion 20 Axial strain 6.05 % 4.537 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 (σ_1 ' - σ_3 ') _f 124.8 kPa 80 100 s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ 20 180 200 40 140 160 360 kPa 35 Cambridge stress field $\sigma_3{'}_f$ kPa 200 160 kPa $\sigma_1'_f$ 0.48 $\boldsymbol{A}_{\boldsymbol{f}}$ 160 Time to failure 18.4 **Shear Strength Parameters** 120 $(\sigma_1' - \sigma_3')$ Linear regression 80 с' kPa not assessed σ Ø' degrees not assessed Manual re-assessment 40 kPa с' Ø' degrees 0 40 80 120 160 200 240 280 320 360 400 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.616 mm thick rubber membrane(s) 3 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:08 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH408 A5085-15 16.75 - 17.2 Depth (m BGL) Project Name UT No 43 Type A63 CASTLE STREET ID Spec Ref 2 **Specimen Details** 1 3 Soil Description Stiff brown CLAY Length 202.96 mm Specimen Type UNDISTURBED 103.34 /Preparation Diameter mm **Bulk Density** Mg/m³ 2.04 Method of Saturation Water Content 24 Saturation Details Dry density 1.65 Increments of cell and back pressure Mg/m³ Length 201.95 Cell pressure increments kPa mm consolidation Diameter 102.83 Differential Pressure kPa 10 Bulk Density* 2.06 Final Cell Pressure kPa 210 Mg/m Water Content* 23 201 Final pore water pressure kPa Dry density* Mg/m³ 1.67 Final B Value 0.96 for undrained test, after consolidation and after test are the same 1.0 0.8 0.2 0.0 100 150 200 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 470 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure 170 kPa Pore pressure at start of consolidation 461 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation 2.53 C_{vi} m²/year parameters Coefficient of Compressibility M_{vi} 0.15 m^2/MN see note to BS1377: Coefficient of Permeability (calculated) 1.2E-10 m/s $k_{\nu i}\,$ pt 8, clause 6.3.4) Root time minutes 0 5 10 15 25 30 35 40 20 0 mL (-ve if swell) 10 20 Volume change 30 40 50 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:10 Rev 85 May 09 sheet 1 of 3

rojec	t No		A5085	5-15						Sample D	etails:	Hole No)		вн4	08		
Project	t Name	9								-		Depth (m BG	L)	_	'5 - 17.2	2	
,												No		43		Туре	UT	
			A63 C	ASTLE	STRE	ET						ID			-			
												Spec R	ef					
She	aring	stages	- graph	ical da	ıta												foilure poi	into
	²⁴⁰ T																failure poi	
Ба	200 -																	
 X																		
<u>,</u>	160																	
Deviator stress (σ1' - σ3') kPa								•										
stres	120			 							1							
iator																		
Dev	80 -																	
		,																
	40 -	-/																
	0 +		0.5	1	1.5	2	2.5	3	3.5	4 4	1.5	5		6	6.5	5 7	7.5	ε%
	4.0 1	'	0.5	1	1.5	2	2.5	3	3.5	4 4	1.5	5	5.5	ь	6.0	5 /	7.5	£ %
	3.5 -																	
3,																		
	3.0 -																	
Principal stress ratio (σ1' / σ3')																		
ssra	2.5 -																	
al stre								•	\rightarrow									
rincip	2.0 -										1							
<u> С</u>																		
	1.5 -		/															
	1.0		0.5	1	1.5	2	2.5	2	3.5	4 4	ļ5	-		6		5 7	7.5	0/
	420 T)	0.5	1	1.5	-	2.5	3	3.5	4 4	1.5	5	5.5	6	6.5	7	7.5	ε %
	400 -																	
_																		
χ Σ	380 -																	
sane					_	+-												
Pore water pressure KPa	360 -								_		_ 1							
ater																		
e S	340 -		/															
ያ		/	/															
	320 -	-/																
	300			-									_					
	0	(0.5	1	1.5	2	2.5	3 A x	3.5 ial strain	ı, ε ⁴ (all plo	i.5 ots)	5	5.5	6	6.5	5 7	7.5	
ef		1													Fig	jure		
SLF	R8.1		S		1]]	nto di O	1/00/001	C 44	10			~ 11	
	/ 85								E	. ∎ Pri	าแซน:ป	1/03/201	0 11:	ıU	- 1		CU	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details: Hole No BH408 Project No A5085-15 Depth (m BGL) 16.75 - 17.2 Project Name No 43 Туре UT A63 CASTLE STREET ID Spec Ref **Mohr Circles** 100 80 Shear stress kPa 60 40 20 n 20 80 100 120 140 160 180 200 220 240 260 280 300 320 MIT Stress field Effective stresses kPa 100 Compression stages 2 3 1 Specimen Cell pressure 470 kPa 80 300 kPa Initial pwp (σ₁'-σ₃')/2 kPa 170 Initial σ_3 ' kPa 60 1.85 %/hr Rate of strain 40 Failure conditions Criterion Maximum deviator stress 20 Axial strain 2.82 % 2.301 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ 0 135.2 (σ_1 ' - σ_3 ') _f kPa 20 160 180 200 40 100 140 s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ 366 kPa 104 Cambridge stress field $\sigma_3{'}_f$ kPa 200 239 kPa $\sigma_1'_f$ 0.49 $\boldsymbol{A}_{\boldsymbol{f}}$ 160 Time to failure 1.5 **Shear Strength Parameters** 120 $(\sigma_1' - \sigma_3')$ Linear regression 80 с' kPa not assessed σ Ø' degrees not assessed 40 Manual re-assessment kPa с' Ø' degrees 0 40 80 120 160 200 240 280 320 360 400 p' $(\sigma_1' + 2\sigma_3')/3$ kPa Mode of failure Deviator stresses corrected for area change, vertical side drains and 0.308 mm thick rubber membrane(s) Notes: 3 Ref **Figure SLR8.1** CU Printed:01/03/2016 11:10 Rev 85 May 09 sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) - Multistage test on a single specimen Sample Details: Project No Hole No BH417 A5085-15 2.90-3.35 Depth (m BGL) Project Name UT No Туре A63 Castle Street ID Spec Ref Soft brown slightly sandy slightly gravelly CLAY. Gravel **Specimen Details** Soil Description Initial Specimen Type UNDISTURBED 202.96 /Preparation Length mm Diameter 104.18 mm Method of Saturation **Bulk Density** 1.95 Mg/m3 **Saturation Details** Water Content 26 Increments of cell and back pressure Dry density 1.54 Mg/m³ kPa Cell pressure increments 50 After test Differential Pressure kPa 10 **Bulk Density** 2.00 160 Final Cell Pressure kPa Mg/m3 Water Content 145.7 25 Final pore water pressure kPa Dry density Mg/m³ 1.60 Final B Value 0.96 1.0 0.8 o.0 m 0.4 0.2 0.0 100 150 200 250 300 350 400 Applied cell pressure kPa From radial boundary and one end **Drainage Conditions** Stage No. 2 3 Cell Pressure applied 330 360 420 kPa Consolidation 300 300 Back Pressure applied 300 kPa Details Effective Pressure 60 120 kPa Pore pressure at start of consolidation 312 342 381 kPa 302 kPa Pore pressure at end of consolidation 301 301 Pore pressure dissipation at end of consolidation 96 94 % Consolidation Coefficient of Consolidation C_{vi} 1.10 0.31 0.33 m²/year parameters Coefficient of Compressibility M_{vi} 0.32 0.50 0.22 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 1.1E-10 4.8E-11 2.3E-11 m/s \boldsymbol{k}_{vi} pt 8, clause 6.3.4) Root time minutes 10 20 30 40 50 60 70 80 mL (-ve if swell Volume change 50 Ref **Figure** SLR8.1 **CUM** Printed:18/03/2016 10:07 Rev 85

sheet 1 of 3

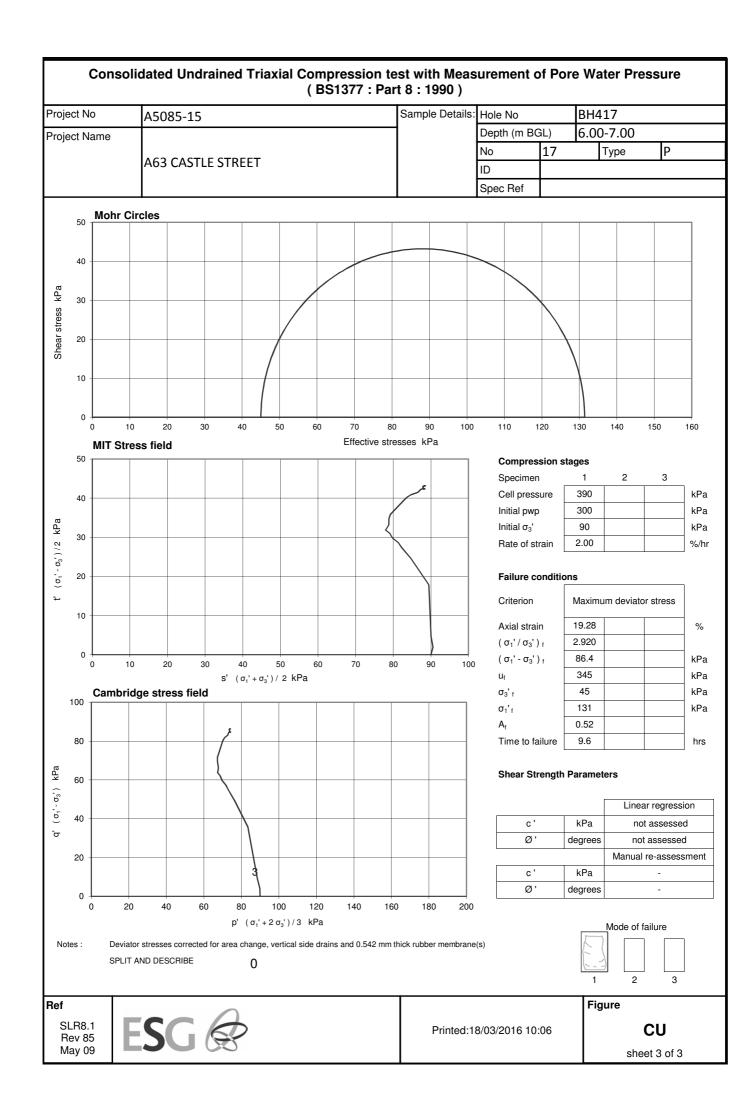
May 09

roject	: No		A5085	-15						Sample	Details:	Hole N	10		BH4	.17		
roiect	Name	<u> </u>										Depth		GL))-3.35		
,		-										No		8		Туре	UT	
			A63 Ca	astle St	treet							ID						
												Spec F	Ref					
She	aring	stages	- graphi	ical data	a											_	£=:1	
0.10	240	l	grapin	Tour date	_		T									0	failure po	oints
æ	200									3								
Deviator stress (OT - OS) AFA																		
;	160					-/-												
<u>;</u>						/												
3	120					_ 2												
2						Τ΄												
;	80																	
				4	1													
	40			\perp														
	0				/													
	7.0	0	2	4	6 8	3	10	12	14	16	18	20	22	24	20	6 28	30	ε%
	6.0 -																	
}																		
5	5.0 -			,														
rincipal suess latio (01 / 03)																		
3	4.0 -				مربر	_ 2												
5				/														
	3.0 -						_											
•										3								
	2.0 -																	
		/																
	1.0 -			J														
		0	2	4 (6 8	1	10	12	14	16	18	20	22	24	26	5 28	30	ε 9
	000																	
	350																	
	330																	
ā	340																	
ة ج	340																	
SSC	220																	
r P	330				~													
wate				/		2	\											
Pore water pressure kPa	320																	
_	040			1	1													
	310																	
										3								
	300	0	2	4	6 8	3	10	12	14	16	18	20	22	24	26	6 28	30	
								Axial	strain,	ε% (all	olots)							
f									<u> </u>						Fig	gure		
SLR	8.1		SC	6					≯ ≮) -	F	Printed:1	8/03/20	16 10	:07		С	UM	
Rev	/ 85 / 09								1157	1							et 2 of	

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) - Multistage test on a single specimen Sample Details: Project No BH417 Hole No A5085-15 2.90-3.35 Depth (m BGL) Project Name UT No 8 Type A63 Castle Street ID Spec Ref **Mohr Circles** 160 Shear stress kPa 120 80 640 Effective stresses kPa MIT Stress field 200 Compression stages 2 3 Stage Cell pressure 330 360 420 kPa 160 Initial pwp 301 302 301 kPa Initial σ_3 ' 30 58 119 kPa 120 $(\sigma_{1}' - \sigma_{3}')/2$ 0.78 0.78 0.78 Rate of strain %/hr 80 Failure conditions Criterion 40 5.02 7.63 11.64 Axial strain % 5.040 4.211 3.174 ($\sigma_1{}^{\prime}\,/\,\sigma_3{}^{\prime}$) $_f$ (σ_1 ' - σ_3 ') _f 65.5 107.6 206.1 kPa 40 80 120 160 200 240 280 320 360 400 314 327 325 kPa s' $(\sigma_1' + \sigma_3') / 2 \text{ kPa}$ Cambridge stress field $\sigma_3{'}_f$ 16 34 95 kPa 82 141 $\sigma_1'_f$ kPa 0.20 0.22 0.12 200 Time to failure 6.4 9.8 14.9 **Shear Strength Parameters** 150 ($\sigma_1' - \sigma_3'$) Linear regression 100 с' kPa 12.7 Ø' 27.8 degrees Manual re-assessment 50 kPa с' ø' degrees 0 100 500 p' $(\sigma_1' + 2 \sigma_3')/3$ kPa Mode of failure Notes: Deviator stresses corrected for area change, vertical side drains and 0.613 mm thick rubber membrane(s) Ref

SLR8.1 Rev 85

May 09


Figure

CUM

sheet 3 of 3

Consolidated Undrained Triaxial Compression test with Measurement of Pore Water Pressure (BS1377: Part 8: 1990) Sample Details Project No Hole No BH417 A5085-15 6.00-7.00 Depth (m BGL) Project Name Nο 17 Туре A63 CASTLE STREET ID Spec Ref Soft to firm greyish brown clayey SILT becoming CLAY **Specimen Details** 2 3 Soil Description towards the base. Length 190.42 mm Specimen Type UNDISTURBED 96.72 /Preparation Diameter mm **Bulk Density** 1.90 Mg/m3 Method of Saturation Water Content 36 **Saturation Details** Dry density 1.39 Increments of cell pressure only Mg/m³ 187.55 Length 50 mm Cell pressure increments kPa consolidation Diameter 95.25 Differential Pressure kPa 0 Bulk Density* 1.94 kPa 210 Final Cell Pressure Mg/m³ Water Content* 198.5 33 Final pore water pressure kPa Dry density* Mg/m³ Final B Value 1.00 for undrained test, after consolidation and after test are the same Specimen 1 -1.0 0.8 0.6 m 0.4 0.2 0.0 0 50 100 150 200 250 300 350 400 Applied cell pressure kPa **Drainage Conditions** From radial boundary and one end Specimen No. 2 3 Cell Pressure applied 390 kPa Consolidation Back Pressure applied 300 kPa Details Effective Pressure kPa Pore pressure at start of consolidation 388 kPa Pore pressure at end of consolidation 300 kPa Pore pressure dissipation at end of consolidation 100 % Consolidation Coefficient of Consolidation C_{vi} 2.70 m²/year parameters Coefficient of Compressibility M_{vi} 0.64 m^2/MN see note to BS1377 : Coefficient of Permeability (calculated) 5.4E-10 \boldsymbol{k}_{vi} m/s pt 8, clause 6.3.4) Root time minutes 5 10 15 20 25 30 35 40 0 mL (-ve if swell) 40 Volume change 60 80 100 Ref **Figure** SLR8.1 CU Printed:18/03/2016 10:06 Rev 85 May 09 sheet 1 of 3

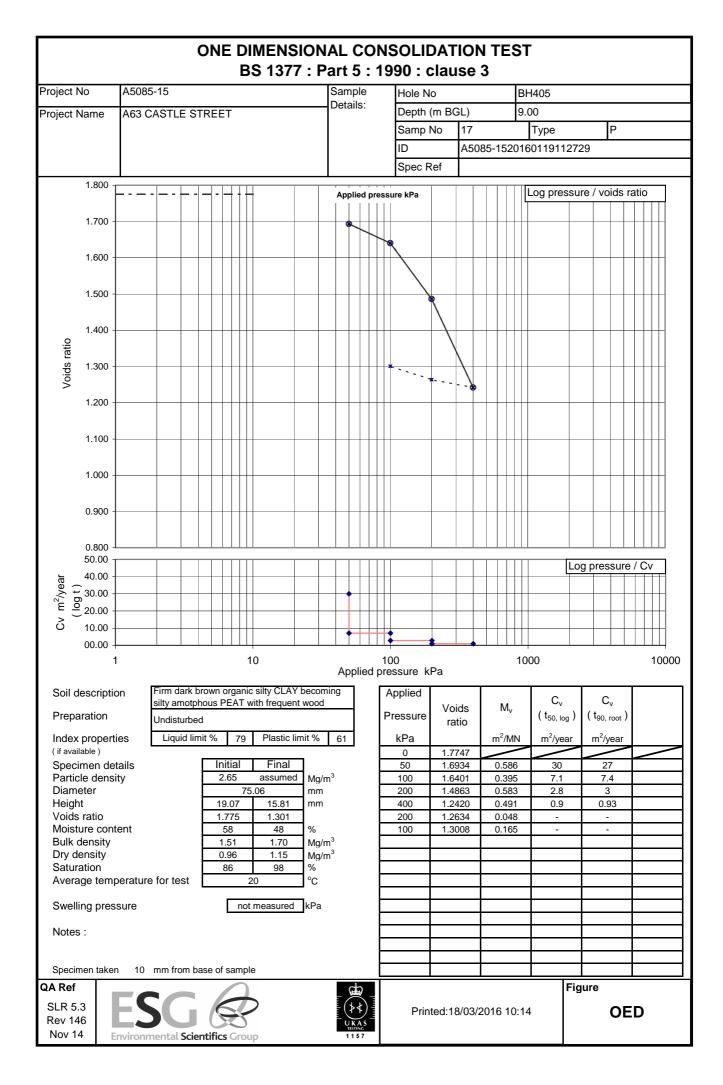
Project	No		A5085	-15						Samp	le Details	Hole N	0		BH4	117			
Project	Name									1		Depth (m BC	iL)	6.00	0-7.00			
•					CTD = E = T	_						No		17		Туре	P)	
			A63 C/	ASILE	SIKEEI							ID							
												Spec R	ef						
Shea	aring s	tages	- graphi	cal data	a												o failure	a noint	te
	120]																O lanui	Point	
æ	100																		
Ā																			
	80 -											_	1						
Deviator stress (σ1' - σ3') kPa																			
stress	60		4-																
ator s																			
Devi	40 -	-																	
	20 -	-																	
)																	
	0		2	4	6	8	10	12	14	16	18	20	22	24		26 2	ο	30	- 0/ 3
	4.0	, 		1			10	12	14	10	10	20		24				30	E% -
	3.5																		
<u></u>																			
1./σ	3.0												1						
Principal stress ratio (σ1' / σ3')									\sim										
iss ra	2.5																		
al stre		/	/																
rincip	2.0																		
ш		/																	
	1.5	+																	
		И																	
	1.0	0	2	4	6	8	10	12	14	16	18	20	22	24		26 28	 3	30	ε%3
	360																		
	350 -																		
_							_						1						
Pore water pressure kPa	340 -																		
sure																			
pres	330 -	+																	
ater					3														
ē	320 -	+																	
9																			
	310 -	+																	
		/			0														
	300	/)	2	4		8	10	12	14	16	18	20	22	24	2	26 28	 3	30	3
							-				l plots)	-	-		-	2.			J
Ref									ශ්ත						Fi	gure			
SLR Rev	8.1		SC						*		Printed:1	8/03/20	16 10:	:06			CU		
Rev May	85								1157								heet 2		

	lo		A5085-	15				Sample Deta	ails:	Hole No)		ВН	417		
ant N	Name		713003						ŀ	Depth (L)		0-8.9	5	
ectr	vaiiie								ŀ	No		<u>-,</u> 22	10.5	Туре		UT
			A63 CA	STLE S	TREET				ŀ	ID	\dashv			1,700		101
									ŀ	Spec R	ωf					
									!	T Specific	Ci					
		Spec	imen Detai	ls	1	2	3	Soil Descrip	tion	Soft bro	wn silt	y CLA	Y.			
		Leng		mm	204.22			Specimen T		UNDIS.	TURBE	D				
	ਲ	Diam		mm	104.39			/Preparatio	n							
	Initial	_	Density	Mg/m³	1.95								M	ethod of	Satura	ation
			r Content	%	33			Satura	ation	Details		1				
	_	1 -	ensity	Mg/m³	1.47									s of cell	and ba	ack pressu
	After consolidation	Leng		mm	198.54			Cell pressure			kPa		50			
	olid	Diam		mm	101.44			Differential Pr			kPa		0			
	ons	ļ	Density*	Mg/m³	2.04			Final Cell Pre			kPa		10			
	er c		r Content*	%	27			Final pore wat		essure	kPa		1.5			
			ensity*	Mg/m³	1.60	t are the same.		Final B Value				0	.99			
1.0	101 0	indianied	riesi, aitei cc	nisolidatio	× ×	t are the same.	*	×					-× − S	pecimen	1 —	— 2 — ▲
0.0																
8.0																
0.6																
0.6																
0.2																
			50		100	150		200	25	0		300		3	50	
			30	Draina	age Condition		Applied co	200 ell pressure kPa	25	0	Fro		al bour	3 ndary and		end
							Applied co		25	1		m radi	al bour 2		d one	end
	Com	مداناه م		Specir	age Condition	าร	Applied o		25			m radi		ndary and	d one	
	Con	solidat ails		Specir Cell P	age Conditior men No.	ns	Applied co		25	1	0	m radi		ndary and	d one	kPa
				Specir Cell P Back F	age Condition men No. ressure appli	ns	Applied o		25	1 41	0	m radi		ndary and	d one	kPa
				Specir Cell P Back I Effecti	age Condition men No. ressure appli Pressure app ive Pressure	ns			25	1 41 30	0 0 0	m radi		ndary and	d one	kPa kPa kPa
				Specir Cell P Back I Effecti Pore p	age Conditionmen No. ressure appli Pressure applive Pressure oressure at si	ied blied	dation		25	1 41 30 11	0 0 0 7	m radi		ndary and	d one	kPa kPa kPa kPa
	Deta	ails	ion	Specir Cell P Back I Effecti Pore p	age Conditionmen No. ressure appli Pressure applive Pressure at si pressure at e	ied blied tart of consolid	dation	ell pressure kPa	25	1 41 30 11 40	0 0 0 7 2	m radi		ndary and	d one	kPa kPa kPa kPa kPa
	Cons	ails solidatio	ion	Specir Cell P Back I Effecti Pore p Pore p Coeffic	age Conditionmen No. ressure appli Pressure app ive Pressure oressure at el oressure at el oressure diss cient of Cons	ied Slied tart of consolid nd of consolid ipation at end	dation	ell pressure kPa	C _{vi}	1 41 30 111 40 30 98 2.0	0 0 0 7 2 3	m radi		ndary and	d one	kPa kPa kPa kPa kPa m²/ye;
	Conspara	solidatio	ion	Specir Cell P Back I Effecti Pore p Pore p Coeffic	age Conditionmen No. ressure appli Pressure applive Pressure at storessure at eteroressure at eteroressure dissocient of Conscient of Com	ied blied tart of consolid ind of consolid ipation at end solidation pressibility	dation ation of consolidat	ell pressure kPa	C _{vi}	1 41 30 11 40 30 94 2.0	0 0 0 7 2 3 00	m radi		ndary and	d one	kPa kPa kPa kPa kPa m²/yea
	Conspara (see	solidation	ion	Specir Cell P Back I Effecti Pore p Pore p Coeffic	age Conditionmen No. ressure appli Pressure applive Pressure at storessure at eteroressure at eteroressure dissocient of Conscient of Com	ied Slied tart of consolid nd of consolid ipation at end	dation ation of consolidat ulated)	ell pressure kPa	C _{vi}	1 41 30 111 40 30 98 2.0	0 0 0 7 2 3 00	m radi		ndary and	d one	kPa kPa kPa kPa kPa m²/yea
	Conspara (see	solidation	i on on BS1377 :	Specir Cell P Back I Effecti Pore p Pore p Coeffic	age Conditionmen No. ressure appli Pressure applive Pressure at storessure at eteroressure at eteroressure dissocient of Conscient of Com	ied blied tart of consolid ind of consolid ipation at end solidation pressibility	dation ation of consolidat ulated)	ell pressure kPa	C _{vi}	1 41 30 11 40 30 98 2.0 0.7	0 0 0 7 2 3 00	m radi		andary and	d one	kPa kPa kPa kPa kPa m²/yea m²/yea
0 -	Conspara (see pt 8	solidation	on BS1377 : e 6.3.4)	Specir Cell P Back I Effecti Pore p Pore p Coeffic	age Conditionmen No. ressure applipressure applipressure at storessure at expressure at expressure dissocient of Compaction of C	ied blied tart of consolid ipation at end solidation pressibility neability (calc	dation ation of consolidat ulated)	time minutes	C _{vi}	1 41 30 11 40 30 98 2.0 0.7	0 0 0 7 2 3 00	m radi		andary and	d one	kPa kPa kPa kPa kPa m²/yea m²/yea
0 -	Conspara (see pt 8	solidation	on BS1377 : e 6.3.4)	Specir Cell P Back I Effecti Pore p Pore p Coeffic	age Conditionmen No. ressure applipressure applipressure at storessure at expressure at expressure dissocient of Compaction of C	ied blied tart of consolid ipation at end solidation pressibility neability (calc	dation ation of consolidat ulated)	time minutes	C _{vi}	1 41 30 11 40 30 98 2.0 0.7	0 0 0 7 2 3 00	m radi		andary and	d one	kPa kPa kPa kPa kPa m²/yea m²/yea
0 -	Conspara (see pt 8	solidation	on BS1377 : e 6.3.4)	Specir Cell P Back I Effecti Pore p Pore p Coeffic	age Conditionmen No. ressure applipressure applipressure at storessure at expressure at expressure dissocient of Compaction of C	ied blied tart of consolid ipation at end solidation pressibility neability (calc	dation ation of consolidat ulated)	time minutes	C _{vi}	1 41 30 11 40 30 98 2.0 0.7	0 0 0 7 2 3 00	m radi		andary and	d one	kPa kPa kPa kPa kPa m²/yea m²/yea
0 -	Conspara (see pt 8	solidation	on BS1377 : e 6.3.4)	Specir Cell P Back I Effecti Pore p Pore p Coeffic	age Conditionmen No. ressure appliperessure appliperessure at strongeressure at expressure at expressure dissocient of Compaction of Compactio	ied blied tart of consolid ipation at end solidation pressibility neability (calc	dation ation of consolidat ulated)	time minutes	C _{vi}	1 41 30 11 40 30 98 2.0 0.7	0 0 0 7 2 3 00	m radi		andary and	d one	kPa kPa kPa kPa kPa m²/yea m²/yea
0 -	Conspara (see pt 8	solidation	on BS1377 : e 6.3.4)	Specir Cell P Back I Effecti Pore p Pore p Coeffic	age Conditionmen No. ressure appliperessure appliperessure at strongeressure at expressure at expressure dissocient of Compaction of Compactio	ied blied tart of consolid ipation at end solidation pressibility neability (calc	dation ation of consolidat ulated)	time minutes	C _{vi}	1 41 30 11 40 30 98 2.0 0.7	0 0 0 7 2 3 00	m radi		andary and	d one	kPa kPa kPa kPa kPa m²/yea m²/yea
0 -	Conspara (see pt 8	solidation	on BS1377 : e 6.3.4)	Specir Cell P Back I Effecti Pore p Pore p Coeffic	age Conditionmen No. ressure appliperessure appliperessure at strongeressure at expressure at expressure dissocient of Compaction of Compactio	ied blied tart of consolid ipation at end solidation pressibility neability (calc	dation ation of consolidat ulated)	time minutes	C _{vi}	1 41 30 11 40 30 98 2.0 0.7	0 0 0 7 2 3 00	m radi		andary and	d one	kPa kPa kPa kPa kPa m²/yea m²/yea
0 -	Conspara (see pt 8	solidation	on BS1377 : e 6.3.4)	Specir Cell P Back I Effecti Pore p Pore p Coeffic	age Conditionmen No. ressure appliperessure appliperessure at strongeressure at expressure at expressure dissocient of Compaction of Compactio	ied blied tart of consolid ipation at end solidation pressibility neability (calc	dation ation of consolidat ulated)	time minutes	C _{vi}	1 41 30 11 40 30 98 2.0 0.7	0 0 0 7 2 3 00	m radi		andary and	d one	kPa kPa kPa kPa kPa m²/yea m²/yea
0 - 50 - 1100 -	Conspara (see pt 8	solidation	on BS1377 : e 6.3.4)	Specir Cell P Back I Effecti Pore p Pore p Coeffic	age Conditionmen No. ressure appliperessure appliperessure at strongeressure at expressure at expressure dissocient of Compaction of Compactio	ied blied tart of consolid ipation at end solidation pressibility neability (calc	dation ation of consolidat ulated)	time minutes	C _{vi}	1 41 30 11 40 30 98 2.0 0.7	0 0 0 7 2 3 00	m radi		andary and	d one	kPa kPa kPa kPa kPa m²/yea m²/yea
	Conspara (see pt 8	solidation	ion on BS1377 : e 6.3.4)	Specir Cell P Back I Effecti Pore p Pore p Coeffic	age Conditionmen No. ressure appliperessure appliperessure at strongeressure at expressure at expressure dissocient of Compaction of Compactio	ied blied tart of consolid ipation at end solidation pressibility neability (calc	dation ation of consolidat ulated)	time minutes	C _{vi}	1 41 30 11 40 30 98 2.0 0.7	0 0 0 7 2 3 00	m radi		andary and	335	kPa kPa kPa kPa kPa m²/yea m²/yea

	Coi	nsoli	dated L	Jndrai	ned Tr	iaxial	Comp (BS	ressio 31377 :	n te Par	st with Me t 8 : 1990)	asu	rement	of Po	ore W	ater F	ress	ure		
Projec	t No		A5085	-15						Sample Detai	ils: H	ole No		BH	417				_
Projec	t Name		1.0000								D	epth (m	BGL)		0-8.95	5			_
,			1,62,64	. CT. F (-					Ν	0	22		Туре		UT		
			A63 C/	ASILES	IKEEI						IE)							
											S	pec Ref							
She		stages	- graphi	cal data	ı											o fail	ure poi	ints	
	120 -													•		\downarrow			
	100																		
kPa	100																		
σ3')	80 -																		
٩.																			
ress (60 -																		
tor st																			
Deviator stress (σ1' - σ3') kPa	40																_		-
_																			
	20																_		-
	0 -	<u>/</u>	1	2	3	4	5	6	7	8 9		0 11	1	2	13	14	15]
	4.0	T	1	2	3	4	5	b	/	8 9		0 11		2	13	14	15	ε% 1	
	3.5	-																	
3,)																			
11'/0;	3.0	1																	
Principal stress ratio (σ1' / σ3')														-		<u> </u>			
ess ra	2.5	1				_			_										
pal str																			
Princi	2.0																		
	1.5																		
	1.0																		
	1.0 420	0	1	2	3	4	5	6	7	8 9	1	0 11	1	2	13	14	15	ε%1	6
	420																		
	400																		
	400																		
Pa	380																		
Pore water pressure kPa																			
ressu	360				_														
er p										+	_								
e wat	340													-	+	 1	_		
Pore																			
	320																_		-
	300	0	1	2	3	4	5	6	7	8 9	1	0 11		n	12	14			
		U	ı	۵		→	J			s (all plots)		0 11	1:	۷.	13	14	15	1	6
Ref								G	₽					F	igure				_
SLF	₹8.1		SC	- 6	7			[*	· ₹	Printed	d:18/0	03/2016	10:07			Cl	J		
He) Ma)	v 85 y 09		7		3			11	157							sheet		3	

rojec	t N	0	(BS1377 : Part 8 : 15 A63 CASTLE STREET A63 CASTLE STREET A63 CASTLE STREET A64 CASTLE STREET Br Circles Stress field Effective stresses kPa A65 CASTLE STREET A66 CASTLE STREET A67 CASTLE STREET A67 CASTLE STREET A68 CASTLE STREET A68 CASTLE STREET A68 CASTLE STREET A69 CASTLE STREET A60 CAST			ple Deta	ils: H	ole No		BH4	17							
			A5085-15 Sample A63 CASTLE STREET hr Circles 20 40 60 80 100 120 140 160 180 Stress field Effective stresses kPa 20 40 60 80 100 120 140 160 180 s' (σ; +σ;) / 2 kPa hbridge stress field			p.0 = 0.0	_	epth (m Bo	GL)		-8.95							
ojec	E IN	ame										N	•	22		Туре	UT	_
			A63	CAST	LE STR	EET						ID				- 7	10.	
			A5085-15 Mohr Circles 20 40 60 IIT Stress field 20 40 60 cambridge stress field									_	pec Ref					
		Mohr Ci	(BS1377 : Part 8 : 1990 A5085-15 A63 CASTLE STREET Circles															
1	00 -		r Circles 20 40 60 80 100 120 140 180 180 Stress field Effective stresses kPa bridge stress field bridge stress field bridge stress field eviator stresses corrected for area change, vertical side drains and 0.34 mm thick rubber memt															
			A5085-15 A63 CASTLE STREET Tr Circles T															
	80 -		A5085-15 A63 CASTLE S Ohr Circles 20 40 60 T Stress field 40 80 120															\dashv
3																		
	60								\downarrow									\exists
5	40 -																	
)																		
	20 -									'	\setminus							\dashv
											1							
	0 -	0 20	40)	60 8	80 1	00	120	140	160	180	200	220	 240	260	280	300	32
1	00 -											\neg	Compres	sion s	tages			
													Specime		1	2	3	
	80 -											\dashv	Cell pres		410			
													Initial pw)	302			
	60											-	Initial σ_3 ' Rate of s	rain	1.43			
-								-					11010 01 0	ıı				
-	40 -											-	Failure c	onditio	ons			
													Criterion		Maximu	ım deviat	or stress	
	20 -											_				1	1	_
													Axial stra		12.47 2.680			-
	0 -					_						_	$(\sigma_1' / \sigma_3' $ $(\sigma_1' - \sigma_3'$		113.4			
	(0 20	40)				120	140	160	180	200	u _f	<i>)</i> T	343			
		Cambrio	lge stre	ss fiel		01 . 03 //	u						$\sigma_3'_f$		68			
2	00 -												$\sigma_1{'}_f$		181			
													A _f		0.36			
1	60 -												Time to fa	ailure	8.7			
4	00												Shear St	rength	Parame	ers		
- 1.	20 -			,														
1:	80 -												<u> </u>		ı	Line	ar regres	sior
	00 -												c'		kPa		ot assess	
	40 -												Ø'		degrees		t assesse I re-asses	
	40												c'		kPa	IVIGITO	-	,5111
	0 -												Ø'		degrees		-	
		0 40	80) 1	20 1	60 2	00 2	240	280	320	360	400	L					
					p'	(σ ₁ ' + 2	σ ₃ ')/3 k	кРа								Mode of	failure	
Notes	s:				ed for area	change, ve	ertical side	e drains a	and 0.34 mn	n thick rubb	oer membra	ane(s)			10,10			
															1	2	3	_
f															Fig	ure		_
SLI Re	R8. v 85	1									Printe	d:18/0	3/2016 10	:07			CU	
	y 09	^ I I II			(><)					- 1					- 1		eet 3 of 3	

				Sample	Hole No			IDI	H403		
oject Name	A63 CASTLE ST	TREET		Details:	Depth (m	BGL)		1.0	65		
-					Samp No		1		Туре	UT	
					ID .						
					Spec Ref						
0.840 т	<u> </u>			<u> </u>	Topos . to.						
				Applied pres	sure kPa			ļ	Log press	ure / voids r	atio
0.820								Ш			
0.800								Ш			
			8								
0.780			`					Ш			
000											
0.760								Ш			
I											
Voids ratio											
Void											
0.720								Ш			
				* - - -							
0.700					7 8			Ш			
000											
0.680								Ш			
0.000											
0.660											
0.000											
0.640											
02.50 T									-	og pressure	/ Cv
g 02.00								+	ᄕ	og pressure	T
$\frac{1}{2}$ CV $\frac{1}{2}$ \frac			•					+			+++
€ € 01.00		- 						+			++++
								+			+++
00.00 ‡			_					Щ,			
1		1	0		100 essure kPa	ı		10	00		10
Soil description	20				Applied		1			1	Т
·	Soft brown	slightly sandy	silty CLAY.			Voids	М	v	C _v	C _v	
Preparation	Undisturbed	d			Pressure	ratio		•	(t _{50, log})	(t _{90, root})	
Index properti	es Liquid lim	nit % 45	Plastic limit %	25	kPa		m ² /l	ΜN	m²/year	m²/year	<u> </u>
(if available) Specimen det	aile	Initial	Final	-		0.8202	0.6	12	0.51	0.55	
Particle densi		2.65		ı/m³		0.7925	0.6		0.94	1	
Diameter		74		_		0.7708	0.4		1.3	1.4	<u> </u>
Height Voids ratio		19.13 0.820	18.01 mr 0.714	n -		0.7407 0.7054	0.3		1.8 1.7	1.9 1.8	
Moisture cont	ent	30	28 %		100	0.7087	0.0	20	-	-	
Bulk density Dry density		1.90 1.46	1.97 Mg 1.55 Mg	ı/m³ ı/m³	50	0.7137	0.0	59	-	-	
Saturation		98	103 W	J/111							
	perature for test	2	0 °C								
Swelling press	sure	not	measured kPa	a					 	1	
Notes :				-			+			1	
Specimen taken	100 mm from ba	ase of sample	9								
A Ref				<u>_</u> <u>do</u> _					Fi	gure	


roject No	A5085-15		Sample	Hole No		ВІ	1403		
roject Name	A63 CASTLE ST	TREET	Details:	Depth (m	BGL)	5.0	00		
,							Туре	Р	
				-		35-152016		_ 57	
1.020 -	1							,	
			Applied p	ressure kPa			Log pressu	re / voids ra	atio
1.000 -									
		,							
0.980 -	Depth (m BGL) 5.00 Samp No 12 Type P Depth (m BGL) 5.00 Type No Type P Depth (m BGL) 5.00 Type No Type No Type P Depth (m BGL) 5.00 Type No Type No								
0.960 -									
ratic									
<u>.</u> 0.920 -									
		.							
0.900 -				*					
0.880 -				\Box					
0.860 -									
		,		 • • • • • • • • • • • • • • • • • • •					
0.840 -									
0.000		,							
								~ ~~~~	/ С.
ভ 20.00 -							[LO	g pressure	/ CV
$\frac{10000}{1000}$ CV $\frac{100}{1000}$ CV $\frac{1000}{1000}$ CV $\frac{1000}{10000}$ CV $\frac{1000}{1000}$ CV $\frac{1000}{10000}$ CV $\frac{1000}{1000}$ CV $\frac{1000}{10000}$ CV $\frac{1000}{1000}$ CV $\frac{1000}{10000}$ CV $\frac{1000}{1000}$ CV $\frac{1000}{10000}$ CV $\frac{1000}{10000}$ CV $\frac{1000}{10000}$ CV $\frac{1000}{10000}$ CV $\frac{1000}{10000}$ CV $$									
E 0 10.00 -									
ර 05.00 -									
•		10	Applied	100 pressure kPa		10	00		100
Soil description	on o "	OLAY	···	·	1		1	1 1	
	Con Brown				Voids	$M_{\rm v}$	-		
					ratio				
	ies Liquid lim	nit % 36 Pla	astic limit % 22		1.0400	m ² /MN	m²/year	m²/year	
	tails	Initial F	inal			0.998	13	14	_
Particle dens		2.65 ass							
Diameter									
Height							1	1 1	
	ent			100	J.8514	0.019	-	-	
Bulk density									
Dry density			1.43 Mg/m ³						
Saturation			98 %						
Augreen tem	perature for test	20	°C	 					
Average temp	sure	not meas	sured kPa						
				 					
Swelling pres							1		
Swelling pres	a 10 mm from b	ase of sample							
Swelling pres	n 10 mm from ba	ase of sample	ch				Fic	ure	
Swelling pres	n 10 mm from ba	ase of sample					Fig	ure	

Spec Ref Log press Log	roject No	A508	35-15									Hole N	lo			Bŀ	1404				
Samp No 10 Type	roject Name	A63	CASTLE	F ST	RFF	Т			Det	ails:		Depth	(m B	GL)		6.0	00				
D	rojoot riamo	, 100	0710122	_ 0.															Р		
Spec Ref														A50	85-152	2016		9485	_		
1,000													Ref	1							
0.980 0.900 0.800	1.000 _T								-									0011	ro / voido re	ati o	_
0.940 0.920 0.880 0.880 0.880 0.880 0.880 0.880 0.880 0.880 0.880 0.880 0.800									Ap 	plied	press	ure kPa				ļ,	Log pre	SSU	re / voids ra		П
0.940 0.920 0.880 0.880 0.860 0.840 0.820 0.800	0.980					$\pm \pm \pm$										+					H
0.940 0.920 0.880 0.880 0.880 0.880 0.800																					
Details Details Details Depth (m BGL) S.00 Samp No 10 Type P Depth Depth Type P Depth Type			H																		
0.920 0.900 0.800																					
0.880 0.880 0.800 0.9807 0.9807 0.9807 0.9807 0.9807 0.9807 0.9807 0.9807 0.9807 255 0.9352 0.917 20 255 0.9352 0.917 20 255 0.9352 0.917 20 255 0.9352 0.917 20 250 0.9807 0.980	0.940							8													Ħ
0.800 0.9800 0.9807 0.980	0.000																				
0.880 0.840 0.820 0.800 0.	I																				П
0.880 0.840 0.820 0.800 0.	<u>s</u> 0 000 7																				
0.880 0.840 0.840 0.820 0.800 0.	/oid																				
0.860 0.840 0.820 0.800 0.	· ·					Ш					\setminus										Ц
0.840 0.820 0.800 1											8	•									
1	0.860																				\parallel
1																					
1	0.840					+H						$\overline{}$									H
1										*	4	* \									
Soil description Dark brown sandy clayey SILT. Undisturbed Dark with preparation Dark brown sandy clayey SILT. Undisturbed Dark with preparation Dark brown sandy clayey SILT. Undisturbed Dark with preparation Dark brown sandy clayey SILT. Undisturbed Dark with preparation Dark brown sandy clayey SILT. Did to the pressure Dark with preparation Dark brown sandy clayey SILT. Dark with preparation Dark brown sandy clayey SILT. Did to the pressure Dark with preparation Dark brown sandy clayey SILT. Did to the pressure Dark brown sandy clayey SILT. Did to the pressure Dark brown sandy clayey SILT. Did to the pressure Dark brown sandy clayey SILT. Dressure Pressure Pressure Pressure Pressure Pressure Dark brown Dark brown sandy clayey SILT. Dressure Dark brown sandy clayey SILT. Dressure Pressure Pressure Pressure Dark brown	0.820		+++																		H
Soil description Dark brown sandy clayey SILT. Undisturbed Dark wallable Dark wallab																					
A0.00																		_			
Soil description Dark brown sandy clayey SILT. Undisturbed Liquid limit % 30 Plastic limit % NP RPa mr/2/year or side assumed Ng/m³ Specimen details Particle density Diameter T5.06 mm 100 0.8722 0.399 23 Ng/m³ Ng	40.00					Ш										Ш		Lo	g pressure	/ Cv	\downarrow
1	\$ 1 30.00										Щ.		•								\parallel
1	`E <u>e</u> 20.00		_			+		+	-		#					+					H
1	රි _{10.00}															+					H
Applied pressure kPa																щ					Ц
Dark brown sandy clayey SILT. Preparation Undisturbed Undisturbed Pressure Voids ratio Mv (t _{50,log}) Mv (t ₅	1	ı				1	10		Aı	oplie	10 d pre	00 essure k	Pa			10	00			1	000
Preparation Undisturbed	Soil description	on	Dark by	rown	cand	, claye	w QII T			i			l						_		
Index properties			-			claye	y SILT.						Vo	ids	M,	/			-		
Specimen details						1	T =		_				ra	atio	2						
Specimen details Initial Final 25 0.9352 0.917 20 Particle density 2.65 assumed Mg/m³ 50 0.9103 0.516 32 Diameter 75.06 mm 100 0.8722 0.399 23 Height 20.06 18.58 mm 200 0.8255 0.249 30 Voids ratio 0.981 0.834 100 0.8294 0.022 - Moisture content 37 32 % 50 0.8341 0.051 - Bulk density 1.83 1.90 Mg/m³ Mg/m³ 0.8341 0.051 - Saturation 100 100 % 0.8341 0.051 - Swelling pressure not measured kPa Notes 0.804 0.804 0.804 0.051 - Specimen taken 10 mm from base of sample 0.804 0.022 - 0.051 - 0.004 0.004 0.004		es	Líqui	ıd limi	ıt %	30	Plastic	ıımit %	NF		\vdash		n a	807	m²/N	ΛN	m²/ye	ar	m²/year		_
Diameter 75.06 mm 100 0.8722 0.399 23 Height 20.06 18.58 mm 200 0.8255 0.249 30 Voids ratio 0.981 0.834 100 0.8294 0.022 - Moisture content 37 32 % 50 0.8341 0.051 - Bulk density 1.83 1.90 Mg/m³ Mg/m³ - - Saturation 100 100 % - - - - Average temperature for test 20 °C - - - - - Swelling pressure not measured kPa - - - - - - - Notes : Specimen taken 10 mm from base of sample - - - - - - - - - - - - - - - - - - -	Specimen det			[•		L	25	0.9	352							_
Height		ty		ŀ	2.			_			\vdash										
Moisture content 37 32 % 50 0.8341 0.051 - Bulk density 1.83 1.90 Mg/m³ Mg/m³ <				ŀ	20						F						-				
Bulk density 1.83 1.90 Mg/m³ Dry density 1.34 1.44 Mg/m³ Saturation 100 100 % Average temperature for test 20 °C Swelling pressure not measured kPa Notes : Specimen taken 10 mm from base of sample	Voids ratio																				
Dry density 1.34 1.44 Mg/m³ Saturation 100 100 % Average temperature for test 20 °C Swelling pressure not measured kPa Notes : Specimen taken 10 mm from base of sample		ent		ŀ					, 3		-	50	0.8	341	0.05	51	-		-		
Saturation Average temperature for test 20 °C Swelling pressure not measured kPa Notes: Specimen taken 10 mm from base of sample				ŀ							H										
Swelling pressure not measured kPa Notes: Specimen taken 10 mm from base of sample				ı																	
Notes: Specimen taken 10 mm from base of sample		peratur	re for tes	st		- :	20	°C			F										
Notes: Specimen taken 10 mm from base of sample	Swelling press	sure				not	measure	d kPa			F										_
Specimen taken 10 mm from base of sample								-			F										
	NULES .										F										_
	Specimen taken	n 10	mm fro	m ha	se of	samni	le.				F										
QA Ref Fig.	A Ref									cip	╅							Fia	ure		_
SLR 5.3 Printed:18/03/2016 10:14						7				→		Dei	t04.4	Q/02/	2016.4	0.4		J		D	
Rev 146					()	3				JKAS		FIIN	neu:T	0/03/	∠∪10 1	U. 1 ²	•		OE	ט	

				C	ON									SOLI 990 :				EST	Ē					
Project No	Α	5085	-15							1	Sam	nple		Hole N	No.			ВІ	H405					_
Project Name	e A	63 C	ASTL	E ST	REE	T				\dashv	Deta	ails:		Depth	(m B	GL)		4.	00					_
'														Samp	No	8			Туре		Р			_
														ID		A50	85-15	2016	501191°	125′	19			
														Spec I	Ref									
0.8	40				7-1	_					Anr	liod	proc	sure kPa					l og pre	SSU	re / voids ra	atio		
												lieu	pies 	Suit Kra				L	_09 p.0		107 1010011			
0.83	20 🕂																						+	
0.8	00								8															
0.7	.								`															
0.78	80																							
0.70	₆₀										8	9												
Voids ratio	40 📙																							
Voic																								
0.73	20 📙													\									\perp	
0.7	00 📙					+								+									+	
0.6	во —			Н		+							Н	+									+	
											*	٠.	٠.,	*	\									
0.6	60 🕂														•								+	
0.6 50.0						_														1.		/ 0		
ল 40.0						\perp														Lo	g pressure	/ Cv		
Cv m ² /year (log t) 100 (log t)	00 —								1				Н	•				H					\mathbb{H}	
> 20.0	· ·					+			+					-	•			++					Н	
	- 1																						Ħ	
00.0	00 + 1						1(<u> </u>		-			1	00				10	00				└┴┤ 10000)
							.,	•			Аp	plie		essure l	кРа				00				10000	
Soil descr	iption		Very s CLAY.		rk gre	ey sl	light	ly sandy	organi	c sil	lty		Γ	Applied					C _v		C _v			1
Preparation	on		Undist									1	ı	ressure		oids atio	٨	/I _v	(t _{50, le}		(t _{90, root})			
Index prop	perties			id limi		4	12	Plastic	limit %	6	25	1		kPa	'	allo	m ² /	/MN	m²/ye		m²/year			
(if available))	-		r			- 1				-		þ	0		3394							_	1
Specimen Particle de		ls		ŀ		itia .65	l l	Final		g/m	3		ŀ	25 50		7957 7659		951 662	30 21		27 23			1
Diameter	,						75.		m	m			L	100	0.7	7207	0.5	513	28		30			1
Height Voids ratio)			ŀ		9.06 .839	_	17.31 0.671	_	m			F	200 100	_	6592 6642	_	357 030	16		17 -			1
Moisture of	conten	ıt				33		27	%		2			50		6710)81	-		-			1
Bulk dens Dry densi				ŀ		.91 .44		2.01 1.59		g/m g/m			-		-									1
Saturation	1	4	f		1	03		105	%				F											1
Average to			ior te	่อเ		_	20	J	°C	,			ŀ		\perp									d
Swelling p	ressu	re					not r	neasure	d kP	a			F											1
Notes :													F											j
													F											-
Specimen t	aken	10	mm fro	om ba	se of	san	nple						E											1
QA Ref SLR 5.3 Rev 146 Nov 14	E	Sironm		J	C		3)			lundand OT	× A S ESTING	Innihum	Prir	nted:1	8/03/	2016	10:14	4	Fig	ure OE	D		

oject Name	1			Hole No			H405		
-,	A63 CASTLE ST	TREET	Details:	Depth (m	BGL)	7.	00		
				Samp No	13		Туре	Р	
				ID .	A50	85-152016	01191126	<u> </u> 34	
				Spec Ref			70	· · · · · · · · · · · · · · · · · · ·	
1.350 _T	<u> </u>			Topos : to:					
			Applied pres	ssure kPa			Log pressu	re / voids ra	atio
1.300									
1.250 -									
1.200 -									
200									
1.150 +									
<u>명</u> 1.100 -									
Voids ratio				*					
1.050									Ш
1.000 -			*- - -						
0.950									
0.000									
0.900 -									
0.300									
0.850									
05.00 T							Ic	g pressure	/ Cv
ত 04.00								g pressure	
$\frac{1}{2}$ CV $\frac{1}{2}$ \frac									
€ 02.00									
I									
00.00 +		40		100		40	20		404
1		10		100 ressure kPa		10	00		100
Soil description	on .			Applied		1			
	Very soft br	own slightly sandy C		١,	/oids	M _v	C _v	C _v	
Preparation	Undisturbed	d		Pressure	ratio		(t _{50, log})	(t _{90, root})	
Index properti	es Liquid lim	nit % 43 Plasti	c limit % 22	kPa		m ² /MN	m ² /year	m²/year	
(if available) Specimen det	tails	Initial Fina	. 		.3087	1.755	2.5	2.8	
Particle densi		2.65 assum		50 1	.1653	0.764	2.5	2.8	
Diameter Height		75.00 19.05 16.6	mm 4 mm		.0953	0.646 0.503	2.5 2.9	2.7 3.1	
Voids ratio		1.309 1.01			.9999	0.050	-	-	
Moisture cont	ent	50 40	% 3	50 1	.0168	0.168	-	-	
Bulk density Dry density		1.72 1.83 1.15 1.3							
Saturation		101 103	%						
Average temp	perature for test	20	°C						
Swelling pres	sure	not measure	ed kPa						
									
Notes :			-						
			<u> </u>						
Specimen taker	10 mm from ba	ase of sample							
A Ref							Fig	gure	

1.350 1.300 1.300 1.250 1.200 1.150 1.100 1.050 1.000 0.950 0.950 0.900 0.850 50.00 40.00 10	63 CASTLE ST	TREET			Applied p)ressu	Hole No Depth (r Samp N ID Spec Re	n BGL) o 15 A50	085-152	8.0 2016	Type 011911270	re / voids ra	atio
1.350 1.300 1.250 1.200 1.150 1.150 1.050 1.050 1.000 0.950 0.950 0.900 0.850 50.00 40.00 10					Applied	ressu	Samp N ID Spec Re	o 15 A50	085-152	2016	Type 011911270	03	atio
1.300 — 1.300 — 1.250 — 1.250 — 1.250 — 1.250 — 1.150 — 1.150 — 1.050 — 1.050 — 1.050 — 1.000					Applied p	pressu	ID Spec Re	A50	085-152	2016	01191127	03	atio
1.300 — 1.300 — 1.250 — 1.250 — 1.250 — 1.250 — 1.150 — 1.150 — 1.050 — 1.050 — 1.050 — 1.000					Applied p) ressure the second se	Spec Re						atio
1.300 — 1.300 — 1.250 — 1.250 — 1.250 — 1.250 — 1.150 — 1.150 — 1.050 — 1.050 — 1.050 — 1.000					Applied p	×					og pressu	re / voids ra	atio
1.300 — 1.300 — 1.250 — 1.250 — 1.250 — 1.250 — 1.150 — 1.150 — 1.050 — 1.050 — 1.050 — 1.000					Applied p	x	ire kPa				og pressu	re / voids ra	atio
1.250 1.200 1.150 1.150 1.150 1.050 1.000 1.000 0.950 0.950 0.900 40.00 40.00 10.00 10.00 10.00 10.00 The paration of the properties (if available)						*							
1.200 1.150 1.150 1.150 1.000 1.000 1.000 0.950 0.950 0.950 0.900 1.000						×							
1.200 1.150 1.150 1.150 1.000 1.000 1.000 0.950 0.950 0.950 0.900 1.000						88 ×							
1.150 — Oight Spin 1.100 — Oigh Spin						×							
1.150 — Oight Spin 1.100 — Oigh Spin						×							
0.950						×							
0.950						*							
1.050 — 1.000						*							
1.050 — 1.000						*							
1.050 — 1.000						×							
1.000						*							
0.950 0.900 0.850 50.00 40.00 1 30.00 00.00 1 Soil description Preparation Index properties (if available)						*							
0.950 0.900 0.850 50.00 40.00 1 30.00 00.00 1 Soil description Preparation Index properties (if available)						*	*****						
0.900 0.850 50.00 40.00 40.00 10.00 10.00 1 Soil description Preparation Index properties (if available)													
0.900 0.850 50.00 40.00 40.00 10.00 10.00 1 Soil description Preparation Index properties (if available)													
0.850 40.00 40.00 1 30.00 10.00 1 Soil description Preparation Index properties (if available)													Ш
0.850 40.00 40.00 1 30.00 10.00 1 Soil description Preparation Index properties (if available)										+++			
50.00 40.00 40.00 50 10.00													
40.00 t t 30.00 E O 20.00 10.00 00.00 1 Soil description Preparation Index properties (if available)													
Soil description Preparation Index properties (if available)						Ш				ПП	Lo	g pressure	/ Cv
00.00 1 Soil description Preparation Index properties (if available)													
00.00 1 Soil description Preparation Index properties (if available)													
00.00 1 Soil description Preparation Index properties (if available)													
Soil description Preparation Index properties (if available)						Ш				Щ			ШЩ
Preparation Index properties (if available)			10			10				100	00		100
Preparation Index properties (if available)							ssure kP	'a					
Index properties (if available)	Soft to firm CLAY beco	greyish browning organi	wn slightly sa ic clayey SIL	andy silty LT toward	/ ds	A	pplied	Voids	M,		C_{v}	C_{v}	
(if available)	Undisturbed					Pr	ressure	ratio	IVI	/	(t _{50, log})	(t _{90, root})	
	Liquid lim	nit % 43	Plastic li	imit %	24		kPa		m ² /N	ΛN	m²/year	m²/year	
Specimen detail	_ 	Initial	Final				0 50	1.3133 1.1834	1.12	22	29	34	
Particle density	o	2.65	assumed	d Mg/m	3		100	1.1431	0.36		12	13	
Diameter			5.01	mm			200	1.0615	0.38		19	19	
Height Voids ratio		19.06 1.313	16.35 0.984	mm			400 200	0.9679 0.9741	0.22		18	19 -	
Moisture conten	t	49	37	%		-	100	0.9843	0.0		-	-	
Bulk density		1.70	1.83	Mg/m									
Dry density		1.15	1.34	Mg/m	3	<u> </u>							
Saturation Average temper	ature for test	98	100	% °C		-							
				_									
Swelling pressur	е	no	t measured	kPa		\vdash	+						
Notes :													
						\vdash	+						
Specimen taken	40 (ase of samp	ole			上							
A Ref	10 mm from ba				<u>do</u>						Fig	jure	
SLR 5.3 Rev 146	10 mm from ba				(≯∢)		Printe	ed:18/03/	2016 1	0:14		OE	D

roject No	A508	5-15							Sa	mple		Hole N	lo			DI	1405				
				<u> </u>	_					tails:		Depth		CL)		_	.00			—	—
Project Name	A63 (CASTL	E 51	KEE	: 1							Samp		23		111	Туре		UT		
												ID	110		85-15	2016	6011911	321			
												Spec F	Ref	7.00	00 10		7011011				
0.420 -	<u> </u>	=	_						 							111			,		$\overline{}$
									A	pplied	pres	sure kPa					Log pres	sur	e / voids ra	atio	\forall
0.410 -		_	H							•										Н	+
0.400 -		+									λ										+
												*									
0.390 -		+																			\forall
0.380 - . ⊆																					\dagger
Voids ratio		\perp											9								
pio/				П	\prod					\prod	П					\prod					\prod
0.360 -		\perp			Ш						Ш			\sqcup	Ш					Ш	Щ
												* .									
0.350 -		_	H										*							Ш	\mathbb{H}
0.340 -		_																			$^{\rm H}$
0.330 -		_		+																Ш	†
0.320 - 02.50 -		\equiv	\equiv						$\overline{}$									1 0	pressure	/ Cv	
ত্ত্ব 02.00 -		_	H		+	+												LO	pressure	T	\exists
C		+																			+
2 01.00		+			+	†				+			•							++	$^{+}$
O 00.50 -										1										Ш	П
00.00 -						10)				1	00				10	00			1	— 1000
									A	Applie		essure k	Pa								
Soil description	on	Soft br	own s	slightl	ly sa	ndy:	slightly g	ravelly	CLA	Y.		Applied					C _v		C _v		
Preparation		Undist	urbed								F	ressure		ids atio	M	V	(t _{50, log}	,)	(t _{90, root})	ı	
Index propert	ies		id limi		3	3	Plastic I	imit %	1	9		kPa	'		m ² /l	MN	m²/yea	ar	m²/year	1	
(if available)					.i+:-'		Ein-I	1			ļ	0		487							_
Specimen de Particle dens			ŀ		itial 2.65		Final assumed	d Mg/	m³		-	50 100		115 956	0.5 0.2		0.55 0.89	_	0.6 0.93		
Diameter	-		ļ			75.0		mm	ı		F	200	0.3	745	0.1	52	1.1		1.1		
Height Voids ratio					9.04 .449	+	17.80 0.354	mm	l		H	400 200	_	489 514	0.0		1.5		1.6 -		
Moisture conf	tent				18		14	%	. 2		F	100		544	0.0		-		-		
Bulk density Dry density					.83	+	2.23 1.96	Mg/			H										
Saturation					105	1	105	%													
Average temp	peratur	e for te	st			20	1	°C			}							-			
Swelling pres	sure				r	not m	neasured	kPa			F										
Notes :											-										
											F							\Box			
Specimen taker	n 10	mm fro	om ba	se of	sam	ple					E										
A Ref)				(dia)								Fig	ure		
A VEI																					
SLR 5.3 Rev 146	F٩			6		P)		1	(⊁ ≰)		Prin	ited:1	8/03/	2016 1	0:14	1		OE	D	

		ONE DIMENSI BS 1377	ONAL CON : Part 5 : 1				•		
Project No	A5085-15		Sample	Hole No		ВН	1407		
Project Name	A63 CASTLE ST	TREET	Details:	Depth (m	n BGL)	1.7	70		
'				Samp No	5		Туре	UT	
				ID	A508	35-152015	120811142	29	
				Spec Ref	f				
0.740			Applied pre	seuro kDa			_og pressui	re / voids ra	atio
			Applied pre	Soure Kra			- proces	To / Volue la	
0.720									
0.700				*					
0.000									
0.680									
0.660				No.					
				'					
Voids ratio				*.					
Voic									
0.620					· · · ·				
0.600									
0.580									
0.560									
0.540 02.50									/O:
ল 02.00	-						Log	g pressure	/ CV
00.50 00.10 00.00 00.00 00.00 00.00	-			+	+				
≥ 01.00									
00.00	1	10		100		100	00		10000
		. •		ressure kPa	a				
Soil descript		brown slightly sandy silty partings of sand and silt.	CLAY with	Applied			C _v	C_{v}	
Preparation	Undisturbed			Pressure	Voids ratio	M_{v}	(t _{50, log})	(t _{90, root})	
Index proper		-	it % 25	kPa	Tatio	m²/MN	m²/year	m²/year	
(if available)				25	0.7346				
Specimen de Particle dens		Initial Final 2.65 assumed	Mg/m ³		0.7244 0.7004	0.234 0.279	1.8 2.2	1.9 2.2	
Diameter	,	75.12	mm	200	0.6664	0.200	1.9	2	
Height Voids ratio		20.17 19.07 0.735 0.639	mm		0.6203 0.6283	0.138 0.025	1.6	1.8 -	
Moisture cor		28 25	%		0.6394	0.068	-	-	
Bulk density Dry density			Mg/m ³ Mg/m ³						
Saturation		100 105	%						
	perature for test	21	°C						
Swelling pre	ssure	>25	kPa						
Notes :			ŀ						
Specimen take	en 10 mm from ba	ase of sample							
QA Ref SLR 5.3 Rev 146	ESG		UKAS	Printe	d:18/03/2	2016 10:14	Fig	ure OE	D
Nov 14	Environmental Scie	ntifics Group	1157						

roject N	Vo	A5085	-15							nple		Hole No)			В	H407					
roject N	Name	A63 C	ASTI	F ST	RFFT				Det	ails:		Depth (GL)		_	10					_
iojoot iv	varric	7000	AOIL									Samp N		T9			Туре			UT		
												ID	-		85_15	201	5120811	1233		<u> </u>		
												Spec R	o f	A30	00-10	201	312001	1230				—
	4.000											Spec R	eı	ļ								—
	1.000 T		\Box						Ар	plied	press	ure kPa					Log pre	ssui	re / vc	oids ra	atio	
	Ī					П																П
	0.950		+																		\Box	Н
	0.900		+-																		H	Н
								*														
	0.850		+						\rightarrow		Ш										Н	Н
	0.800		<u> </u>								7										Ш	Ш
atio																						
S 78	0.750		\perp			Ш				7 -		*										Ш
Voids ratio	3.700																					
>	0.700																					
	0.700		1			\Box					Ш					\parallel					П	П
	0.650		+								Ш										П	Ш
	0.600		+	\vdash																	+	H
	0.550		-	-																	+	Н
	0.500		\bot	Ш																	Ш	Ш
	25.00 T		$\overline{}$						\top		П					П		Lo	g pres	sure	/ Cv	$\overline{}$
ar (20.00		-						+				<u> </u>			+		Ŧ	9		Ť	П
$^2/ye$	15.00		+								Н					+					+	Н
Cv m²/year (log t)	10.00		+	-							++					+					+	Н
Ó	05.00		-								Н					+					+	Н
	00.00 ‡																					Щ
	1					1	0				. 1	00				10	000					100
		_							A	oplie	a pre	essure kF	² a									
Soil de	escriptic	n	Very s	oft bro	wn sli	ghtly :	sandy silty (CLAY.			7	Applied					C _v		С			
Prepa	ration	ŀ	Undist							1	F	ressure		ids	M	I_{v}	(t _{50, lo}		(t _{90.}			
					L 0/ I		Di" "	mi4 0′	1				ra	itio	2.						İ	
Index (if availa	properti	es	Liqu	ıid limit	1 %	38	Plastic lir	nit %	23		-	kPa 0	0.0	776	m ² /	MN	m²/ye	ar	m ² /y	/ear		_
	men det	ails		Γ	Init	ial	Final	7			\vdash	25		847	1.8	79	8.6		9.	.1		_
Particl	le densi			Į	2.6	5	assumed	Mg/n	n ³			50	0.8	513	0.7	10	11		1	1		
Diame				ļ			.16	mm			-	100		100	0.4		18		2			
Height Voids				- 1	20.		18.09	mm			-	200		609	0.2		21		2		-	
	ure cont	ent		ŀ	0.9		0.769 30	%			-	100 50		648 693	0.0		-					
	density			ŀ	1.8		1.95	Mg/n	n ³				5.1	555	5.0	- 1	1					
Dry de	ensity			Į	1.3	4	1.50	Mg/n	n ³													
Satura		o =	· • • • •		10		105	%			L						1				<u> </u>	
Avera	ige temp	erature	ror te	st		2	21	°C			\vdash						1					
Swelli	ing pres	sure			ſ	not	measured	kPa														_
Notes	; :										-						1					
											\vdash						1					
Specim	nen taken	10	mm fro	om bas	se of s	ample	е															
										سقبر								Fig	ure			
A Ref		_	_							Actor.							l l	ı ıy	uie			
A Ref	3				6	7				**		Deica	·04·4	8/03/2	0016	10.4		ı ıg		ΟE	ь	

roject No	A5085	5-15						Samp		Hole N	0			Bŀ	1407			
roject Name	A63 C	ASTI	F ST	RFF	Т			Details	s:	Depth		GL)		9.0				_
rojeot rame	7.00 0	7.012	_ 0.							Samp		22		H	Туре	Р		_
										ID			85-152	015	1222110			
										Spec F	₽ _o f	7.00	00 102	.010	712221100			—
1.800 -										Opec i	\Ci							_
1.000	L		L].		∐ Լ			Applie	d pres	ssure kPa				լլլ	og press	ure / voids r	atio	
1.700 -																		
1.700																		
1.600 -										R								
1.500 -																		
1.000																		
1.400 -										,	\							Ш
ष्ट <u>१</u> ८ 1.300 -											\						Ш	Ш
Voids ratio										*								
1.200 -											*	. 🛴						
1.100 -					Ш													Ш
1.000 -																		
0.900 -																	Ш	
0.800 -					$\perp \! \! \perp$													
10.00 -					П	П				П					1	og pressure	/ Cv	٦
- 00.80 gr																од р. осоц. о		Ħ
= 00.00 - 00.00 = 0.00																		H
>					+													Н
					†			\uparrow										П
00.00						10				100				100	00		10	000
	l					10		Appl		ressure k	Pa			100	00		10	JU
Soil description	on					ntly sandy si	ty CLA	Y with	Г	Applied					Ι.	Ι.		_
		freque			gmer	nts.				Pressure	Vo	ids	M _v		C _v	C _v		
Preparation		Undist									ra	tio			(t _{50, log})			
Index propert (if available)	ies	Liqu	id limi	it %	98	Plastic I	imit %	49		kPa		400	m ² /N	IN	m²/year	m²/year		_
Specimen de	tails			In	tial	Final	7		 	0 50		483 864	0.45	1	5	5.4		
Particle dens					65	assume			ļ	100	1.6	202	0.49	3	2.1	2.2		_
Diameter Height				1.9	7 5.98	74.99 15.65	mm mm		}	200 400		414 979	0.68		0.4 0.29	0.43 0.32		_
Voids ratio				1.	748	1.266	∃‴"		ŀ	200		241	0.06	0	-	-		_
Moisture cont	tent				64 50	48	%	3	F	100	1.2	662	0.18	9	-	-		_
Bulk density Dry density					.58 .96	1.74 1.17	Mg/ Mg/		ŀ							1		
Saturation					97	101	%		[_
Average temp	perature	tor te	st			20	°C		}							1		_
Swelling pres	sure				nc	t measured	kPa		Į									_
Notes :									- }							1		
110100 .									ŀ									_
Specimen tel	. 10	mm fr	om ha	so of	cor-	alo.			F							1		_
Specimen taker	10	mm fro	ли ва	se Of	odilik	л е		قبر					<u> </u>		l İe:	gure		_
SLR 5.3						5										gure OE	_	
		_											2016 1					

roject No	A5085-1	5					Sample	;	Hole N	0			ВН	H407		
roject Name	A63 CA	STLF ST	TRFF	Т			Details		Depth		GL)		+-	.50		
roject riame	700 070	OTEL O							Samp		33		_	Туре	UT	
									ID .			85-152	015	1222110		
									Spec R	Pof	7.50	00 102	.010	71222110	120	
0.410 -							<u> </u>		Орест							
	-			 	1		Applied	pres	sure kPa				וַו	Log press	sure / voids r	atio
0.400 -													Ш			
0.390 -																
0.380 -							+	igoplus								
0.370 -									*				Н			
atio																
Voids ratio			+	+				++	+			+++	++			+++
^									/	R						
0.350 -				+				++		1			H			+++
										\						
0.340 -									*		\setminus		Н			
										*	· - 🎾					
0.330 -																
0.320 -																
0.310 -																
0.510 -									•	*			П	- Ii	og pressure	/ Cv
ত্ত্ব 02.00 -							+						Н	<u>_</u>	og pressure	
= 02.00 - 0.00 = 0.00													Н			
> 01.00 -								+++								
													Ш			
00.00				,	10			1	00				10	00		100
	ı				10		Applie		essure k	Pa			10	00		100
Soil description				ish gr	ey slightly s	andy sli	ghtly	Γ	Applied					C		
Preparation		avelly CL							Pressure		ids	M,	,	C_{v} ($t_{50, log}$	$\begin{pmatrix} C_{v} \\ (t_{90, root}) \end{pmatrix}$	
		ndisturbed Liquid lim		27	Plastic li	mit 0/	15	I.		ra	atio	2/	MN!			
Index propert (if available)	162	Liquid IIM	iii 70	27	riasiic II	11111 70	15	F	kPa 0	0.4	069	m²/N	IIN	m²/year	m²/year	
Specimen de				tial	Final]	2		50	0.3	840	0.32		2.3	2.5	
Particle dens Diameter	ity		2.	.65 7!	assumed 5.01	Mg/r mm	n³	H	100 200		724 542	0.16		2.4	2.1	
Height			19	.05	18.13	mm		F	400		332	0.07		2.3	2.5	
Voids ratio			-	407	0.339				200		353	0.00		-	-	
Moisture conf	tent			15	13	%	2	L	100	0.3	386	0.02	25	-	-	
Bulk density Dry density				.17 .88	2.25 1.98	Mg/r Mg/r		-								
Saturation				00	1.96	ivig/r %	n	-								
Average temp	perature fo	or test			20	°C		E								
Swelling pres	sure			not	t measured	kPa		-								
				.101		J.`` "										
Notes :																
_								E								
Specimen taker	n 10 m	m from ba	ase of	samp	le			_						<u> </u>	<u> </u>	
A Ref							GEO C								igure	
SLR 5.3 Rev 146			6	>\			★		Prin	ted:1	8/03/	2016 1	0:14	1	OE	D
~ 1 TO			ntifics				UKA: TESTING									

roject No	A5085-15		Sample	Hole No		ВІ	H408		
Project Name	A63 CASTLE ST	TREET	Details:	Depth (m	BGL)	4.9			
roject Name	A03 CASTLE 31	INLLI		Samp No		1	Туре	Р	
				ID)85-15201 <i>5</i>	12091025		
				Spec Ref		102010	712001020		
1.050 -				Орос гло.					
			Applied pro	essure kPa			Log pressu	re / voids ra	atio
1.000 -		<u> </u>							
0.950 -									
			Q						
0.900 -									
0.850 -									
Voids ratio									
Voic				*					
0.750 -					\perp				+++
0.700 -									
0.650 -									
0.600 -									
0.550 -									
02.50 -							Lo	g pressure	/ Cv
$\frac{1}{2}$ Co.00 C									
01.50 -									
O0.50									
00.00 -									
	1	10		100		10	00		1000
			Applied	oressure kPa					
Soil descripti		rey silty CLAY becoming sandy silty CLAY with		Applied			C _v	C _v	
Preparation	Undisturbed		rorganic	Pressure	Voids	M_{v}	(t _{50, log})	(t _{90, root})	
			limit % 24	kPa	ratio	m²/MN	m²/year	m²/year	
Index propert (if available)	Liquiu IIII	/0 42 Flastic	70 24		1.0106	III /IVIIN	iii /year	iii /year	
Specimen de		Initial Final	- 2	25	0.9293	1.617	1.7	1.8	
Particle dens Diameter	іту	2.65 assume 74.99	Mg/m ³ mm		0.8973 0.8509	0.664 0.489	1.8 2.1	2.2	
Height		19.02 17.00		200	0.7853	0.355	1.9	1.9	
Voids ratio Moisture con	tent	1.011 0.797 39 32	%		0.7901 0.7966	0.027 0.072	-	-	
Bulk density	torit .	1.83 1.94	Mg/m ³	30	0.1 300	0.072		_	
Dry density		1.32 1.48	Mg/m ³						
Saturation Average tem	perature for test	102 105 21	% ℃						
									
Swelling pres	ssure	not measured	d kPa	-		-			
Notes :									
Specimen take	n 10 mm from ba	ase of sample							
QA Ref			ශ්ත				Fig	jure	
1 1				I					
SLR 5.3 Rev 146		60	(>∢) =	Printe	1:18/03/	2016 10:14	₁	OE	D

ONE DIMENSIONAL CONSOLIDATION TEST BS 1377: Part 5: 1990: clause 3 Project No A5085-15 Sample Hole No BH408 Details: Depth (m BGL) 9.05 A63 CASTLE STREET Project Name Samp No Туре ID A5085-1520151209104559 Spec Ref 1.150 Log pressure / voids ratio Applied pressure kPa 1.100 1.050 1.000 0.950 Voids ratio 0.900 0.850 0.800 0.750 0.700 0.650 50.00 Log pressure / Cv 40.00 m²/year (log t) 00.00 (00 t) 00.00 10.00 00.00 1000 10000 10 100 Applied pressure kPa Dark greyish brown sandy clayey SILT becoming Soil description Applied C_v C_v very soft organic silty CLAY towards base M_{v} Voids Preparation Pressure (t_{90, root}) $(t_{50, log})$ ratio Liquid limit % Plastic limit % Index properties 37 kPa m²/MN m²/year m²/year (if available) 1.1277 0 Initial Final 50 1.0464 Specimen details 0.764 28 30 Particle density 2.65 assumed Mg/m³ 100 1.0096 0.360 16 15 Diameter 74.96 200 0.9325 0.384 9.4 mm 9 Height 19.03 16.58 mm 400 0.8362 0.249 72 7.5 Voids ratio 1.128 0.854 200 0.8443 0.022 Moisture content 43 34 % 100 0.8542 0.053 Bulk density 1.91 Mg/m³ 1.78 Dry density 1 25 1 43 Mg/m³ Saturation 101 105 ٥С Average temperature for test Swelling pressure not measured kPa Notes: Specimen taken 10 mm from base of sample QA Ref **Figure SLR 5.3** Printed:18/03/2016 10:14 **OED Rev 146** Nov 14 **Environmental Scientifics Group**

roject No		A5085-15						Samp		Hole No	0			В	H408				
roject Na	me	A63 CASTLE S	STRE	ET				Detai	ls:	Depth (m B	GL)		1	1.50				
,										Samp N		25			Туре		UT		
										ID			85-15	201	5120910	0504			
										Spec R	ef	1							
0	.655 т	<u> </u>	_							-									<u> </u>
								Appli	ied pres	sure kPa				l	Log pre	ssu	re / voids	ratio	\Box
0	.650		44	- -	++														Ш
0	.645				Ш														Ш
0	.640		$\perp \perp$		Ш														Ш
0	.635				Ш														Щ
di gi									\searrow										
ನ ಪ	.630 +			Ш	Ш														Ш
Voids ratio																			
0	.625				Ш					,									Ш
											\								
0	.620				Ш					*	K								Щ
0	.615				Ш														Ш
0	.610				Ш														Ш
	. ₆₀₅]																		Ш
	00.00		\Box											Ш		Lo	g pressure) / C\	/
/ear t)	80.00																		П
m²/ye log t)	60.00 40.00							•		-	•								П
> _	20.00							•		•									
	00.00																		Щ
		1			1	0				100				10	000				100
								Apı	olied p	ressure k	Pa								
Soil des	criptic	n Dark brov SAND.	vn slig	htly (grave	lly slightly	clayey			Applied					C _v		C _v		
Prepara	tion	Undisturb	ned							Pressure		ids atio	M	1,	(t _{50, lo}		(t _{90, root})		
Index pr	onerti				24	Plastic li	mit %	NP		kPa	10	atio	m ² /	MNI	m²/ye		m²/year		
(if availabl	le)				- 1		_			0	0.6	504				<u>.</u>	III 7 your		_
Specime Particle				Initia 2.65	_	Final assumed		_3	-	50		349	0.1		49 32		59		
Diamete		ıy		2.00	75.0		Mg/n mm	n-	-	100 200		316 267	0.0		52		41 55		
Height				20.17	_	19.80	mm			400	0.6	195	0.0		25		33		
Voids ra Moisture		ent	-	0.650)	0.621 23	%		-	200 100		203	0.0		-		-		
Bulk der	nsity			1.97	_	2.01	Mg/n	n ³		.00	0.0		- 0.0						
Dry den	sity			1.61 92	-	1.64 97	Mg/n %	n ³	-										
		erature for test		<i>3</i> ∠	21		°C		}									上	_
					nct :	2000:::	kPa		-										_
Swelling	press	sult		L	iiot N	neasured	кга		}						1				
Notes :																			_
									}						1				
Specimer	n taken	10 mm from	base (of sa	mple														
A Ref					7			G	n l							Fig	ure		
					_			27	العات							_			

Hole No		BH	H417		
Depth (m	n BGL)	3.5			
Samp No			Туре	UT	
ID		85-152015	12220153		
Spec Re					
		1 1 1 1 1 1		re / voids ra	atio .
ssure kPa			Log pressu	ile / voius ra	
*					
			[Lo	g pressure	/ Cv
100		10	00		1000
ressure kPa	a				
Applied	Voids	M_{v}	C _v	C _v	
Pressure	ratio	IVIV	(t _{50, log})	(t _{90, root})	
kPa		m ² /MN	m²/year	m²/year	
	0.8057 0.7737	0.709	1	1	
50	0.7553	0.415	1.8	1.9	
	0.7260 0.6892	0.334 0.213	2.2	2.1	
	0.6921	0.017	-	-	
50	0.6981	0.071	-	-	
			Fic	gure	
Drinto	v4·18/03/	2016 10-17			n
	Printe	Printed:18/03/2	Printed:18/03/2016 10:14	Printed:18/03/2016 10:14	Printed:18/03/2016 10:14 Figure OE

oject No	A5085-15		Sample	Hole No		ВІ	- 417		
oject Name	A63 CASTLE ST	TREET	Details:	Depth (m	BGL)	6.	00		
-,				Samp No	17		Туре	Р	
				ID .	A50	85-15201	512220154 ⁻		
				Spec Ref	7.00				
0.960 т	<u>.</u>		<u> </u>						
			Applied pre	ssure kPa			Log pressu	re / voids ra	atio
0.940									
0.920			•						
0.900									
0.880									
atio									
Voids ratio									
Voic				*					
0.840				$\parallel \setminus \parallel$					\coprod
0.820									
0.800									
				*					
0.780									
0.760									
02.50 T							Lo	g pressure	/ Cv
ig 02.00								9	
% () 01.50 + 01.50 + 01.00 +									++++
>									++++
I									+++
00.00 +		10		100		10	00		100
1		10	Applied p	100 pressure kPa		10	00		100
Soil description		reyish brown slightly	sandy silty	Applied					
Preparation	CLAY.				/oids	M_{v}	C _v	C _v	
	Undisturbed				ratio		(t _{50, log})	(t _{90, root})	
Index properti	es Liquid lim	nit % 38 Plast	ic limit % 24	kPa	0054	m²/MN	m²/year	m²/year	
Specimen det	ails	Initial Fin	al).9851).9251	1.208	1.9	2.1	
Particle densi		2.65 assur		50 ().8961	0.603	1.7	1.8	
Diameter Height		75.11 19.07 17.2	mm 27 mm).8534).7901	0.450 0.341	1.8 1.9	1.9 2	
Voids ratio		0.985 0.79).7918	0.009	-	-	
Moisture cont	ent	37 29		50 ().7974	0.063	-	-	
Bulk density Dry density		1.83 1.9 1.33 1.4							
Saturation		101 97	%						
Average temp	erature for test	20	°C						
Swelling pres	sure	not measu	red kPa						
Notes :									
NULES .									
Cnoolman t-1	10	non of named-							
Specimen taker A Ref	10 mm from ba	ase or sample					l le:-	jure	
∧n∖eı I	_		CO				11-10	ıure	

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP BS1377: PART 4: 1990: LIGHT COMPACTION, 2.5 kg rammer Sample Details: Hole No A5085-15 Project No Depth (m BGL) 4.60 A63 CASTLE STREET Project Name Samp No Туре A5085-1520160119124449 Spec Ref zero, 5% and 10% air voids 2.0 1.9 1.8 1.7 DRY DENSITY Mg/m3 0 1.5 1.4 1.3 1.2 64 0 8 16 24 32 48 56 MOISTURE CONTENT % Soil description Derived Parameters + Grey and brown slightly sandy slightly gravelly CLAY. Test method BS 1377:part 4:1990: clause 3.3, 2.5 kg rammer in a 1 litre mould Maximum dry density, Mg/m3 Preparation Original material was natural, single sample tested 1.63 Material > 37.5mm 0 Material < 37.5mm > 20mm 0 Optimum moisture content, % Particle density, Mg/m³ 2.65 assumed 19 Remarks Figure QA Ref SLD 4, 3.3/4 **COMPL** Printed:18/03/2016 10:13 Rev 66

Aug 11

ESG 🕏

SAM	IPLE S	OURCE					Test Data	a		F	REMARKS
Hole	Sar	nple	Dep	th	Compaction Type	Test No.	Moisture Content	Dry Density	Hand Vane Shear		
						INO.	Content	Density			
No	No.	m/c	from	to	BS 1377				Strength		
DILLAGO	D11	40.00/	m	m	Part 4	%	%	Mg/m3	kN/m²		
BH403	B11	40.9%	4.60	5.00	2.5kg	1	41	1.25	Too Soft		
BH403	B11	40.9%	4.60	5.00	2.5kg	2	32	1.36	4		
BH403	B11	40.9%	4.60	5.00	2.5kg	3	26	1.53	8		
BH403	B11	40.9%	4.60	5.00	2.5kg	4	21	1.62	24		
Bilion	B	10.00/			0.51						
BH403	B11	40.9%	4.60	5.00	2.5kg	5	16	1.63	74		
BH403	B11	40.9%	4.60	5.00	2.5kg	6	10	1.61	Too Stiff		
SLR 4	Notes :				ut using Pilcon	vane on	1	Loc No.	A5085-15	•	TABLE
Rev.0 Sept 99			recompacted	I specimen				Location	A63 CASTLE STRE	ET	Sheet 1 of 1

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP BS1377: PART 4: 1990: LIGHT COMPACTION, 2.5 kg rammer Sample Details: Hole No Project No Depth (m BGL) 5.00 A63 CASTLE STREET Project Name Samp No Туре A5085-1520160126094756 Spec Ref zero, 5% and 10% air voids 2.0 1.9 1.8 1.7 DRY DENSITY Mg/m3 1.5 1.4 1.3 1.2 64 0 8 16 24 32 40 48 56 MOISTURE CONTENT % Soil description Derived Parameters + Dark grey slightly sandy clayey SILT. Test method BS 1377:part 4:1990: clause 3.3, 2.5 kg rammer in a 1 litre mould Maximum dry density, Mg/m3 Preparation Original material was natural, separate specimens tested 1.67 Material > 37.5mm 0 Material < 37.5mm > 20mm 0 Optimum moisture content, % Particle density, Mg/m³ 2.65 assumed 15 Remarks Figure QA Ref SLD 4, 3.3/4 **COMPL** Printed:18/03/2016 10:13 Rev 66

Aug 11

ESG 🔗

SAM	IPLE S	OURCE					Test Data	a		F	REMARKS
					Compaction	Test	Moisture	Dry	Hand Vane		
	0		Б.								
Hole	San	nple	Dep		Type	No.	Content	Density	Shear		
No	No.	m/c	from	to	BS 1377				Strength		
			m	m	Part 4	%	%	Mg/m3	kN/m²		
BH404	P9	41.3%	5.00	6.00	2.5kg	1	41	1.26	Too Soft		
BH404	P9	41.3%	5.00	6.00	O Elea	2	37	1.34	Too Soft		
БП404	ГЭ	41.5%	5.00	6.00	2.5kg	2	37	1.54	100 3011		
BH404	P9	41.3%	5.00	6.00	2.5kg	3	5.5	1.59	Too stiff		
BH404	P9	41.3%	5.00	6.00	2.5kg	4	24	1.51	40		
2		111070	0.00	0.00	2.0.19	•					
		 									
BH404	P9	41.3%	5.00	6.00	2.5kg	5	28	1.43	28		
BH404	P9	41.3%	5.00	6.00	2.5kg	6	12	1.66	86		
			<u></u>	<u></u>				<u></u>			
		 									
		1									
		1									
	Notes :	<u> </u>									
	NOTES :	1	Hand vane te	ests carried o	ut using Pilcon v	/ane on		Loc No.	A5085-15		TABLE
SLR 4											
SLR 4 Rev.0			recompacted			ano on		200 140.	A0000-10		Sheet 1 of 1

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP BS1377: PART 4: 1990: LIGHT COMPACTION, 2.5 kg rammer Sample Details: Hole No Project No Depth (m BGL) 5.00 A63 CASTLE STREET Project Name Samp No Туре UT A5085-1520151208042145 Spec Ref zero, 5% and 10% air voids 2.2 2.1 2.0 1.9 DRY DENSITY Mg/m3 1.7 1.6 1.5 1.4 4 8 32 0 12 16 20 24 28 MOISTURE CONTENT % Derived Parameters + Soil description Grey slightly sandy silty CLAY. Test method BS 1377:part 4:1990: clause 3.3, 2.5 kg rammer in a 1 litre mould Maximum dry density, Mg/m3 Preparation Original material was natural, single sample tested 1.67 Material > 37.5mm 0 Material < 37.5mm > 20mm 0 Optimum moisture content, % Particle density, Mg/m³ 2.65 assumed 17 Remarks Figure QA Ref SLD 4, 3.3/4 **COMPL** Printed:18/03/2016 10:13 Rev 66

Aug 11

SG &

SAN	IPLE S	OURCE					Test Data	a		F	REMARKS
					Compaction	Test	Moisture	Dry	Hand Vane		
Hole	San	nnle	Dep	th	Туре	No.	Content	Density	Shear		
						NO.	Content	Density			
No	No.	m/c	from	to	BS 1377				Strength		
			m	m	Part 4	%	%	Mg/m3	kN/m²		
BH406	UT16	35.5%	5.00	5.45	2.5kg	1	8.4	1.49	Too Stiff		
BH406	UT16	35.5%	5.00	5.45	2.5kg	2	12	1.56	110		
BH406	UT16	35.5%	5.00	5.45	2.5kg	3	16	1.59	79		
					- 3				-		
BH406	UT16	0F F0/	F 00	E 4E	0.51.0	4	10	1.00	44		
БП406	0116	35.5%	5.00	5.45	2.5kg	4	18	1.66	44		
BH406	UT16	35.5%	5.00	5.45	2.5kg	5	21	1.62	18		
	Notes :			1	1		<u>I</u>		<u>I</u>	I	
SLR 4					ut using Pilcon	vane on		Loc No.	A5085-15		TABLE
Rev.0 Sept 99			recompacted	specimen				Location	A63 CASTLE STRE	FT	Sheet 1 of 1
ουρι σσ								Location	, OU UNUILL SINE		Chool i Oi i

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP BS1377: PART 4: 1990: LIGHT COMPACTION, 2.5 kg rammer Sample Details: Hole No Project No Depth (m BGL) 7.50 A63 CASTLE STREET Project Name Samp No Туре A5085-1520151209113442 Spec Ref zero, 5% and 10% air voids 2.2 2.1 2.0 1.9 DRY DENSITY Mg/m3 1.7 1.6 1.5 1.4 8 32 0 12 16 20 24 28 MOISTURE CONTENT % Derived Parameters + Soil description Greyish brown slightly sandy slightly gravelly SILT. Test method BS 1377:part 4:1990: clause 3.3, 2.5 kg rammer in a 1 litre mould Maximum dry density, Mg/m3 Preparation Original material was natural, single sample tested 1.72 Material > 37.5mm 0 Material < 37.5mm > 20mm 0 Optimum moisture content, % Particle density, Mg/m³ 2.65 assumed 8.0 Remarks Figure QA Ref SLD 4, 3.3/4 **COMPL** Printed:18/03/2016 10:13 Rev 66

Aug 11

SG 🚱

SAM	IPLE S	OURCE					Test Data	a			REMARKS
Hole	San	nple	Dep	th	Compaction Type	Test No.	Moisture Content	Dry Density	Hand Vane Shear		
No	No.	m/c	from	to	BS 1377				Strength		
			m	m	Part 4	%	%	Mg/m3	kN/m²		
BH406	B23	49.0%	7.50	8.00	2.5kg	1	4.1	1.62	-		
BH406	B23	49.0%	7.50	8.00	2.5kg	2	8.4	1.71]		
									Material unsuitable.		
BH406	B23	49.0%	7.50	8.00	2.5kg	3	12	1.60	Displaced on penetration.		
BH406	B23	49.0%	7.50	8.00	2.5kg	4	16	1.48]		
BH406	B23	49.0%	7.50	8.00	2.5kg	5	10	1.62	-		
SLR 4 Rev.0	Notes :		Hand vane to		ut using Pilcon v	ane on		Loc No.	A5085-15		TABLE
Sept 99			Toompacted	. эрссипен				Location	A63 CASTLE STREE	T	Sheet 1 of 1

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP BS1377: PART 4: 1990: LIGHT COMPACTION, 2.5 kg rammer Sample Details: Hole No Project No Depth (m BGL) 3.10 A63 CASTLE STREET Project Name Samp No Туре UT A5085-1520151208112333 Spec Ref zero, 5% and 10% air voids 2.1 2.0 1.9 1.8 DRY DENSITY Mg/m3 1.6 1.5 1.4 1.3 8 32 0 12 16 20 24 28 MOISTURE CONTENT % Soil description Derived Parameters + Very soft brown slightly sandy silty CLAY. Test method BS 1377:part 4:1990: clause 3.3, 2.5 kg rammer in a 1 litre mould Maximum dry density, Mg/m3 Preparation Original material was natural, single sample tested 1.54 Material > 37.5mm 0 Material < 37.5mm > 20mm 0 Optimum moisture content, % Particle density, Mg/m³ 2.65 assumed 26 Remarks Figure QA Ref SLD 4, 3.3/4 **COMPL** Printed:18/03/2016 10:13 Rev 66

Aug 11

ESG 🕏

SAN	IPLE S	OURCE					Test Data	a		F	REMARKS
					Compaction	Test	Moisture	Dry	Hand Vane	1	
Hole	San	nple	Dep	th	Туре	No.	Content	Density	Shear		
						INO.	Content	Density			
No	No.	m/c	from	to	BS 1377				Strength		
			m	m	Part 4	%	%	Mg/m3	kN/m²		
BH407	UT9	31.6%	3.10	2.55	2.5kg	1	32	1.41	10		
BH407	UT9	31.6%	3.10	2.55	2.5kg	2	28	1.50	28		
DULGE	LITO	24.22/	0.40	0.55	0.51						
BH407	UT9	31.6%	3.10	2.55	2.5kg	3	22	1.51	72		
BH407	UT9	31.6%	3.10	2.55	2.5kg	4	24	1.53	55		
BH407	UT9	31.6%	3.10	2.55	2.5kg	5	19	1.40	105		
БП407	019	31.0%	3.10	2.55	2.5Kg	5	19	1.40	105		
	Notes :]			<u> </u>	
SLR 4	140169 .	1	Hand vane te	ests carried o	ut using Pilcon v	ane on		Loc No.	A5085-15		TABLE
	1 Hand vane tests carried out using Pilcon vane on Loc No. A5085-15 TABLE recompacted specimen										
Rev.0 Sept 99			recompacted	specimen					A63 CASTLE STRE		Sheet 1 of 1

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP BS1377: PART 4: 1990: LIGHT COMPACTION, 2.5 kg rammer Sample Details: Hole No Project No Depth (m BGL) 9.05 A63 CASTLE STREET Project Name Samp No Туре A5085-1520151209104559 Spec Ref zero, 5% and 10% air voids 2.1 2.0 1.9 1.8 DRY DENSITY Mg/m3 1.6 1.5 1.4 1.3 35 40 5 10 15 20 25 30 MOISTURE CONTENT % Derived Parameters + Soil description Dark greyish brown sandy clayey SILT becoming very soft organic silty CLAY towards base. Test method BS 1377:part 4:1990: clause 3.3, 2.5 kg rammer in a 1 litre mould Maximum dry density, Mg/m3 Preparation Original material was natural, single sample tested 1.65 Material > 37.5mm 0 Material < 37.5mm > 20mm 0 Optimum moisture content, % Particle density, Mg/m³ 2.65 assumed 16 Remarks Figure QA Ref SLD 4, 3.3/4 **COMPL** Printed:18/03/2016 10:13 Rev 66

Aug 11

ESG 🔗

					ı					_	
SAN	MPLE S	OURCE					Test Data	a		F	REMARKS
					Compaction	Test	Moisture	Dry	Hand Vane	1	
Hole	San	nple	Dep	th	Туре	No.	Content	Density	Shear		
						NO.	Content	Density			
No	No.	m/c	from	to	BS 1377				Strength		
			m	m	Part 4	%	%	Mg/m3	kN/m²		
BH408	P20	35.6%	9.05	1.05	2.5kg	1	36	1.34	6		
BH408	P20	35.6%	9.05	1.05	2.5kg	2	23	1.54	25		
Dilion		25.00/	2.25		0.51			4.50			
BH408	P20	35.6%	9.05	1.05	2.5kg	3	19	1.58	38		
BH408	P20	35.6%	9.05	1.05	2.5kg	4	16	1.65	45		
BH408	P20	35.6%	9.05	1.05	2.5kg	5	12	1.60	62		
БП400	F20	33.0%	9.05	1.05	2.5Kg	5	12	1.00	62		
	Notes :								<u> </u>	<u> </u>	Γ
SLR 4	. 10.03	1	Hand vane te	ests carried o	ut using Pilcon v	ane on		Loc No.	A5085-15		TABLE
	recompacted specimen					1					
Rev.0 Sept 99			recompacted	specimen				Location	A63 CASTLE STRE		Sheet 1 of 1

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP BS1377: PART 4: 1990: LIGHT COMPACTION, 2.5 kg rammer Sample Details: Hole No Project No Depth (m BGL) 1.20 A63 CASTLE STREET Project Name Samp No Туре A5085-1520151222015233 Spec Ref zero, 5% and 10% air voids 2.2 2.1 2.0 1.9 DRY DENSITY Mg/m3 1.7 1.6 1.5 1.4 8 32 0 12 16 20 24 28 MOISTURE CONTENT % Derived Parameters + Soil description Greyish brown slightly sandy gravelly SILT. Test method BS 1377:part 4:1990: clause 3.4, 2.5 kg rammer in a CBR mould Maximum dry density, Mg/m3 Preparation Original material was natural, single sample tested 1.71 Material > 37.5mm 13 Material < 37.5mm > 20mm 12 Optimum moisture content, % Particle density, Mg/m³ 2.65 assumed 17 Remarks Figure QA Ref SLD 4, 3.3/4 **COMPL** Printed:18/03/2016 10:13 Rev 66

Aug 11

ESG 🕏

SAN	IPLE S	OURCE					Test Data	a		F	REMARKS
Hole	Sar	mple	Dep	th	Compaction Type	Test No.	Moisture Content	Dry Density	Hand Vane Shear		
No	No.	m/c	from	to	BS 1377				Strength		
			m	m	Part 4	%	%	Mg/m3	kN/m²		
BH417	B3	20.7%	1.20	2.00	2.5kg	1	21	1.65	60		
BH417	В3	20.7%	1.20	2.00	2.5kg	2	18	1.69	88		
BH417	В3	20.7%	1.20	2.00	2.5kg	3	14	1.71	110		
BH417	B3	20.7%	1.20	2.00	2.5kg	4	21	1.54	52		
DUMAZ	DO	00.70/	1.00	0.00			0.4	1.00	T 04/4		
BH417	B3	20.7%	1.20	2.00	2.5kg	5	9.4	1.69	Too Stiff		
											_
	Notes :										<u> </u>
SLR 4 Rev.0			Hand vane to		ut using Pilcon v	vane on		Loc No.	A5085-15		TABLE
Sept 99			•					Location	A63 CASTLE STRE	ΈΤ	Sheet 1 of 1

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP BS1377: PART 4: 1990: LIGHT COMPACTION, 2.5 kg rammer Sample Details: Hole No Project No Depth (m BGL) 3.55 A63 CASTLE STREET Project Name Samp No Type UT A5085-1520151222015310 Spec Ref zero, 5% and 10% air voids 2.2 2.1 2.0 1.9 DRY DENSITY Mg/m3 1.7 1.6 1.5 1.4 8 32 0 12 16 20 24 28 MOISTURE CONTENT % Derived Parameters + Soil description Soft brown mottled grey slightly sandy CLAY. Test method BS 1377:part 4:1990: clause 3.3, 2.5 kg rammer in a 1 litre mould Maximum dry density, Mg/m3 Preparation Original material was natural, single sample tested 1.65 Material > 37.5mm 0 Material < 37.5mm > 20mm 0 Optimum moisture content, % Particle density, Mg/m³ 2.65 assumed 18 Remarks Figure QA Ref SLD 4, 3.3/4 **COMPL** Printed:18/03/2016 10:13 Rev 66

Aug 11

ESG &

SAN	IPLE S	OURCE					Test Data	a		F	REMARKS
					Compaction	Test	Moisture	Dry	Hand Vane		
Hole	Sam	nnle	Dep	th	Туре	No.	Content	Density	Shear		
No	No.	m/c	from		BS 1377	140.	Content	Density	Strength		
NO	NO.	m/c		to		0/	0/				
			m	m	Part 4	%	%	Mg/m3	kN/m²		
BH417	UT10	28.9%	3.55	4.00	2.5kg	1	29	1.50	14		
BH417	UT10	28.9%	3.55	4.00	2.5kg	2	24	1.59	38		
BH417	UT10	28.9%	3.55	4.00	2.5kg	3	10	1.60	115		
BH417	UT10	28.9%	3.55	4.00	2.5kg	4	15	1.63	88		
BH417	UT10	28.9%	3.55	4.00	2.5kg	5	21	1.63	62		
					Ü						
	Notes :	<u>. </u>			1	<u> </u>	<u>I</u>		<u>I</u>	<u> </u>	
SLR 4		1 Hand vane tests carried out using Pilcon vane on Loc No. A5085-15						TABLE			
Rev.0	recompacted specimen Location A63 CASTLE STRI										

CHEMICAL TESTS - SUMMARY OF RESULTS

		Sam	ple			Org	LOI	pН		Sulpha	ate as So	04	SD	1 options	CO ₂	Chlori	de, Cl	<2	
Hole No.			h (m)		Soil Description			r	n/test *	2:1 water	ground	acid	TS	Mg mg/L NO ₃ mg/L	_	water sol.	acid	mm	Remarks
	No.		ı	type	·				Preparation/test	sol.	water	sol.		NH ₄					
BH402	3	from	to	В		%	%	8.4	Ā	g/L 0.051	g/L	0.039	0.03		%	%	%	%	
B11402	3	1.20		В	Greyish brown slightly			0.4		0.051		0.039	0.03						
BH402	9	3.75		Р	sandy clayey SILT.	1.90 s												99	
BH402	9	3.75		Р				7.7		0.207		0.080	0.30						
BH402	11	5.75		UT	Brownish dark grey sandy slightly clayey SILT.	2.10 s												100	
BH402	13	6.40		Р	Greyish brown sandy clayey SILT.	1.90 c												100	
BH402	13	6.40		Р				8.0		0.089		0.053	0.17						
BH402	16	8.40		UT	Firm to stiff greyish brown sandy CLAY.	0.40 s												100	
BH402	16	8.40		UT				8.8		0.076		0.028	0.14						
BH402	24	10.95		UT	Very stiff greyish brown slightly gravelly sandy CLAY.	1.00												90	
BH402	24	10.95		UT				8.6		0.022		0.024	0.08						
BH402	38	15.90		UT				8.1		0.072		0.051	0.10						
BH402	55	22.00		D				8.8		0.088		0.050	0.03						
BH403	4	1.65		UT	Soft brown slightly sandy silty CLAY.	1.10												100	
BH403	12	5.00		Р	Soft brown sandy silty CLAY.	1.70 c												100	
BH403	18	8.65		UT	Very soft brown CLAY.	1.00 s												100	
BH406	27	9.00		В	Grey slightly sandy slightly gravelly CLAY.	5.00 s												97	
BH406	30	10.50		В	Greyish brown slightly sandy slightly gravelly SILT.	6.10 c												99	
BH407	3	1.20		D				7.8		0.442		0.106	0.08						
BH407	9	3.10		UT				7.6		0.636		0.187	0.39						
BH407	15	6.05		Р				7.7		0.306		0.096	0.21						
BH407	18	7.60		UT	Very soft black organic slightly sandy slightly gravelly CLAY.	10.50 s												100	
BH407	21	8.50		UT				8.5		0.123		0.110	0.42						
BH407	25	10.50		UT	Firm brownish grey slightly sandy slightly gravelly CLAY with wood	17.60												97	
BH407	25	10.50		UT				6.7		1.760		0.544	2.83						
BH407	27	11.00		UT				6.3		3.600		0.911	4.50	0.545 - -					

BS 1377 : definitive method unless stated :

* Sulphate tests preparation / test methods :

BRE Special Digest SD1, dependent options :

Org Organic matter content (s-sulphides, c-chlorides identified)

1. BS 1377:Part 3:1990:clause 5.3

4. TRL447 - 1 water soluble sulphate TS Total Sulphur to BR279 / EN ISO15178

LOI Mass loss on ignition at 440°C

2. BS 1377:Part 3:1990:clause 5.4 5. TRL447 - 2 acid soluble sulphate

Mg Soluble Magnesium to BR279, colorimetric

CO₂ Carbonate content (rapid titration)

3. BS 1377:Part 3:1990:clause 5.5 6. BR279 - groundwater sulphate

NO3 Soluble Nitrate to BR279, colorimetric

CI Chloride content < 2mm material passing 2mm sieve

NH₄ qualitative

QA Ref SLR 3 Rev 2.4 Apr 13

Project A63 CASTLE STREET IMPROVEMENTS - MAIN GI

Project No A5085-15

Carried out for Balfour Beatty Limited

Printed:04/05/2016 11:37

CHEM

CHEMICAL TESTS - SUMMARY OF RESULTS

		Sam	ple			Org	LOI	рН		Sulpha	ate as S	04	SD	1 options	CO ₂	Chlori	de, Cl	<2	
Hole No.	No.	Deptl		type	Soil Description				Preparation/test *	2:1 water sol.	ground water	sol.	TS	Mg mg/L NO ₃ mg/L NH ₄		water sol.	acid sol.	mm	Remarks
		from	to			%	%		P	g/L	g/L	%	%		%	%	%	%	
BH407	33	12.50		UT				8.4		0.048		0.030	0.05						
BH407	44	15.50		D				8.3		0.607		0.037	0.16						
BH407	52	17.50		D				8.0		0.100		0.055	0.11						
BH407	60	19.50		UT				8.2		0.442		0.047	0.15						
BH407	75	23.50		UT				8.1		0.076		0.053	0.11						
BH407	85	26.50		В				8.6		0.124		0.062	0.05						
BH408	11	4.90		Р	Soft dark grey silty CLAY becoming firm dark grey slightly sandy silty CLAY	1.70 s												100	
BH408	20	9.05		Р	very soft organic silty	0.70 s												100	
BH408	25	11.50		UT	SAND.	0.50 s												97	
BH408	30	12.60		UT	Firm organic black slightly sandy CLAY.		33											100	
BH417	3	1.20		В				8.3		0.123		0.138	0.08						
BH417	17	6.00		Р				7.8		0.423		0.139	0.30						
BH417	22	8.50		UT	Soft brown slightly sandy silty CLAY.	1.80 s												100	
BH417	25	9.50		UT	Soft brownish dark grey slightly sandy slightly gravelly CLAY.	1.00 s												97	
BH417	25	9.50		UT				7.8		0.246		0.094	0.33						

BS 1377 : definitive method unless stated :

CI Chloride content

SLR 3

Org Organic matter content (s-sulphides, c-chlorides identified)

LOI Mass loss on ignition at 440°C

CO₂ Carbonate content (rapid titration)

* Sulphate tests preparation / test methods :

4. TRL447 - 1 water soluble sulphate

5. TRL447 - 2 acid soluble sulphate

6. BR279 - groundwater sulphate

1. BS 1377:Part 3:1990:clause 5.3 2. BS 1377:Part 3:1990:clause 5.4

3. BS 1377:Part 3:1990:clause 5.5 < 2mm material passing 2mm sieve BRE Special Digest SD1, dependent options :

TS Total Sulphur to BR279 / EN ISO15178 Soluble Magnesium to BR279, colorimetric

NO3 Soluble Nitrate to BR279, colorimetric NH₄ qualitative

QA Ref A63 CASTLE STREET IMPROVEMENTS - MAIN GI Project A5085-15

Rev 2.4 Carried out for Balfour Beatty Limited Apr 13

Project No

Printed:04/05/2016 11:37

CHEM

TEST REPORT

Report No. EFS/160977 (Ver. 1)

ESG Doncaster ESG Doncaster Askern Road Carcroft Doncaster South Yorkshire DN6 8DG

Site: A63 Castle Street

The 6 samples described in this report were registered for analysis by ESG on 08-Feb-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 12-Feb-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Date of Issue: 12-Feb-2016

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Collent Sample Description College College Description College Description College Description College Description College Description College Description College Descripti	
Client Sample Description So	
Client Sample Description So	
1604377 BH407 D 53 17.50 553 100 0.106 8.0	
1604378 BH407 D 4 1.20 1060 442 0.079 7.8 1004379 <t< th=""><th></th></t<>	
1604379 BH407 D 60 19.50 467 442 0.154 8.2 1604380 BH407 D 21 8.50 1100 123 0.420 8.5 1604381 BH407 D 45 15.50 372 607 0.162 8.3	
1604380 BH407 D 21 8.50 1100 123 0.420 8.5 1604381 BH407 D 45 15.50 372 607 0.162 8.3	
1604381 BH407 D 45 15.50 372 607 0.162 8.3	
1604382 BH407 D 75 23.50 525 76 0.114 8.1	
ESG Contact Sample Analysis Contact Mr.N.Cooke	
Contact Mr N Cooke	
Bretby Business Park, Ashby Road Date Printed 12-Feb-2016	
Burton-on-Trent, Staffordshire, DE15 0YZ Report Number EFS/160977	
Tel +44 (0) 1283 554400 A63 Castle Street Report Number Table Number 1	
Fax +44 (0) 1283 554422	

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer **ESG Doncaster** Site **A63 Castle Street** Consignment No S53437 Date Logged 08-Feb-2016

S160977 Report No

							Repo	ort Du	e 15-	Feb-2	2016		
		MethodID	CustServ	Dep.Opt			ICPACIDS	ICPBRE	ICPWSS	KONECL	KoneNO3	TSBRE1	WSLM50
ID Number	Description	Sampled	REPORT A	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	SO4 (acid sol)	Magnesium (BRE)	SO4 (H2O sol) mg/l	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	Total Sulphur.	рН (BS1377)
							✓		✓				
CL/1604377	BH407 17.50-17.95	D	D	D	D	D	D	D	D	D	D	D	D
CL/1604378	BH407 1.20-1.70	D	D				D	D	D	D	D	D	D
CL/1604379	BH407 19.50-19.95	D	D				D	D	D	D	D	D	D
CL/1604380	BH407 8.50-8.95	D	D				D	D	D	D	D	D	D
CL/1604381	BH407 15.50-15.95	D	D				D	D	D	D	D	D	D
CL/1604382	BH407 23.50-23.95	D	D				D	D	D	D	D	D	D

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- В The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/160977

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water
		@ < 35°C	extraction followed by ICPOES detection
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid
		@ < 35°C	samples by high temperature combustion/infrared detection
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using
		@ < 35°C	pH probe.

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/160977 Ver. 1

Sample Descriptions

Client : ESG Doncaster
Site : A63 Castle Street
Report Number : S16_0977

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1604377	BH407 D 53 17.50	CLAY
CL/1604377	BH407 D 4 1.20	SILT
CL/1604378 CL/1604379	BH407 D 60 19.50	CLAY
CL/1604379	DH407 D 04 0 50	CLAY
CL/1604380	BH407 D 21 8.50	CLAY
CL/1604381	BH407 D 45 15.50 BH407 D 75 23.50	CLAY
CL/1604382	BH407 D 75 23.50	CLAY

Appendix A Page 1 of 1

Report No. EFS/161316 (Ver. 1)

ESG Limited (Doncaster)
ESG Doncaster
Askern Road
Carcroft
Doncaster
South Yorkshire
DN6 8DG

Site: A63 Castle Street

The 1 sample described in this report were registered for analysis by ESG on 19-Feb-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 25-Feb-2016

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Managing Director
Multi-Sector Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 25-Feb-2016

	Uni	s: mg/kg	mg/l	%	pH Units										
	Method Code	s: ICPACIDS	ICPWSS	TSBRE1	WSLM50										
	Method Reporting Limit	s : 20	10	0.005											
LAB ID Number CL/	Client Sample Description Date	SO4 (acid sol)	SO4 (H2O sol) mg/l	Total Sulphur.	рН (ВS1377)										
1606109	BH407 B 85 26.50	C40	124	0.040	8.6										
1606109	ВП407 В 85 26.50	618	124	0.049	8.6										
	ESG 😥	Client N	ame	ESG Li	imited (Doncaste	er)				Sam	ple Ana	alysis			
		Contact	<u> </u>	Mr M Sta	ınley			 							
	Bretby Business Park, Ashby Road			-					Date Pri	nted		2	5-Feb-2016		
	Burton-on-Trent, Staffordshire, DE15 0YZ				A CO O = = 41	. 04	. 4		Report N	Number		E	FS/161316		
	Tel +44 (0) 1283 554400			1	A63 Castle	Stree	et .		Table Nu				1		
	Fax +44 (0) 1283 554422														
	(0) 1200 007722														

S161316

ESG Environmental Chemistry Analytical and Deviating Sample Overview

ESG Limited (Doncaster) Customer Site **A63 Castle Street**

Consignment No S53621 Date Logged 19-Feb-2016

S161316 Report No

Report Due 26-Feb-2016

							ПСРС	лгри	0 20	F U D-2	.010		
		MethodID	CustServ	Dep.Opt			ICPACIDS	ICPBRE	ICPWSS	KONECL	KoneNO3	TSBRE1	WSLM50
ID Number	Description	Sampled	REPORT A	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	SO4 (acid sol)	Magnesium (BRE)	SO4 (H2O sol) mg/l	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	Total Sulphur.	рН (BS1377)
CL/1606109	BH407 26.50-27.00	D	D	D	D	D	D	D	D	D	D	D	D

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Matrix	MethodID	Analysis	Method Description						
		Basis							
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric						
		@ < 35°C	Acid extraction followed by ICPOES detection						
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water						
		@ < 35°C	extraction followed by ICPOES detection						
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid						
		@ < 35°C	samples by high temperature combustion/infrared detection						
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using						
		@ < 35°C	pH probe.						

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/161316 Ver. 1

Client : ESG Limited (Doncaster)
Site : A63 Castle Street
Report Number : S16_1316

Note: major constituent in upper case

Lab ID Number	Client ID	Note: major constituent in upper case Description
CL/1606109	BH407 B 85 26.50	CHALK
CL/1606109	BH407 B 85 26.50	CHALK

Appendix A Page 1 of 1 25/02/2016EFS/161316 Ver. 1

Report No. EFS/161684 (Ver. 1)

ESG Limited (Doncaster)
ESG Doncaster
Askern Road
Carcroft
Doncaster
South Yorkshire
DN6 8DG

Site: A63 Castle Street

The 6 samples described in this report were registered for analysis by ESG on 02-Mar-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 08-Mar-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Date of Issue: 08-Mar-2016

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	ma/ka	ma/l	0/	pH Units				T			I		—
	Method	Codes :	mg/kg ICPACIDS	mg/l ICPWSS	% TSBRE1	WSLM50									
	Method Reporting	Limits :	20	10	0.005	Welvied									
	UKAS Acc	redited:	Yes	Yes	No	No									
LABID Number CL/	Client Sample Description	Sample Date	SO4 (acid sol)	SO4 (H2O sol) mg/l	Total Sulphur.	рН (ВЅ1377)									
1607344	BH402 B 3 1.20		391	51	0.029	8.4									
1607345	BH402 P 9 3.75		804	207	0.304	7.7									
1607346	BH402 UT 16 8.40		278	76	0.137	8.8									
1607347	BH402 UT 24 10.95		236	22	0.082	8.6									
1607348	BH402 UT 38 15.90		513	72	0.103	8.1									
1607349	BH402 P 56 22.00		502 §	88 §	0.034	8.8									
	ESG 🕏		Client Na	ame	ESG Li Mr M Sta	imited (Do	ncaster)				Sam	ple Ana	alysis		
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422				•		stle Stree	t		Date Prin Report N Table Nu	lumber			8-Mar-2016 FS/161684 1	

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer ESG Limited (Doncaster)
Site A63 Castle Street

Consignment No S53621

Date Logged 02-Mar-2016

Report No S161684

Report Due 09-Mar-2016

							izebr	חוו טע	e 09-	iviai-z	010		
		MethodID	CustServ	Dep.Opt			ICPACIDS	ICPBRE	ICPWSS	KONECL	KoneNO3	TSBRE1	WSLM50
ID Number	Description	Sampled	REPORT A	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	SO4 (acid sol)	Magnesium (BRE)	SO4 (H2O sol) mg/l	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	Total Sulphur.	рН (BS1377)
0. // 0	Ina.	1_					_						_
CL/1607344	BH402 1.20-2.00	D	D	D	D	D	D	D	D	D	D	D	D
CL/1607345	BH402 3.75-4.75	D	D				D	D	D	D	D	D	D
CL/1607346	BH402 8.40-9.05	D	D				D	D	D	D	D	D	D
CL/1607347	BH402 10.95-11.40	D	D				D	D	D	D	D	D	D
CL/1607348	BH402 15.90-16.35	D	D				D	D	D	D	D	D	D
CL/1607349	BH402 22.00-23.00	D	D				D	D	D	D	D	D	D

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water
		@ < 35°C	extraction followed by ICPOES detection
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid
		@ < 35°C	samples by high temperature combustion/infrared detection
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using
		@ < 35°C	pH probe.

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/161684 Ver. 1

Client: ESG Limited (Doncaster)
Site: A63 Castle Street
Report Number: S16_1684

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1607344	BH402 B 3 1.20	CLAY
CL/1607345	BH402 P 9 3.75	SILT
CL/1607345 CL/1607346	BH402 P 9 3.75 BH402 UT 16 8.40	CLAY
CL/1607346	DH402 UT 10 0.40	CLAY
CL/1607347	BH402 UT 24 10.95	CLAY CLAY
CL/1607348	BH402 UT 38 15.90	CLAY
CL/1607349	BH402 P 56 22.00	CHALK

Appendix A Page 1 of 1 08/03/2016EFS/161684 Ver. 1

Report No. EFS/161698 (Ver. 1)

ESG Limited (Doncaster)
ESG Doncaster
Askern Road
Carcroft
Doncaster
South Yorkshire
DN6 8DG

Site: A63 Castle Street

The 1 sample described in this report were registered for analysis by ESG on 02-Mar-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 08-Mar-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Date of Issue: 08-Mar-2016

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	mg/kg	mg/l	%	pH Units										
	Method	d Codes :	ICPACIDS	ICPWSS	TSBRE1	WSLM50										
	Method Reporting	g Limits :	20	10	0.005											
	UKAS Acc	credited :	Yes	Yes	No	No										
LABID Number CL/	Client Sample Description	Sample Date	SO4 (acid sol)	SO4 (H2O sol) mg/l	Total Sulphur.	рН (ВЅ1377)										
1607364	BH407 UT 25 10.50		5440	1760	2.83	6.7										
					1				1							
					1				1							
	ESG 😥		Client Na	ame	ESG Li	mited (Don	caster)				Sam	ple Ana	alysis			
			Contact		Mr N Coo	ke										
	Bretby Business Park, Ashby Road				•					Date Pri	nted		0	8-Mar-2016		
	Burton-on-Trent, Staffordshire, DE15 0YZ						41 04	_		Report N				FS/161698		
	Tel +44 (0) 1283 554400					463 Ca	stle Stree	et 💮		Table Nu				1		
										I able N	ann be i			1		
	Fax +44 (0) 1283 554422															

S161698

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer ESG Limited (Doncaster)
Site A63 Castle Street

Consignment No S54040
Date Logged 02-Mar-2016

Report No S161698

Report Due 09-Mar-2016

							Nepu	лгри	C 03-	Mai-2	010		
		MethodID	CustServ	Dep.Opt			ICPACIDS	ICPBRE	ICPWSS	KONECL	KoneNO3	TSBRE1	WSLM50
ID Number	Description	Sampled	REPORT A	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	SO4 (acid sol)	Magnesium (BRE)	SO4 (H2O sol) mg/l	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	Total Sulphur.	рН (BS1377)
							✓		✓				
CL/1607364	BH407 10.50-10.85	D	D	D	D	D	D	D	D	D	D	D	D

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Matrix	MethodID	Analysis	Method Description						
		Basis							
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric						
		@ < 35°C	Acid extraction followed by ICPOES detection						
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water						
		@ < 35°C	extraction followed by ICPOES detection						
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid						
		@ < 35°C	samples by high temperature combustion/infrared detection						
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using						
		@ < 35°C	pH probe.						

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/161698 Ver. 1

Client : ESG Limited (Doncaster)
Site : A63 Castle Street
Report Number : S16_1698

Note: major constituent in upper case

Lab ID Number	Client ID	Description
		OLAY.
CL/1607364	BH407 UT 25 10.50	CLAY

Appendix A Page 1 of 1 08/03/2016EFS/161698 Ver. 1

Report No. EFS/161702 (Ver. 1)

ESG Limited (Doncaster)
ESG Doncaster
Askern Road
Carcroft
Doncaster
South Yorkshire
DN6 8DG

Site: A63 Castle Street

The 2 samples described in this report were registered for analysis by ESG on 02-Mar-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 08-Mar-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 08-Mar-2016

		Units :	mg/kg	mg/l	%	pH Units		1							
		d Codes :	ICPACIDS	ICPWSS	TSBRE1	WSLM50									
	Method Reporting	g Limits :	20	10	0.005										
	UKAS Acc	credited :	Yes	Yes	No	No									
LABID Number CL/	Client Sample Description	Sample Date	SO4 (acid sol)	SO4 (H2O sol) mg/l	Total Sulphur.	pH (BS1377)									
1607374	BH417 B 3 1.20		1380	123	0.079	8.3									
1607375	BH417 UT 25 9.50		944	246	0.334	7.8									
.557070	2 2.7 20 0.00		571	_10	3.301										
	ESG 😥		Client Na	ame	ESG Li	mited (Do	ncaster)			Sample Analysis					
			Contact	act Mr N Cooke											
	Bretby Business Park, Ashby Road									Date Printed 08-Mar-2016					
	Burton-on-Trent, Staffordshire, DE15 0YZ			December 1											
						A63 C	astle Stree	et							
	Tel +44 (0) 1283 554400				_					Table No	umber		1		
	Fax +44 (0) 1283 554422														

Site

S161702

ESG Environmental Chemistry Analytical and Deviating Sample Overview

ESG Limited (Doncaster) Customer

A63 Castle Street

Consignment No S53621 Date Logged 02-Mar-2016

S161702 Report No

Report Due 09-Mar-2016

							rtopt	חוו טע	000	IVIUI Z	.010		
		MethodID	CustServ	Dep.Opt			ICPACIDS	ICPBRE	ICPWSS	KONECL	KoneNO3	TSBRE1	WSLM50
ID Number	Description	Sampled	REPORT A	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	SO4 (acid sol)	Magnesium (BRE)	SO4 (H2O sol) mg/l	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	Total Sulphur.	рН (BS1377)
		-					✓		✓				
CL/1607374	BH417 1.20-2.00	D	D	D	D	D	D	D	D	D	D	D	D
CL/1607375	BH417 9.50-9.95	D	D				D	D	D	D	D	D	D

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- В The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water
		@ < 35°C	extraction followed by ICPOES detection
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid
		@ < 35°C	samples by high temperature combustion/infrared detection
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using
		@ < 35°C	pH probe.

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/161702 Ver. 1

Client: ESG Limited (Doncaster)
Site: A63 Castle Street
Report Number: S16_1702

Note: major constituent in upper case

Lab ID Number CL/1607374 CL/1607375	Client ID BH417 B 3 1.20 BH417 UT 25 9.50	Description MADE GROUND CLAY
CL/1607375	BH417 UT 25 9.50	CLAY

Appendix A Page 1 of 1 08/03/2016EFS/161702 Ver. 1

Report No. EFS/162441 (Ver. 1)

ESG Limited (Doncaster)
ESG Doncaster
Askern Road
Carcroft
Doncaster
South Yorkshire
DN6 8DG

Site: A63 Castle Street

The 4 samples described in this report were registered for analysis by ESG on 29-Mar-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 01-Apr-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Date of Issue: 01-Apr-2016

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	ma/ka	ma/l	%	pH Units					T						
	Method		mg/kg ICPACIDS	mg/l ICPWSS	TSBRE1	WSLM50											
	Method Reporting	Limits :	20	10	0.005	WOLWOO											
	UKAS Accr	redited :	Yes	Yes	No	No											
LAB ID Number CL/	Client Sample Description	Sample Date	SO4 (acid sol)	SO4 (H2O sol) mg/l	Total Sulphur.	pH (BS1377)											
1610263	BH402 P 13 6.40		532	89	0.166	8.0											
1610264	BH407 P 15 6.05		960	306	0.213	7.7											
1610265	BH407 UT 33 12.50		298	48	0.046	8.4											
1610266	BH417 P 17 6.00		1390	423	0.304	7.8											
																	-
																	-
Client Name ESG Limited (Doncaster)				•		Sam	ple Ana	alysis		'							
Contact Mr N Cooke																	
	Bretby Business Park, Ashby Road	Business Park, Ashby Road Date Printed 01-Apr-2016															
	Burton-on-Trent, Staffordshire, DE15 0YZ	A63 Castle Street Report Number EFS/162441															
	Tel +44 (0) 1283 554400				4	463 C	astie Stre	et			Table Nu				1		
	Fax +44 (0) 1283 554422																
	(0) 1200 00 1 122										l		<u> </u>				

ESG Environmental Chemistry Analytical and Deviating Sample Overview

ESG Limited (Doncaster) Customer Site **A63 Castle Street**

Consignment No S54712 Date Logged 29-Mar-2016

Report No S162441

Report Due 04-Apr-2016

							repo	JIL DU	U 04-	Apr-2	010		
		MethodID	CustServ	Dep.Opt			ICPACIDS	ICPBRE	ICPWSS	KONECL	KoneNO3	TSBRE1	WSLM50
ID Number	Description	Sampled	REPORT A	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	SO4 (acid sol)	Magnesium (BRE)	SO4 (H2O sol) mg/l	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	Total Sulphur.	рН (BS1377)
							✓		✓				
CL/1610263	BH402 6.40-7.40	D	D	D	D	D	D	D	D	D	D	D	D
CL/1610264	BH407 6.05-7.05	D	D				D	D	D	D	D	D	D
CL/1610265	BH407 12.50-12.95	D	D				D	D	D	D	D	D	D
CL/1610266	BH417 6.00-7.00	D	D				D	D	D	D	D	D	D

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- В The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water
		@ < 35°C	extraction followed by ICPOES detection
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid
		@ < 35°C	samples by high temperature combustion/infrared detection
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using
		@ < 35°C	pH probe.

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/162441 Ver. 1

Client: ESG Limited (Doncaster)
Site: A63 Castle Street
Report Number: S16_2441

Note: major constituent in upper case

1 -1 ID N 1	All and ID	Note. major constituent in upper case
Lab ID Number	Client ID	Description
CL/1610263	BH402 P 13 6.40	SILT
CL/1610264	BH407 D 15 6 05	SII T
CL/1610265	DI 1407 F 13 0.00	SILT CLAY
CL/1610265	DD407 UT 33 12.50	CLAT
CL/1610266	BH402 P 13 6.40 BH407 P 15 6.05 BH407 UT 33 12.50 BH417 P 17 6.00	SILT
	+	
	1	
	+	

Appendix A Page 1 of 1 01/04/2016EFS/162441 Ver. 1

Report No. EFS/162595 (Ver. 2)

ESG Limited (Doncaster)
ESG Doncaster
Askern Road
Carcroft
Doncaster
South Yorkshire
DN6 8DG

Site: A63 Castle Street

The 1 sample described in this report were registered for analysis by ESG on 01-Apr-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 14-Apr-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 14-Apr-2016

	Units :	mg/kg	mg/l	%	pH Units				1					
	Method Codes :	ICPACIDS	ICPWSS	TSBRE1	WSLM50									
	Method Reporting Limits :	20	10	0.005	110200									
	UKAS Accredited :	Yes	Yes	No	No									
LABID Number CL/	Sample Description Client Sample Description	SO4 (acid sol)	SO4 (H2O sol) mg/l	Total Sulphur.	рн (ВS1377)									
1610949	BH407 UT 9 3.10	1870	636	0.392	7.6									
										1				
	ESG © Client Name			ESG Li	mited (Doncaster	·)				Sam	ple Ana	alysis		
•		Contact Mr N Cooke												
E	Bretby Business Park, Ashby Road	Date Printed 14-Apr-2016												
E	Burton-on-Trent, Staffordshire, DE15 0YZ								Report N			EFS/162595		
					A63 Castle	Stree	t							
	Tel +44 (0) 1283 554400								Table Nu	ımber		1		
	Fax +44 (0) 1283 554422													

ESG Environmental Chemistry Analytical and Deviating Sample Overview

ESG Limited (Doncaster) Customer **A63 Castle Street** Site

Consignment No S54040 Date Logged 01-Apr-2016

S162595 Report No

Report Due 08-Apr-2016

							Nepc	nt Du	C 00-	Apr-2	010		
		MethodID	CustServ	Dep.Opt			ICPACIDS	ICPBRE	ICPWSS	KONECL	KoneNO3	TSBRE1	WSLM50
ID Number	Description	Sampled	REPORT A	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	SO4 (acid sol)	Magnesium (BRE)	SO4 (H2O sol) mg/l	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	Total Sulphur.	рН (BS1377)
	to ISO17025					✓		✓					
CL/1610949	BH407 3.10-3.55												

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- В The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water
		@ < 35°C	extraction followed by ICPOES detection
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid
		@ < 35°C	samples by high temperature combustion/infrared detection
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using
		@ < 35°C	pH probe.

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/162595 Ver. 2

Client : ESG Limited (Doncaster)
Site : A63 Castle Street
Report Number : S16_2595

Note: major constituent in upper case

Lab ID Novel		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1610949	BH407 UT 9 3.10	SILT

Appendix A Page 1 of 1 14/04/2016EFS/162595 Ver. 2

Our Ref: EFS/163059 (Ver. 1) Your Ref: A5085-16

April 29, 2016

Mr N Cooke
ESG Limited (Doncaster)
ESG Doncaster
Askern Road
Carcroft
Doncaster
South Yorkshire

Environmental Chemistry

FSC

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Mr N Cooke

Dear Mr Cooke

DN6 8DG

Sample Analysis - A63 Castle Street

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 31/05/16 when they will be discarded. Please call 01283 554649 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

P Williams

Project Co-ordinator 01283 554649

TEST REPORT

Report No. EFS/163059 (Ver. 1)

ESG Limited (Doncaster)
ESG Doncaster
Askern Road
Carcroft
Doncaster
South Yorkshire
DN6 8DG

Site: A63 Castle Street

The 1 sample described in this report were registered for analysis by ESG on 19-Apr-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 29-Apr-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 29-Apr-2016

	Units :	mg/kg	mg/l	g/l	%	pH Units					T			
	Method Codes :	ICPACIDS	ICPWSS	ICPBRE	TSBRE1	WSLM50								
	Method Reporting Limits :	20	10	0.0001	0.005									
	UKAS Accredited :	Yes	Yes	No	No	No								
LABID Number CL/	ਲ Client Sample Description Date	SO4 (acid sol)	SO4 (H2O sol) mg/l	Magnesium (BRE)	Total Sulphur.	pH (BS1377)								
1613122	BH407 UT 27 11.00	9110	3600	0.545	4.501	6.3								
	ESG 😥	Client N	ame	ESG Li	mited (Do	oncaster)			·	Sample Analysis				
'		Contact		Mr N Coo	ke									
	Bretby Business Park, Ashby Road				,					Date Printed 29-Apr-2016				
	Burton-on-Trent, Staffordshire, DE15 0YZ						~ 4			Report Number EFS/163059				
	Tel +44 (0) 1283 554400				463 C	astle	Stree	t		Table No			1	
	Fax +44 (0) 1283 554422								1 able Nulliber					
	rax +44 (U) 1203 334422													

ESG Environmental Chemistry Analytical and Deviating Sample Overview

ESG Limited (Doncaster) Customer **A63 Castle Street** Site

Consignment No S55288 Date Logged 19-Apr-2016

S163059 Report No

Report Due 03-May-2016

							Nepc	лгри	6 03-	way-∠	-010		
		MethodID	CustServ	Dep.Opt			ICPACIDS	ICPBRE	ICPWSS	KONECL	KoneNO3	TSBRE1	WSLM50
ID Number	Description	Sampled	REPORT A	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	SO4 (acid sol)	Magnesium (BRE)	SO4 (H2O sol) mg/l	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	Total Sulphur.	pH (BS1377)
							✓		✓				
CL/1613122	BH407 11.00-11.45												

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- В The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/163059

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPBRE	Oven Dried	Determination of Magnesium (BRE) in soil samples by water
		@ < 35°C	extraction followed by ICPOES detection
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water
		@ < 35°C	extraction followed by ICPOES detection
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid
		@ < 35°C	samples by high temperature combustion/infrared detection
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using
		@ < 35°C	pH probe.

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/163059 Ver. 1

Sample Descriptions

Client: ESG Limited (Doncaster)
Site: A63 Castle Street
Report Number: S16_3059

Note: major constituent in upper case

Lab ID Number	Client ID	Note: major constituent in upper case Description
CL/1613122	BH407 UT 27 11.00	SILT
OL/ 1013122	B11407 01 27 11:00	OIL1
	1	

Appendix A Page 1 of 1 29/04/2016EFS/163059 Ver. 1

APPENDIX G GEOENVIRONMENTAL LABORATORY TEST RESULTS

EFS/158453 EFS/158466 EFS/158661 EFS/158711 EFS/158776

> EXR/211674 151215-53

EFS/160146

EFS/158452

Test Reports

TEST REPORT

Report No. EFS/158452 (Ver. 2)

ESG Doncaster ESG Doncaster Askern Road Carcroft Doncaster DN6 8DG

Site: A63 Castle Street

The 1 sample described in this report were registered for analysis by ESG on 10-Dec-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 18-Dec-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)
Table of PAH (MS-SIM) (80) Results (Page 4)
Table of GRO Results (Page 5)
Table of TPH (Si) banding (UK-CWG) (Page 6)
GC-FID Chromatograms (Pages 7 to 8)
Table of VOC (HSA) Results (Page 9)
Subcontracted Analysis Reports (Pages 10 to 11)
The accreditation status of subcontracted analysis is displayed on the appended subcontracted analysis reports.
Analytical and Deviating Sample Overview (Pages 12 to 13)
Table of Method Descriptions (Page 14)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 18-Dec-2015

	Method Reporti	Units : od Codes :	mg/kg GROHSA 0.2	mg/kg ICPBOR 0.5	mg/kg ICPMSS 0.1	mg/kg ICPMSS 0.3	mg/kg ICPMSS 0.1	mg/kg ICPMSS 0.5	mg/kg ICPMSS 0.5	mg/kg ICPMSS 0.5	mg/kg ICPMSS 1	mg/kg ICPMSS 0.1	mg/kg ICPMSS 0.5	mg/kg ICPMSS 0.5	mg/kg ICPMSS 0.5	mg/kg ICPMSS 3	mg/kg ICPSOIL 0.1	pH Units PHSOIL
		ccredited :	Yes				Yes	Yes	Yes									
LABID Number CL/	Client Sample Description	Sample Date	GRO (AA-UK) HSA-GCFID	Boron (H20 Soluble)	Antimony (MS)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Manganese (MS)	Mercury (MS)	Molybdenum (MS)	Nickel (MS)	Selenium (MS)	Zinc (MS)	Beryllium.	pH units (AR)
1572259	BH407 ES 10 3.50	09-Dec-15	Req	2.4	0.4	9.3	0.18	31.2	16.4	18.1	597.3	<0.1	0.6	32.1	0.8	81	0.934	8.4
												1						
						1		1		1	1					1		
	ESG 🔗		Client N	ame	ESG D	oncaster							Sam	ple Ana	alysis			
			Contact		Neil Cook	ке												
	Bretby Business Park, Ashby Road											Date Pri	nted		18	8-Dec-2015	1	
	Burton-on-Trent, Staffordshire, DE15 0YZ					A63 C	actio	Stroo	4			Report N	Number		Е	FS/158452		
	Tel +44 (0) 1283 554400					403 C	asแย	Siree	L			Table Number 1						
	Fax +44 (0) 1283 554422																	

	Units :	mg/kg	mg/kg		mg/kg	μg/kg	mg/kg	mg/kg	% M/M	μg/kg	μg/kg	ug/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg
	Method Codes :	SFAPI	SFAPI	Sub020	TPHUSSI	VOCHSAS	ICPMSS	KONECR	WSLM59	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	PAHMSUS
	Method Reporting Limits :	0.5	0.5		10		0.6	0.1	0.04	5	1	2	6	4	2		
	UKAS Accredited :	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LABID Number CL/	Client Sample Description Bate	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos ID & Quan	TPH by GCFID (Si-UKCWG)>44	VOC HSA-GCMS	Vanadium (MS)	Chromium vi:	Total Organic Carbon	Toluene	Benzene	Ethyl Benzene	Xylenes	m/p Xylenes	o Xylene	BTEX-HSA GCMS analysis	PAH (16) by GCMS
1572259	BH407 ES 10 3.50 09-Dec-15	<0.5	<0.5	NADIS	Req	Req	44	<0.1	0.92	<5	<1	<2	<6	<4	<2	Req	Req
	ESG 🔗	Client N	ame	ESG Do	oncaster	•		•	•		Sample Analysis						
'		Contact		Neil Cook	ке												
	Bretby Business Park, Ashby Road										Date Pri	nted		18	3-Dec-2015		
	Burton-on-Trent, Staffordshire, DE15 0YZ						_				Report N				FS/158452		
					463 C	astle	Stree	t									
	Tel +44 (0) 1283 554400			-				-			Table Nu	ımber			1		
	Fax +44 (0) 1283 554422																

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: BH407 ES 10 3.50 Job Number: S15_8452 LIMS ID Number: 10-Dec-15 CL1572259 Date Booked in: QC Batch Number: 151265 **Date Extracted:** 11-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 15-Dec-15 Directory: 1415PAH.GC5\ Matrix: Soil Dilution: Ext Method: Ultrasonic 1.0

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	_	< 0.08	-
Pyrene	129-00-0	_	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5		< 0.08	<u>-</u>
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	<u>-</u>
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	100
Acenaphthene-d10	99
Phenanthrene-d10	100
Chrysene-d12	107
Perylene-d12	113

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	96
Terphenyl-d14	80

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Gasoline Range Organics (BTEX and Aromatic/Aliphatic Carbon Ranges)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Job Number: \$15_8452

Directory: E:\TES\DATA\2015\1215HSA_GC9\151215 2015-12-15 09-56-37\048F4801.D

Method: HEADSPACE GCFID

Matrix: Soil

Date Booked in: 10-Dec-15
Date extracted: 15-Dec-15

Date Analysed: 16-Dec-15, 00:44:

Units: mg/kg

* Sample data with an asterisk are not UKAS accredited.

		BTEX			Aron	natics	Alipl	Total GRO		
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	Xylenes	C5 - C7	>C7 - C8	C5 - C6	>C6 - C8	C5 - C10
CL1572259	BH407 ES 10 3.50	<0.010	<0.010	<0.010	<0.020	<0.01	<0.01	<0.2	<0.2	<0.2
				-						
				-						
				-						

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: ESG Doncaster : A63 Castle Street

 Job Number:
 S15_8452
 Separation:
 Silica gel

 QC Batch Number:
 151265
 Eluents:
 Hexane, DCM

 Directory:
 D:\TES\DATA\Y2015\121415TPH_GC4\121415 2015-12-14 10-37-09\083B4501.D

Method: Ultra Sonic

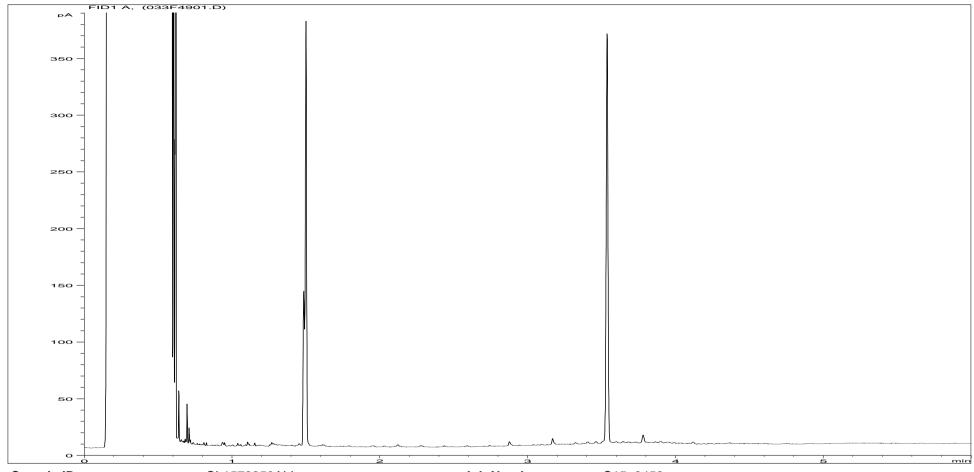
wetnoa:	Oltra Sonic		Concentration, (mg/kg) - as wet weight											
Bands marked with a ' * ' are	not UKAS Accredited	>C8 - C10	>C8 - C10	>C10 - C12	>C10 - C12	>C12 - C16	>C12 - C16	>C16 - C35	>C16 - C21	>C35 - C44*	>C21 - C35	>C35 - C44*	>C8 - C44*	>C8 - C44*
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aromatics	Aliphatics	Aromatics
CL1572259	BH407 ES 10 3.50	<4.12	<4	<4.12	<4	<4.12	<4	43.5	<4	<5.79	15.5	6.28	52.5	28.2
				ļ	ļ								ļ	
				ļ	ļ			ļ					ļ	
							1				1	+		+
							1							+
							1							+
							1							+
							1							+
							1							+
				-	-			-					-	+
				-	-		+	-		+	-	-	-	+
				-	-		+	-		+	-	-	-	+
		-		+	+		+	+			+	+	+	+

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

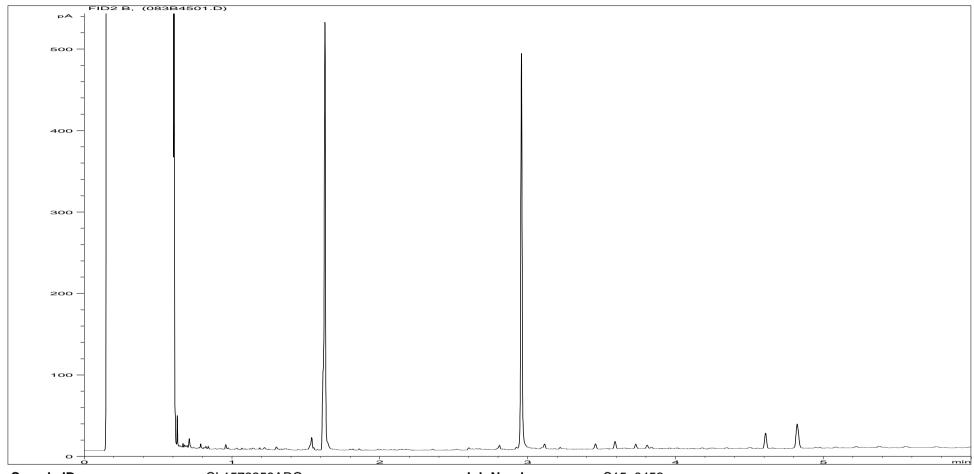

Soil

10-Dec-15

12-Nov-15

15-Dec-15, 10:29:01

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.


Sample ID:CL1572259ALIJob Number:S15_8452Multiplier:16.48Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:BH407 ES 10 3.50

Acquisition Date/Time: 15-Dec-15, 11:21:15

Datafile: D:\TES\DATA\Y2015\121415TPH_GC4\121415 2015-12-14 10-37-09\033F4901.D

Page 7 of 15 EFS/158452 Ver. 2

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.

Sample ID:CL1572259AROJob Number:S15_8452Multiplier:11.36Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:BH407 ES 10 3.50

Acquisition Date/Time: 15-Dec-15, 10:29:01

Datafile: D:\TES\DATA\Y2015\121415TPH_GC4\121415 2015-12-14 10-37-09\083B4501.D

Page 8 of 15 EFS/158452 Ver. 2

Volatile Organic Compounds by HSA-GCMS

Directory/Quant file:

1,2,3-Trichlorobenzene

Naphthalene-d8

Date Booked in:

Date Analysed:

UKAS accredited?: Yes

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: BH407 ES 10 3.50

LIMS ID Number: CL1572259 **Job Number:** S15_8452

CAC #	Т	Concentration	0/ E:4
3_0432			
5 8452			
.1572259			
1407 ES 10 3.50			
1407 EC 40 0 EC			

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min.)	μg/kg	
Dichlorodifluoromethane	75-71-8 **	-	< 1	-
Chloromethane	74-87-3 *	-	< 3	-
Vinyl Chloride	75-01-4	-	< 1	-
Bromomethane	74-83-9	-	< 1	-
Chloroethane	75-00-3	-	< 2	-
Trichlorofluoromethane	75-69-4	-	< 1	-
1,1-Dichloroethene	75-35-48 *	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	-	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	-
MTBE	1634-04-4	-	< 1	-
2,2-Dichloropropane	594-20-7	-	< 1	-
cis 1,2-Dichloroethene	156-59-2	-	< 5	-
Bromochloromethane	74-97-5	-	< 1	-
Chloroform	67-66-3	-	< 1	-
1,1,1-Trichloroethane	71-55-6	-	< 1	-
Carbon Tetrachloride	56-23-5	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	-
Benzene	71-43-2	-	< 1	-
1,2-Dichloroethane	107-06-2	-	< 1	-
Trichloroethene	79-01-6 **	-	< 1	-
1,2-Dichloropropane	78-87-5	-	< 1	-
Dibromomethane	74-95-3	-	< 1	-
Bromodichloromethane	75-27-4	-	< 1	-
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-
Toluene	108-88-3	-	< 5	-
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-
1,1,2-Trichloroethane	79-00-5	-	< 1	-
Tetrachloroethene	127-18-4	-	< 3	-
1,3-Dichloropropane	142-28-9	-	< 1	-
Dibromochloromethane	124-48-1	-	< 1	-
1,2-Dibromoethane	106-93-4	-	< 1	-
Chlorobenzene	108-90-7	-	< 1	-
Ethylbenzene	100-41-4	-	< 2	-
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-
m and p-Xylene	108-38-3/106-42-3	-	< 4	-

2 a.c. /a., 2 c a	.0 200 .0			0.0.
Operator:	PR		Position:	11
Target Compounds	CAS#	R.T. (min.)	Concentration µg/kg	% Fit
o-Xylene	95-47-6	-	< 2	-
Styrene	100-42-5	-	< 1	-
Bromoform	75-25-2	-	< 1	-
iso-Propylbenzene	98-82-8	-	< 1	-
1,1,2,2-Tetrachloroethane	79-34-5 **	-	< 1	-
Propylbenzene	103-65-1	-	< 1	-
Bromobenzene	108-86-1	-	< 1	-
1,2,3-Trichloropropane	96-18-4	-	< 1	-
2-Chlorotoluene	95-49-8	-	< 1	-
1,3,5-Trimethylbenzene	108-67-8	-	< 1	-
4-Chlorotoluene	106-43-4	-	< 1	-
tert-Butylbenzene	98-06-6	-	< 1	-
1,2,4-Trimethylbenzene	95-63-6	-	< 1	-
sec-Butylbenzene	135-98-8	-	< 1	-
p-Isopropyltoluene	99-87-6	-	< 1	-
1,3-Dichlorobenzene	541-73-1	-	< 1	-
1,4-Dichlorobenzene	106-46-7	-	< 1	-
n-Butylbenzene	104-51-8 *	-	< 1	-
1,2-Dichlorobenzene	95-50-1	-	< 1	-
1,2-Dibromo-3-chloropropane	96-12-8	-	< 1	-
1,2,4-Trichlorobenzene	120-82-1 *	-	< 3	-
Hexachlorobutadiene	87-68-3 **	-	< 2	-
Naphthalene	91-20-3	-	< 5	-

215VOC.MS19\ Initial Calibration

10-Dec-15

15-Dec-15

Soil

0.97

Headspace

Matrix:

Method:

Multiplier:

Compounds marked * are not MCERTS accredited Compounds marked ** are not UKAS or Mcerts accredited "M" denotes that % fit has been manually interpreted

< 3

87-61-6

7.09

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	4.01	87	Dibromofluoromethane	102
1,4-Difluorobenzene	4.35	87	Toluene-d8	93
Chlorobenzene-d5	5.46	74		
Bromofluorobenzene	5.86	57		
1,4-Dichlorobenzene-d4	6.26	44		

14

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling.

Where individual results are flagged see report notes for status.

CERTIFICATE OF ANALYSIS

ANALYSIS REQUESTED BY: ESG Environmental Chemistry CONTRACT NO: 46529-2

PO Box 100

Burton upon Trent

Staffordshire

DE15 0XD **DATE OF ISSUE: 18.12.15**

PROJECT NO: 610

DATE SAMPLES RECEIVED: 11.12.15

DATE SAMPLES ANALYSED: 18.12.15

SAMPLE DESCRIPTION: One soil/loose aggregate sample weighing approximately 0.9kg

ANALYSIS REQUESTED: Qualitative and quantitative analysis of a soil/loose aggregate sample for

mass determination of asbestos.

METHODS:

Qualitative - The sample was analysed qualitatively for asbestos by polarised light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative - The analysis was carried out using our documented in-house method based on HSE Contract Research Report No. 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire sample, detailed analysis of a representative sub-sample and quantification by hand picking/weighing and/or fibre counting/sizing as appropriate.

RESULTS:

Initial Screening

No asbestos was detected in the soil sample by stereo-binocular and polarised light microscopy.

A summary of the results is given in Table 1.

Page 1 of 2

CONTRACT NO: 46529-2 PROJECT NO: 610 DATE OF ISSUE: 18.12.15

RESULTS: (cont.)

Table 1: Qualitative Results

ESG Job I.D: S158452

IOM sample number	Client sample number	ACM type detected	PLM result
S36955	S1572259 BH407 3.50	-	No Asbestos Detected

Our detection limit for this method is 0.001%.

COMMENTS:

IOM Consulting cannot accept responsibility for samples that have been incorrectly collected or despatched by external clients.

Any opinions and interpretations expressed herein are outwith the scope of our UKAS accreditation.

AUTHORISED BY:

J Simpson Senior Scientific Technician

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer Site

ESG Doncaster A63 Castle Street Consignment No S52255 Date Logged 10-Dec-2015

Report No

S158452

Report Due 17-Dec-2015

		MethodID	CustServ	GROHSA	ICPBOR	ICPMSS													ICPSOIL	KONECR	PAHMSUS	PHSOIL	SFAPI		Sub020	TPHUSSI	VOCHSAS	
ID Number	Description	Sampled	REPORT A	GRO (AA-UK) HSA-GCFID	Boron (H20 Soluble)	Antimony (MS)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Manganese (MS)	Mercury (MS)	Molybdenum (MS)	Nickel (MS)	Selenium (MS)	Vanadium (MS)	Zinc (MS)	Beryllium.	Chromium vi:	PAH (16) by GCMS	pH units (AR)	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos ID & Quan	TPH by GCFID (Si-UKCWG)>44	BTEX-HSA GCMS analysis	
				✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	√		✓	✓	√	✓	✓	✓	✓	
CL/1572259	BH407 3.50	09/12/15																										

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- В С The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
 - Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Where individual results are flately as Subsection of the subsecti

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer Site

Report No

ESG Doncaster A63 Castle Street

S158452

Consignment No S52255 Date Logged 10-Dec-2015

Report Due 17-Dec-2015

		MethodID	VOCHSAS		WSLM59
ID Number	Description	Sampled	VOC HSA-GCMS	Ethyl Benzene (µg/kg)	Total Organic Carbon
			✓	✓	
CL/1572259	BH407 3.50	09/12/15			

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- В С The sample was received without the correct preservation for this analysis
 - Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Where individual results are flately as Subsection of the subsecti

Report Number: EFS/158452

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace GCFID
Soil	ICPBOR	Oven Dried	Determination of Boron in soil samples by hot water extraction
		@ < 35°C	followed by ICPOES detection
Soil	ICPMSS	Oven Dried	Determination of Metals in soil samples by aqua regia digestion
		@ < 35°C	followed by ICPMS
Soil	ICPSOIL	Oven Dried	Determination of Metals in soil samples by aqua regia digestion
		@ < 35°C	followed by ICPOES detection
Soil	KONECR	Oven Dried	Determination of Chromium vi in soil samples by water extraction
		@ < 35°C	followed by colorimetric detection
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
			pH probe.
Soil	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Soil	TPHUSSI	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection including quantitation of Aromatic and
			Aliphatic fractions.
Soil	VOCHSAS	As Received	Determination of Volatile Organic Compounds (VOC) by
			Headspace GCMS
Soil	WSLM59	Oven Dried	Determination of Organic Carbon in soil using sulphurous Acid
		@ < 35°C	digestion followed by high temperature combustion and IR
			detection

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 15 of 15 EFS/158452 Ver. 2

Sample Descriptions

Client : ESG Doncaster
Site : A63 Castle Street
Report Number : S15_8452

Note: major constituent in upper case

Lab ID Nombre		Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1572259	BH407 ES 10 3.50	CLAY
	I	

Appendix A Page 1 of 1

TEST REPORT

Report No. EFS/158453 (Ver. 2)

ESG Doncaster ESG Doncaster Askern Road Carcroft Doncaster DN6 8DG

Site: A63 Castle Street

The 1 sample described in this report were registered for analysis by ESG on 10-Dec-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 18-Dec-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)
Table of PAH (MS-SIM) (80) Results (Page 4)
Table of GRO Results (Page 5)
Table of TPH (Si) banding (UK-CWG) (Page 6)
GC-FID Chromatograms (Pages 7 to 8)
Table of VOC (HSA) Results (Page 9)
Subcontracted Analysis Reports (Pages 10 to 11)
The accreditation status of subcontracted analysis is displayed on the appended subcontracted analysis reports.
Analytical and Deviating Sample Overview (Pages 12 to 13)
Table of Method Descriptions (Page 14)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 18-Dec-2015

	Units : Method Codes :	mg/kg	mg/kg ICPBOR	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPMSS	mg/kg ICPSOIL	pH Units PHSOIL
	Method Reporting Limits :	GROHSA 0.2	0.5	0.1	0.3	0.1	0.5	0.5	0.5	1	ICPMSS 0.1	0.5	0.5	0.5	3	0.1	FUSUIL
	UKAS Accredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LABID Number CL/	Sample Description Date	GRO (AA-UK) HSA-GCFID	Boron (H20 Soluble)	Antimony (MS)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Manganese (MS)	Mercury (MS)	Molybdenum (MS)	Nickel (MS)	Selenium (MS)	Zinc (MS)	Beryllium.	pH units (AR)
1572260	BH408 ES 12 4.90 09-Dec-15	Req	3.5	0.5	9.9	0.18	27.4	15.3	15.5	617.9	<0.1	0.8	27.4	0.6	75.9	0.758	8.4
	ESG 😥	Client N	ame	ESG Do	oncaster							Sam	ple Ana	alysis			
		Contact		Neil Cook	е												
	Bretby Business Park, Ashby Road										Date Pri	nted		18	3-Dec-2015		
	Burton-on-Trent, Staffordshire, DE15 0YZ				463 C	aetla	Stroo	ŧ			Report N			El	FS/158453		
	Tel +44 (0) 1283 554400			,	703 C	asuc	Jue	L			Table Nu	ımber			1		
	Fax +44 (0) 1283 554422																

		Units :	mg/kg	mg/kg		mg/kg	μg/kg	mg/kg	mg/kg	% M/M	μg/kg	μg/kg	ug/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg
		od Codes :	SFAPI	SFAPI	Sub020	TPHUSSI	VOCHSAS	ICPMSS	KONECR	WSLM59	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	PAHMSUS
	Method Reporti		0.5	0.5 Vac	Voo	10 Voc	Voo	0.6	0.1	0.04	5 Vac	1 Yes	2	6 Voc	4 Vac	2	Voc	Voo
LABID Number CL/	UKAS A Client Sample Description	sample Date	S Cyanide(Total) (AR)	Yes Phenol Index.(AR)	Yes ^Asbestos ID & Quan	Ye TPH by GCFID (Si-UKCWG)≽44	Yes VOC HSA-GCMS	Nanadium (MS)	Ohromium vi:	Notal Organic Carbon	Yes Toluene	Yes Benzene	Yes Ethyl Benzene	Yes	Yes m/p Xylenes	Yes o Xylene	e BTEX-HSA GCMS analysis	Yes PAH (16) by GCMS
1572260	BH408 ES 12 4.90	09-Dec-15	<0.5	<0.5	NADIS	Req	Req	38.8	<0.1	0.99	<5	<1	<2	<6	<4	<2	Req	Req
													_					
	ESG 🧟		Client N			oncaster	•						Sam	ple Ana	alysis			
	Bretby Business Park, Ashby Road		Contact		Neil Cool	ke						Date Pri	nted		18	8-Dec-2015		
	Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400				1	A63 C	astle	Stree	et			Report N			E	FS/158453 1		
	Fax +44 (0) 1283 554422																	

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: S15_8453 BH408 ES 12 4.90 Job Number: **LIMS ID Number:** CL1572260 Date Booked in: 10-Dec-15 QC Batch Number: 151262 **Date Extracted:** 11-Nov-15 **Quantitation File: Initial Calibration** Date Analysed: 12-Dec-15 Directory: 15AMS17.PAH\ Matrix: Soil Dilution: Ext Method: 1.0 Ultrasonic

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	90
Acenaphthene-d10	92
Phenanthrene-d10	90
Chrysene-d12	94
Perylene-d12	99

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	108
Terphenyl-d14	83

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Gasoline Range Organics (BTEX and Aromatic/Aliphatic Carbon Ranges)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Job Number: \$15_8453

Directory: C:\CHEM32\1\DATA\1214HSA_GC12\121415 2015-12-14 15-50-40\159B5901.D

Method: HEADSPACE GCFID

Matrix: Soil

Date Booked in: 10-Dec-15
Date extracted: 14-Dec-15

Date Analysed: 15-Dec-15, 10:33:

Units: mg/kg

* Sample data with an asterisk are not UKAS accredited.

			E	BTEX	Aron	natics	Alipl	Total GRO		
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	Xylenes	C5 - C7	>C7 - C8	C5 - C6	>C6 - C8	C5 - C10
CL1572260	BH408 ES 12 4.90	<0.010	<0.010	0.010 <0.010		<0.01	<0.01	<0.2	<0.2	<0.2

ALIPHATIC / AROMATIC FRACTION BY GC/FID

ESG Doncaster : A63 Castle Street **Customer and Site Details:**

Separation: Silica gel Eluents: Hexane, DCM Job Number: S15_8453 QC Batch Number: 151262 Directory: D:\TES\DATA\Y2015\121415TPH_GC4\121415 2015-12-14 10-37-09\074B3301.D

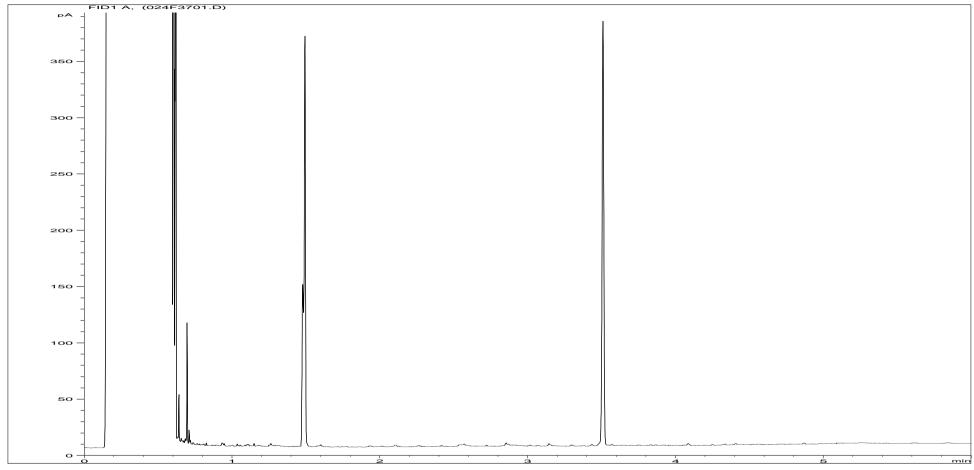
		Concentration, (mg/kg) - as wet weight												
nds marked with a ' * ' are	not UKAS Accredited	>C8 - C10	>C8 - C10			>C12 - C16	>C12 - C16	>C16 - C35	>C16 - C21	>C35 - C44*	>C21 - C35	>C35 - C44*	>C8 - C44*	>C8 - C44*
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aromatics	Aliphatics	Aromatics
CL1572260	BH408 ES 12 4.90	<4.28	<4	<4.28	<4	<4.28	<4	17.4	<4	<6.01	<8.76	7.99	22.9	20.7
			<u> </u>	<u> </u>					<u> </u>			<u> </u>	<u> </u>	
							1	1						
			<u> </u>	-					-			<u> </u>	-	
							1							
			+	+					+			+	+	
							1	1	<u> </u>				<u> </u>	

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

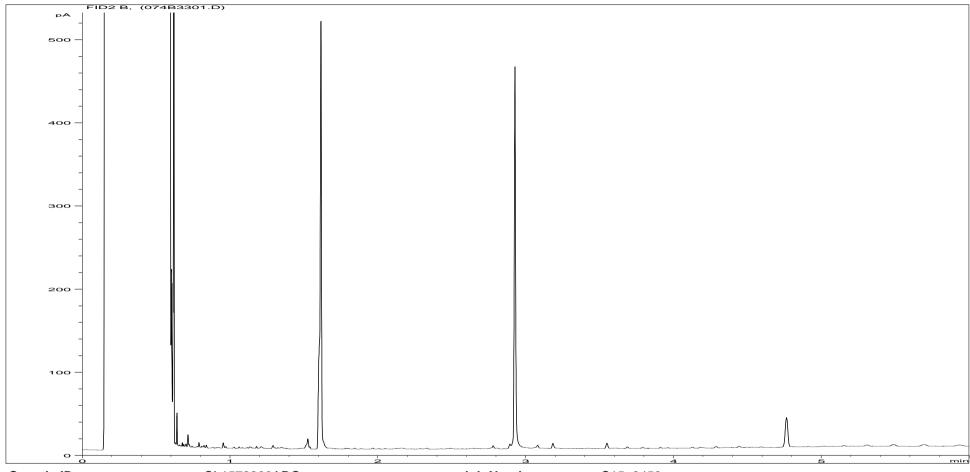

Soil

10-Dec-15

11-Dec-15

15-Dec-15, 07:51:52

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.



Sample ID:CL1572260ALIJob Number:S15_8453Multiplier:17.12Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:BH408 ES 12 4.90

Acquisition Date/Time: 15-Dec-15, 08:44:20

Datafile: D:\TES\DATA\Y2015\121415TPH_GC4\121415 2015-12-14 10-37-09\024F3701.D

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.

Sample ID:CL1572260AROJob Number:S15_8453Multiplier:10.72Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:BH408 ES 12 4.90

Acquisition Date/Time: 15-Dec-15, 07:51:52

Datafile: D:\TES\DATA\Y2015\121415TPH_GC4\121415 2015-12-14 10-37-09\074B3301.D

Page 8 of 15 EFS/158453 Ver. 2

Volatile Organic Compounds by HSA-GCMS

UKAS accredited?: Yes

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: BH408 ES 12 4.90

LIMS ID Number: CL1572260 **Job Number:** S15_8453

cis 1,3-Dichloropropene

1,1,2-Trichloroethane

Tetrachloroethene

1,3-Dichloropropane
Dibromochloromethane

1,2-Dibromoethane

Chlorobenzene

Ethylbenzene

m and p-Xylene

trans 1,3-Dichloropropene

1,1,1,2-Tetrachloroethane

Toluene

Job Number:	S15_8453			
Target Compounds	CAS#	R.T. (min.)	Concentration µg/kg	% Fit
Dichlorodifluoromethane	75-71-8 **	-	< 1	-
Chloromethane	74-87-3 *	-	< 3	-
Vinyl Chloride	75-01-4	-	< 1	-
Bromomethane	74-83-9	-	< 1	1
Chloroethane	75-00-3	-	< 2	-
Trichlorofluoromethane	75-69-4	-	< 1	-
1,1-Dichloroethene	75-35-48 *	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	-	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	1
MTBE	1634-04-4	-	< 1	-
2,2-Dichloropropane	594-20-7	-	< 1	1
cis 1,2-Dichloroethene	156-59-2	-	< 5	-
Bromochloromethane	74-97-5	-	< 1	1
Chloroform	67-66-3	-	< 1	1
1,1,1-Trichloroethane	71-55-6	-	< 1	1
Carbon Tetrachloride	56-23-5	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	1
Benzene	71-43-2	-	< 1	1
1,2-Dichloroethane	107-06-2	-	< 1	-
Trichloroethene	79-01-6 **	-	< 1	-
1,2-Dichloropropane	78-87-5	-	< 1	1
Dibromomethane	74-95-3	-	< 1	
Bromodichloromethane	75-27-4	-	< 1	

< 5

< 1

< 1

< 3

< 1

< 1

< 1

< 1

< 2

< 1

< 4

10061-01-5

108-88-3

10061-02-6

79-00-5

127-18-4

142-28-9

124-48-1

106-93-4

108-90-7

100-41-4

630-20-6

108-38-3/106-42-3

Directory/Quant file:	211VOC.MS19\	Initial Calibration	Matrix:	Soil
Date Booked in:	10-Dec-15		Method:	Headspace
Date Analysed:	11-Dec-15		Multiplier:	1.08
Operator:	PR		Position:	20

Target Compounds	CAS#	R.T. (min.)	Concentration µg/kg	% Fit
o-Xylene	95-47-6	-	< 2	-
Styrene	100-42-5	-	< 1	-
Bromoform	75-25-2	-	< 1	-
iso-Propylbenzene	98-82-8	-	< 1	-
1,1,2,2-Tetrachloroethane	79-34-5 **	-	< 1	-
Propylbenzene	103-65-1	-	< 1	-
Bromobenzene	108-86-1	-	< 1	-
1,2,3-Trichloropropane	96-18-4	-	< 1	-
2-Chlorotoluene	95-49-8	-	< 1	-
1,3,5-Trimethylbenzene	108-67-8	-	< 1	-
4-Chlorotoluene	106-43-4	-	< 1	-
tert-Butylbenzene	98-06-6	-	< 1	-
1,2,4-Trimethylbenzene	95-63-6	6.11	23	86
sec-Butylbenzene	135-98-8	-	< 1	-
p-Isopropyltoluene	99-87-6	-	< 1	-
1,3-Dichlorobenzene	541-73-1	-	< 1	-
1,4-Dichlorobenzene	106-46-7	-	< 1	-
n-Butylbenzene	104-51-8 *	-	< 1	-
1,2-Dichlorobenzene	95-50-1	-	< 1	-
1,2-Dibromo-3-chloropropane	96-12-8	-	< 1	-
1,2,4-Trichlorobenzene	120-82-1 *	-	< 3	-
Hexachlorobutadiene	87-68-3 **	-	< 2	
Naphthalene	91-20-3	-	< 5	-
1,2,3-Trichlorobenzene	87-61-6	-	< 3	-

Compounds marked * are not MCERTS accredited
Compounds marked ** are not UKAS or Mcerts accredited
"M" denotes that % fit has been manually interpreted

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	4.01	100	Dibromofluoromethane	101
1,4-Difluorobenzene	4.35	97	Toluene-d8	98
Chlorobenzene-d5	5.46	85		
Bromofluorobenzene	5.86	69		
1,4-Dichlorobenzene-d4	6.26	56		
Naphthalene-d8	7.09	24		

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling.

Where individual results are flagged see report notes for status.

CERTIFICATE OF ANALYSIS

ANALYSIS REQUESTED BY: ESG Environmental Chemistry

PO Box 100

Burton upon Trent

Staffordshire **DE15 0XD**

CONTRACT NO: 46529-3

PROJECT NO: 610

DATE OF ISSUE: 18.12.15

DATE SAMPLES RECEIVED: 11.12.15

DATE SAMPLES ANALYSED: 18.12.15

SAMPLE DESCRIPTION: One soil/loose aggregate sample weighing approximately 1.3kg

ANALYSIS REQUESTED: Qualitative and quantitative analysis of a soil/loose aggregate sample for

mass determination of asbestos.

METHODS:

Qualitative - The sample was analysed qualitatively for asbestos by polarised light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative - The analysis was carried out using our documented in-house method based on HSE Contract Research Report No. 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire sample, detailed analysis of a representative sub-sample and quantification by hand picking/weighing and/or fibre counting/sizing as appropriate.

RESULTS:

Initial Screening

No asbestos was detected in the soil sample by stereo-binocular and polarised light microscopy.

A summary of the results is given in Table 1.

Page 1 of 2

CONTRACT NO: 46529-3 **PROJECT NO:** 610 **DATE OF ISSUE:** 18.12.15

RESULTS: (cont.)

Table 1: Qualitative Results

ESG Job I.D: S158453

IOM sample number	Client sample number	ACM type detected	PLM result
S36956	S1572260 BH408 4.90	-	No Asbestos Detected

Our detection limit for this method is 0.001%.

COMMENTS:

IOM Consulting cannot accept responsibility for samples that have been incorrectly collected or despatched by external clients.

Any opinions and interpretations expressed herein are outwith the scope of our UKAS accreditation.

AUTHORISED BY:

J Simpson

Senior Scientific Technician

S158453

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer Site

ESG Doncaster A63 Castle Street Consignment No S52255 Date Logged 10-Dec-2015

Report No

S158453

Report Due 17-Dec-2015

		MethodID	CustServ	GROHSA	ICPBOR	ICPMSS													ICPSOIL	KONECR	PAHMSUS	PHSOIL	SFAPI		Sub020	TPHUSSI	VOCHSAS
ID Number	Description	Sampled	REPORT A	GRO (AA-UK) HSA-GCFID	Boron (H20 Soluble)	Antimony (MS)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Manganese (MS)	Mercury (MS)	Molybdenum (MS)	Nickel (MS)	Selenium (MS)	Vanadium (MS)	Zinc (MS)	Beryllium.	Chromium vi:	PAH (16) by GCMS	pH units (AR)	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos ID & Quan	TPH by GCFID (Si-UKCWG)>44	BTEX-HSA GCMS analysis
				✓	✓	✓	✓	1	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓		✓	✓	✓	✓	✓	✓	✓
CL/1572260	BH408 4.90	09/12/15																									

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- В С The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Where individual results are flately as Subsection of the subsecti

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer Site

ESG Doncaster A63 Castle Street

Report No S158453 Consignment No S52255 Date Logged 10-Dec-2015

Report Due 17-Dec-2015

		MethodID	VOCHSAS		WSLM59
ID Number	Description	Sampled	VOC HSA-GCMS	Ethyl Benzene (µg/kg)	Total Organic Carbon
			✓	√	
CL/1572260	BH408 4.90	09/12/15			

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- В С The sample was received without the correct preservation for this analysis
 - Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Where individual results are flately as September 1965 Notes the date may vary

Report Number: EFS/158453

Method Descriptions

		Analysis	Method Description
Soil	GROHSA	Basis As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace GCFID
Soil	ICPBOR	Oven Dried	Determination of Boron in soil samples by hot water extraction
		@ < 35°C	followed by ICPOES detection
Soil	ICPMSS	Oven Dried	Determination of Metals in soil samples by aqua regia digestion
		@ < 35°C	followed by ICPMS
Soil	ICPSOIL	Oven Dried	Determination of Metals in soil samples by aqua regia digestion
		@ < 35°C	followed by ICPOES detection
Soil	KONECR	Oven Dried	Determination of Chromium vi in soil samples by water extraction
		@ < 35°C	followed by colorimetric detection
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
			pH probe.
Soil	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Soil	TPHUSSI	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection including quantitation of Aromatic and
			Aliphatic fractions.
Soil	VOCHSAS	As Received	Determination of Volatile Organic Compounds (VOC) by
			Headspace GCMS
Soil	WSLM59	Oven Dried	Determination of Organic Carbon in soil using sulphurous Acid
		@ < 35°C	digestion followed by high temperature combustion and IR
			detection

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 15 of 15 EFS/158453 Ver. 2

Sample Descriptions

Client: ESG Doncaster
Site: A63 Castle Street
Report Number: S15_8453

Note: major constituent in upper case

CL157280 BHARES 174 50 CLAY CLAY CLAY	Lab ID Number	Client ID	Description
CU1972200 BH408 ES 12 4 50 CUAY			Description
	CL/1572260	BH408 ES 12 4.90	CLAY
		1	

Appendix A Page 1 of 1

TEST REPORT

Report No. EFS/158466 (Ver. 2)

ESG Doncaster ESG Doncaster Askern Road Carcroft Doncaster South Yorkshire DN6 8DG

Site: A63 Castle Street

The 1 sample described in this report were registered for analysis by ESG on 11-Dec-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 22-Dec-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)
Table of PAH (MS-SIM) (80) Results (Page 4)
Table of GRO Results (Page 5)
Table of TPH (Si) banding (UK-CWG) (Page 6)
GC-FID Chromatograms (Pages 7 to 8)
Table of VOC (HSA) Results (Page 9)
Subcontracted Analysis Reports (Pages 10 to 11)
The accreditation status of subcontracted analysis is displayed on the appended subcontracted analysis reports.
Analytical and Deviating Sample Overview (Pages 12 to 13)
Table of Method Descriptions (Page 14)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Date of Issue: 22-Dec-2015

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

	Metho Method Reporti	Units : od Codes : ng Limits :	mg/kg GROHSA 0.2	mg/kg ICPBOR 0.5	mg/kg ICPMSS 0.1	mg/kg ICPMSS 0.3	mg/kg ICPMSS 0.1	mg/kg ICPMSS 0.5	mg/kg ICPMSS 0.5	mg/kg ICPMSS 0.5	mg/kg ICPMSS 1	mg/kg ICPMSS 0.1	mg/kg ICPMSS 0.5	mg/kg ICPMSS 0.5	mg/kg ICPMSS 0.5	mg/kg ICPMSS 3	mg/kg ICPSOIL 0.1	pH Units PHSOIL
LAB ID Number CL/	UKAS A Client Sample Description	S Boron (H20 Soluble)	Yes Antimony (MS)	Yes Arsenic (MS)	Yes Cadmium (MS)	Yes Chromium (MS)	Yes Copper (MS)	Yes Lead (MS)	Yes Manganese (MS)	Yes Mercury (MS)	Yes Molybdenum (MS)	Yes Nickel (MS)	Yes Selenium (MS)	Yes Zinc (MS)	Yes Beryllium.	Yes pH units (AR)		
1572325	BH406 ES 1 0.7	09-Dec-15	Req	1.4	13.7	22.3	0.39	26.8	102.3	394.7	784.8	<0.1	2.3	29.3	0.5	160.3	1.44	8.6
	ESG 😥		Client N	ame	me ESG Doncaster Sample Analysis													
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Te1 +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Contact							2-Dec-2015 FS/158466 1								

		Units :	mg/kg	mg/kg		mg/kg	μg/kg	mg/kg	mg/kg	% M/M	μg/kg	μg/kg	ug/kg	μg/kg	μg/kg	μg/kg	mg/kg	
		od Codes :	SFAPI	SFAPI	Sub020	TPHUSSI	VOCHSAS	ICPMSS	KONECR	WSLM59	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	PAHMSUS	
	Method Reporti	ng Limits : ccredited :	0.5 Yes	0.5 Yes	Yes	10 Yes	Yes	0.6 No	0.1 No	0.04 No	5 Yes	1 Yes	2 Yes	6 Yes	4 Yes	2 Yes	Yes	
LAB ID Number CL/	Client Sample Description	Sample Date	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos ID & Quan	Toluene Total Organic Carbon Chromium vi: Chromium (MS) Vanadium (MS) VASBESTOS ID & Quan							Ethyl Benzene	Xylenes	m/p Xylenes	o Xylene	PAH (16) by GCMS	
1572325	BH406 ES 1 0.7	09-Dec-15	<0.5	<0.5	NADIS	Req	Req	47.5	<0.1	3.31	<5	<1	<2	<6	<4	<2	Req	
							1											
							1											
							1											
	ESG 🧟		Client N	ame	ESG Doncaster Sample Analysis													
			Contact		Mr N Cooke													
	Bretby Business Park, Ashby Road			Date Printed 22-Dec-2015					1									
	Burton-on-Trent, Staffordshire, DE15 0YZ				A63 Castle Street Report Number EFS/158466													
	Tel +44 (0) 1283 554400				1	MOJ C	astie	Stree	:L	Table Number 1								
	Fax +44 (0) 1283 554422																	

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: Job Number: S15_8466 BH406 ES 1 0.7 LIMS ID Number: CL1572325 Date Booked in: 11-Dec-15 QC Batch Number: 151269 **Date Extracted:** 15-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 16-Dec-15 Directory: 1515PAHMS14\ Matrix: Soil Dilution: Ext Method: Ultrasonic 1.0

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	3.34	0.21	98
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	4.51	0.19	94
Fluorene	86-73-7	4.89	0.15	91
Phenanthrene	85-01-8	5.74	1.88	98
Anthracene	120-12-7	5.78	0.43	92
Fluoranthene	206-44-0	7.10	2.61	92
Pyrene	129-00-0	7.38	2.10	88
Benzo[a]anthracene	56-55-3	9.06	1.23	95
Chrysene	218-01-9	9.12	1.31	97
Benzo[b]fluoranthene	205-99-2	10.60	1.06	98
Benzo[k]fluoranthene	207-08-9	10.63	1.05	97
Benzo[a]pyrene	50-32-8	11.02	1.06	96
Indeno[1,2,3-cd]pyrene	193-39-5	12.41	0.58	90
Dibenzo[a,h]anthracene	53-70-3	12.43	0.10	58
Benzo[g,h,i]perylene	191-24-2	12.71	0.59	83
Total (USEPA16) PAHs	-	-	< 14.63	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	61
Acenaphthene-d10	61
Phenanthrene-d10	64
Chrysene-d12	75
Perylene-d12	80

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	115
Terphenyl-d14	92

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Gasoline Range Organics (BTEX and Aromatic/Aliphatic Carbon Ranges)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Job Number: \$15_8466

Directory: C:\CHEM32\1\DATA\1215HSA_GC12\121515 2015-12-15 14-42-22\033F3301.D

Method: HEADSPACE GCFID

Matrix: Soil

Date Booked in: 11-Dec-15
Date extracted: 15-Dec-15

Date Analysed: 16-Dec-15, 01:11:

Units: mg/kg

* Sample data with an asterisk are not UKAS accredited.

		BTEX				BTEX Aromatics Aliphatics				Total GRO	
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	Xylenes	C5 - C7	>C7 - C8	C5 - C6	>C6 - C8	C5 - C10	
CL1572325	BH406 ES 1 0.7	<0.010	<0.010	<0.010	<0.020	<0.01	<0.01	<0.2	<0.2	<0.2	

ALIPHATIC / AROMATIC FRACTION BY GC/FID

ESG Doncaster : A63 Castle Street **Customer and Site Details:**

Separation: Silica gel Eluents: Hexane, DCM Job Number: S15_8466 QC Batch Number: 151269 D:\TES\DATA\Y2015\121615TPH_GC4\121615 2015-12-16 13-09-52\064B1601.D Directory:

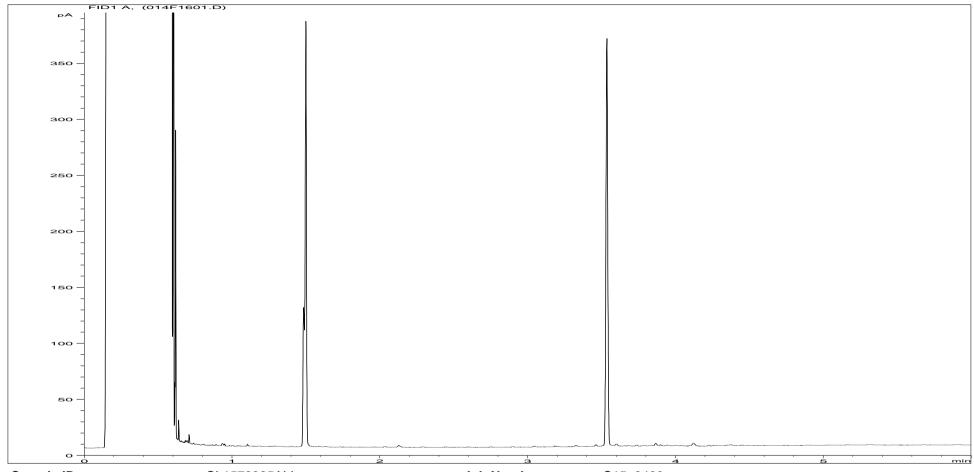
Method:	Ultra Sonic													
		Concentration, (mg/kg) - as wet weight												
Bands marked with a ' * ' are	not UKAS Accredited	>C8 - C10	>C8 - C10	>C10 - C12	>C10 - C12	>C12 - C16	>C12 - C16	>C16 - C35	>C16 - C21	>C35 - C44*	>C21 - C35	>C35 - C44*	>C8 - C44*	>C8 - C44*
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aromatics	Aliphatics	Aromatics
CL1572325	BH406 ES 1 0.7	<4.08	<4	<4.08	<4	<4.08	<4	14.2	11.2	<5.73	41.1	<5.62	<20.4	58.4
														+
														+
			+		+					+	+	+		+
														+
									+					+
									+					+
									+					+
									+					+
														+
								+	1					
				+					1				+	
							-		-					
									1					
1														

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

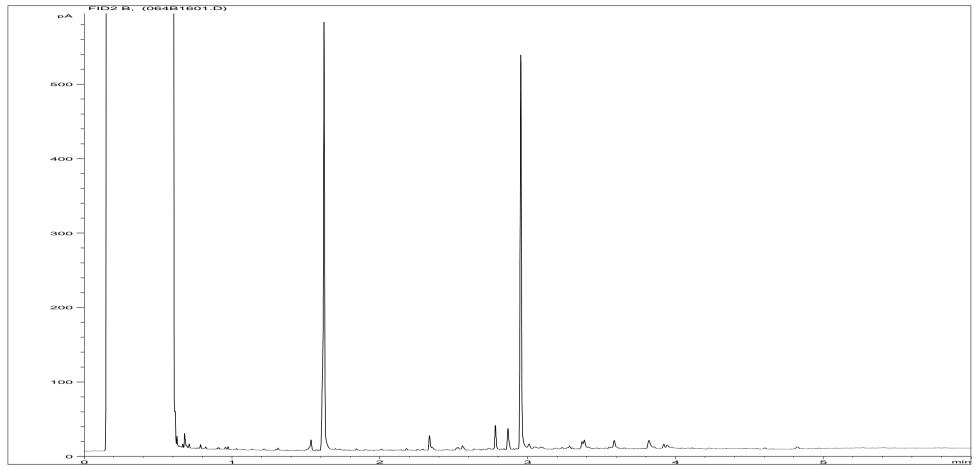

Soil

11-Dec-15

15-Dec-15

16-Dec-15, 16:38:11

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.


Sample ID:CL1572325ALIJob Number:S15_8466Multiplier:16.32Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:BH406 ES 1 0.7

Acquisition Date/Time: 16-Dec-15, 16:38:11

Datafile: D:\TES\DATA\Y2015\121615TPH_GC4\121615 2015-12-16 13-09-52\014F1601.D

Page 7 of 15 EFS/158466 Ver. 2

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.

Sample ID:CL1572325AROJob Number:S15_8466Multiplier:11.68Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:BH406 ES 1 0.7

Acquisition Date/Time: 16-Dec-15, 16:38:11

Datafile: D:\TES\DATA\Y2015\121615TPH_GC4\121615 2015-12-16 13-09-52\064B1601.D

Page 8 of 15 EFS/158466 Ver. 2

Volatile Organic Compounds by HSA-GCMS

UKAS accredited?: Yes

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: LIMS ID Number: CL1572325 Job Number: S15 8466

BH406 ES 1 0.7

Target Compounds	CAS#	R.T. (min.)	Concentration µg/kg	% Fit
Dichlorodifluoromethane	75-71-8 **	-	< 1	-
Chloromethane	74-87-3 *	-	< 3	-
Vinyl Chloride	75-01-4	-	< 1	-
Bromomethane	74-83-9	-	< 1	-
Chloroethane	75-00-3	-	< 2	-
Trichlorofluoromethane	75-69-4	-	< 1	-
1,1-Dichloroethene	75-35-48 *	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	-	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	-
MTBE	1634-04-4	-	< 1	-
2,2-Dichloropropane	594-20-7	-	< 1	-
cis 1,2-Dichloroethene	156-59-2	-	< 5	-
Bromochloromethane	74-97-5	-	< 1	-
Chloroform	67-66-3	-	< 1	-
1,1,1-Trichloroethane	71-55-6	-	< 1	-
Carbon Tetrachloride	56-23-5	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	-
Benzene	71-43-2	-	< 1	-
1,2-Dichloroethane	107-06-2	-	< 1	-
Trichloroethene	79-01-6 **	-	< 1	-
1,2-Dichloropropane	78-87-5	-	< 1	-
Dibromomethane	74-95-3	-	< 1	-
Bromodichloromethane	75-27-4	-	< 1	-
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-
Toluene	108-88-3	-	< 5	-
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-
1,1,2-Trichloroethane	79-00-5	-	< 1	-
Tetrachloroethene	127-18-4	-	< 3	-
1,3-Dichloropropane	142-28-9	-	< 1	-
Dibromochloromethane	124-48-1	-	< 1	-
1,2-Dibromoethane	106-93-4	-	< 1	-
Chlorobenzene	108-90-7	-	< 1	-
Ethylbenzene	100-41-4	-	< 2	-
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-
m and p-Xylene	108-38-3/106-42-3	-	< 4	-

Directory/Quant file:	215VOC.MS19\	Initial Calibration	Matrix:	Soll
Date Booked in:	11-Dec-15		Method:	Headspace
Date Analysed:	15-Dec-15		Multiplier:	1.03
Operator:	PR		Position:	12

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min.)	μg/kg	
o-Xylene	95-47-6	-	< 2	-
Styrene	100-42-5	-	< 1	-
Bromoform	75-25-2	-	< 1	-
iso-Propylbenzene	98-82-8	-	< 1	-
1,1,2,2-Tetrachloroethane	79-34-5 **	-	< 1	-
Propylbenzene	103-65-1	-	< 1	-
Bromobenzene	108-86-1	-	< 1	-
1,2,3-Trichloropropane	96-18-4	-	< 1	-
2-Chlorotoluene	95-49-8	-	< 1	-
1,3,5-Trimethylbenzene	108-67-8	-	< 1	-
4-Chlorotoluene	106-43-4	-	< 1	-
tert-Butylbenzene	98-06-6	-	< 1	-
1,2,4-Trimethylbenzene	95-63-6	-	< 1	-
sec-Butylbenzene	135-98-8	-	< 1	-
p-Isopropyltoluene	99-87-6	-	< 1	-
1,3-Dichlorobenzene	541-73-1	-	< 1	-
1,4-Dichlorobenzene	106-46-7	-	< 1	-
n-Butylbenzene	104-51-8 *	-	< 1	-
1,2-Dichlorobenzene	95-50-1	-	< 1	-
1,2-Dibromo-3-chloropropane	96-12-8	-	< 1	-
1,2,4-Trichlorobenzene	120-82-1 *	-	< 3	-
Hexachlorobutadiene	87-68-3 **	-	< 2	-
Naphthalene	91-20-3	7.11	46	71
1,2,3-Trichlorobenzene	87-61-6	-	< 3	-

Compounds marked * are not MCERTS accredited Compounds marked ** are not UKAS or Mcerts accredited "M" denotes that % fit has been manually interpreted

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	4.01	75	Dibromofluoromethane	115
1,4-Difluorobenzene	4.35	72	Toluene-d8	95
Chlorobenzene-d5	5.46	58		
Bromofluorobenzene	5.86	44		
1,4-Dichlorobenzene-d4	6.26	32		

10

7.09

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling. Where individual results are flagged see report notes for status.

Naphthalene-d8

CERTIFICATE OF ANALYSIS

ANALYSIS REQUESTED BY: ESG Environmental Chemistry CONTRACT NO: 46568

PO Box 100

Burton upon Trent PROJECT NO: 610

Staffordshire DE15 0XD

DATE OF ISSUE: 22.12.15

DATE SAMPLES RECEIVED: 15.12.15

DATE SAMPLES ANALYSED: 22.12.15

SAMPLE DESCRIPTION: One soil/loose aggregate sample weighing approximately 1.5kg

ANALYSIS REQUESTED: Qualitative and quantitative analysis of a soil/loose aggregate sample for

mass determination of asbestos.

METHODS:

Qualitative - The sample was analysed qualitatively for asbestos by polarised light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative - The analysis was carried out using our documented in-house method based on HSE Contract Research Report No. 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire sample, detailed analysis of a representative sub-sample and quantification by hand picking/weighing and/or fibre counting/sizing as appropriate.

RESULTS:

Initial Screening

No asbestos was detected in the soil sample by stereo-binocular and polarised light microscopy.

A summary of the results is given in Table 1.

CONTRACT NO: 46568 PROJECT NO: 610 **DATE OF ISSUE: 22.12.15**

RESULTS: (cont.)

Table 1: Qualitative Results

ESG Job I.D: S158466

IOM sample number	Client sample number	ACM type detected	PLM result
S36987	S1572325 BH406 0.7		No Asbestos Detected

Our detection limit for this method is 0.001%.

COMMENTS:

IOM Consulting cannot accept responsibility for samples that have been incorrectly collected or despatched by external clients.

Any opinions and interpretations expressed herein are outwith the scope of our UKAS accreditation.

AUTHORISED BY: J Simpson

Senior Scientific Technician

ESG Environmental Chemistry Analytical and Deviating Sample Overview

S158466

Customer Site ESG Doncaster
A63 Castle Street

Consignment No S52219
Date Logged 11-Dec-2015

Report No

S158466

Report Due 18-Dec-2015

		MethodID	CustServ	GROHSA	ICPBOR	ICPMSS	•												ICPSOIL	KONECR	PAHMSUS	PHSOIL	SFAPI		Sub020	TPHUSSI	VOCHSAS
ID Number	Description	Sampled	REPORT A	GRO (AA-UK) HSA-GCFID	Boron (H20 Soluble)	Antimony (MS)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Manganese (MS)	Mercury (MS)	Molybdenum (MS)	Nickel (MS)	Selenium (MS)	Vanadium (MS)	Zinc (MS)	Beryllium.	Chromium vi:	PAH (16) by GCMS	pH units (AR)	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos ID & Quan	TPH by GCFID (Si-UKCWG)>44	BTEX-HSA GCMS analysis
	•			✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓		✓	✓	✓	✓	✓	✓	✓
CL/1572325	BH406 0.7	09/12/15		·			·	,	,	,	, in the second	, and the second	, in the second	·	,	,	,	·	, and the second	,	·	,		,		·	

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Where individual results are flaggles selfentines Notestelles date may vary

ESG Environmental Chemistry Analytical and Deviating Sample Overview

S158466

Customer Site

Report No

ESG Doncaster
A63 Castle Street

S158466

Consignment No S52219 Date Logged 11-Dec-2015

Report Due 18-Dec-2015

		MethodID	VOCHSAS		WSLM59
ID Number	Description	Sampled	VOC HSA-GCMS	Ethyl Benzene (µg/kg)	Total Organic Carbon
		·	✓	✓	
CL/1572325	BH406 0.7	09/12/15			

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Where individual results are flaggles selfentines Notestelles date may vary

Report Number: EFS/158466

Method Descriptions

Matrix	MethodID	Analysis	Method Description
Soil	GROHSA	Basis As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace GCFID
Soil	ICPBOR	Oven Dried	Determination of Boron in soil samples by hot water extraction
		@ < 35°C	followed by ICPOES detection
Soil	ICPMSS	Oven Dried	Determination of Metals in soil samples by aqua regia digestion
		@ < 35°C	followed by ICPMS
Soil	ICPSOIL	Oven Dried	Determination of Metals in soil samples by aqua regia digestion
		@ < 35°C	followed by ICPOES detection
Soil	KONECR	Oven Dried	Determination of Chromium vi in soil samples by water extraction
		@ < 35°C	followed by colorimetric detection
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
			pH probe.
Soil	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Soil	TPHUSSI	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection including quantitation of Aromatic and
			Aliphatic fractions.
Soil	VOCHSAS	As Received	Determination of Volatile Organic Compounds (VOC) by
			Headspace GCMS
Soil	WSLM59	Oven Dried	Determination of Organic Carbon in soil using sulphurous Acid
		@ < 35°C	digestion followed by high temperature combustion and IR
			detection

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 15 of 15 EFS/158466 Ver. 2

Sample Descriptions

Client : ESG Doncaster
Site : A63 Castle Street
Report Number : S15_8466

Note: major constituent in upper case

Lab ID Number	Client ID	Note: major constituent in upper case Description
CL/1572325	BH406 ES 1 0.7	SILT
CL/15/2325	BH406 ES 1 0.7	SILI
	1	

Appendix A Page 1 of 1 22/12/2015EFS/158466 Ver. 2

TEST REPORT

Report No. EFS/158661 (Ver. 1)

ESG Doncaster ESG Doncaster Askern Road Carcroft Doncaster South Yorkshire DN6 8DG

Site: A63 Castle Street

The 1 sample described in this report were registered for analysis by ESG on 17-Dec-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 30-Dec-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)
Table of PAH (MS-SIM) (80) Results (Page 4)
Table of GRO Results (Page 5)
Table of TPH (Si) banding (UK-CWG) (Page 6)
GC-FID Chromatograms (Pages 7 to 8)
Subcontracted Analysis Reports (Pages 9 to 11)
The accreditation status of subcontracted analysis is displayed on the appended subcontracted analysis reports.
Analytical and Deviating Sample Overview (Pages 12 to 13)
Table of Method Descriptions (Page 14)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Date of Issue: 30-Dec-2015

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

	Meth Method Reporti	Units : od Codes : ng Limits :	mg/kg GROHSA 0.2	mg/kg ICPBOR 0.5	mg/kg ICPMSS 0.1	mg/kg ICPMSS 0.3	mg/kg ICPMSS 0.1	mg/kg ICPMSS 0.5	mg/kg ICPMSS 0.5	mg/kg ICPMSS 0.5	mg/kg ICPMSS 0.1	mg/kg ICPMSS 0.5	mg/kg ICPMSS 0.5	mg/kg ICPMSS 3	mg/kg ICPSOIL 0.1	pH Units PHSOIL	mg/kg SFAPI 0.5	Sub040
LABID Number CL/	UKAS A Client Sample Description	Sample Date	9 GRO (AA-UK) HSA-GCFID	Y Boron (H20 Soluble)	Yes Antimony (MS)	Yes Arsenic (MS)	Yes Cadmium (MS)	Yes Chromium (MS)	Yes Copper (MS)	Yes Lead (MS)	Yes Mercury (MS)	Yes Nickel (MS)	Yes Selenium (MS)	Yes Zinc (MS)	Yes Beryllium.	Yes pH units (AR)	∯ Cyanide(Total) (AR)	os Asbestos Screen DET
1573122	BH417 ES 1 0.70	16-Dec-15	Req	26.8	23.8	13.9	7.28	21.5	65.7	659	0.98	18.4	<0.5	441	0.36	8.5	<0.5	NAIIS
	ESG 😥		Client N		ESG De	oncaster							Sam	ple Ana	alysis			
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422					463 C	astle	Stree	t			Date Prii Report N Table Nu	lumber			D-Dec-2015 FS/158661 1		

	Meth	Units : od Codes :	mg/kg TPHUSSI	mg/kg ICPMSS	mg/kg KONECR	% M/M WSLM59	μg/kg VOCHSAS	μg/kg VOCHSAS	ug/kg VOCHSAS	μg/kg VOCHSAS	μg/kg VOCHSAS	μg/kg VOCHSAS	μg/kg VOCHSAS	mg/kg PAHMSUS			
	Method Reporting		10	0.6	0.1	0.04	5	1 Yes	2	6	4 Yes	2					
LABID Number CL/	Client Sample Description	Sample Date	TPH by GCFID (SI-UKCWG)>44	Vanadium (MS)	No Chromium vi:	Notal Organic Carbon	Yes Toluene	Benzene	Yes Ethyl Benzene	Yes Xylenes	m/p Xylenes	Yes o Xylene	es BTEX-HSA GCMS analysis	Yes PAH (16) by GCMS			
1573122	BH417 ES 1 0.70	16-Dec-15	Req	29.1	<0.1	2.28	<5	<1	<2	<6	<4	<2	Req	Req			
	ESG 😥	ı	Client Na	ame	ESG Do	oncaster			1	1	1		Sam	ple Ana	ılysis		'
			Contact		Mr N Coo	ke								1			
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400				,	463 C	astle	Stree	t			Date Prin Report N Table Nu	lumber			Dec-2015 6/158661 1	
	Fax +44 (0) 1283 554422																

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: Job Number: S15_8661 BH417 ES 1 0.70 LIMS ID Number: 17-Dec-15 CL1573122 Date Booked in: QC Batch Number: 151292 Date Extracted: 21-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 22-Dec-15 Directory: 2115PAH.GC5\ Matrix: Soil Dilution: Ext Method: Ultrasonic 1.0

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	3.35	0.10	98
Acenaphthylene	208-96-8	4.40	0.09	96
Acenaphthene	83-32-9	4.52	0.16	98
Fluorene	86-73-7	4.91	0.11	96
Phenanthrene	85-01-8	5.77	1.23	99
Anthracene	120-12-7	5.83	0.34	98
Fluoranthene	206-44-0	7.14	2.08	94
Pyrene	129-00-0	7.43	1.80	94
Benzo[a]anthracene	56-55-3	9.14	1.05	94
Chrysene	218-01-9	9.19	1.05	99
Benzo[b]fluoranthene	205-99-2	10.68	1.32	98
Benzo[k]fluoranthene	207-08-9	10.71	0.50	98
Benzo[a]pyrene	50-32-8	11.11	1.01	97
Indeno[1,2,3-cd]pyrene	193-39-5	12.49	0.73	90
Dibenzo[a,h]anthracene	53-70-3	12.53	0.15	65
Benzo[g,h,i]perylene	191-24-2	12.81	0.69	83
Total (USEPA16) PAHs	-	-	12.41	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	92
Acenaphthene-d10	93
Phenanthrene-d10	89
Chrysene-d12	90
Perylene-d12	91

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	115
Terphenyl-d14	91

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Gasoline Range Organics (BTEX and Aromatic/Aliphatic Carbon Ranges)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Job Number: \$15_8661

Directory: C:\CHEM32\1\DATA\1221HSA_GC12\122115 2015-12-21 09-42-07\017F1701.D

Method: HEADSPACE GCFID

Matrix: Soil

Date Booked in: 17-Dec-15
Date extracted: 21-Dec-15

Date Analysed: 21-Dec-15, 15:06:

Units: mg/kg

* Sample data with an asterisk are not UKAS accredited.

	BTEX			Aron	natics	Alipl	Total GRO		
Client ID	Benzene	Toluene	Ethyl benzene	Xylenes	C5 - C7	>C7 - C8	C5 - C6	>C6 - C8	C5 - C10
BH417 ES 1 0.70	<0.010	<0.010	<0.010	<0.020	<0.01	<0.01	<0.2	<0.2	<0.2
			Client ID Benzene Toluene		Client ID Benzene Toluene Ethyl benzene Xylenes	Client ID Benzene Toluene Ethyl benzene Xylenes C5 - C7	Client ID Benzene Toluene Ethyl benzene Xylenes C5 - C7 > C7 - C8	Client ID Benzene Toluene Ethyl benzene Xylenes C5 - C7 > C7 - C8 C5 - C6	Client ID Benzene Toluene Ethyl benzene Xylenes C5 - C7 > C7 - C8 C5 - C6 > C6 - C8

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: ESG Doncaster : A63 Castle Street

 Job Number:
 S15_8661
 Separation:
 Silica gel

 QC Batch Number:
 151292
 Eluents:
 Hexane, DCM

 Directory:
 D:\TES\DATA\Y2013\02\122115TPH_GC3\122115 2015-12-21 18-23-19\075B3101.D

Method: Ultra Sonic

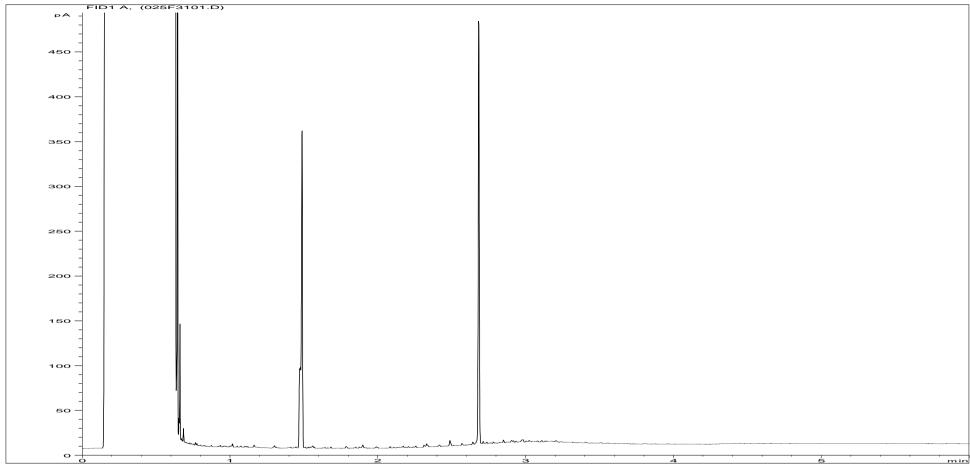
wethou.	Ollia Sollic					Concentration	on, (mg/kg) -	as wet weigh	t					
Bands marked with a ' * ' are no		>C8 - C10	>C8 - C10	>C10 - C12	>C10 - C12	>C12 - C16	>C12 - C16	>C16 - C35	>C16 - C21	>C35 - C44*	>C21 - C35	>C35 - C44*	>C8 - C44*	>C8 - C44*
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aromatics	Aliphatics	Aromatics
CL1573122	BH417 ES 1 0.70	<4.48	<4	<4.48	<4	<4.48	6.38	25.8	17.2	<6.29	71.2	14	29.6	113
			1		1	1				1			1	1
			1							1				1
			1							1				1
			1			+				1				+
						+								

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

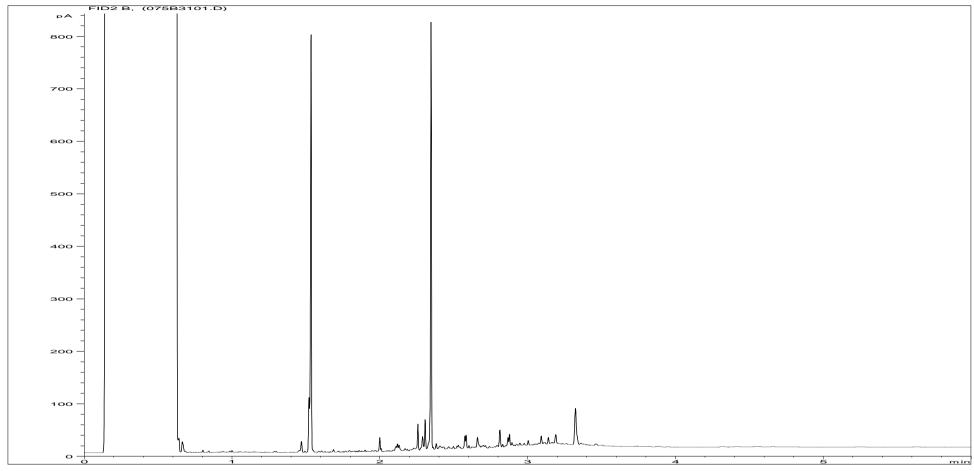

Soil

17-Dec-15

21-Dec-15

22-Dec-15, 01:00:42

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.


Sample ID:CL1573122ALIJob Number:S15_8661Multiplier:17.92Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:BH417 ES 1 0.70

Acquisition Date/Time: 22-Dec-15, 01:00:42

Datafile: D:\TES\DATA\Y2013\02\122115TPH_GC3\122115 2015-12-21 18-23-19\025F3101.D

Page 7 of 15 EFS/158661 Ver. 1

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.

Sample ID:CL1573122AROJob Number:S15_8661Multiplier:11.04Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:BH417 ES 1 0.70

Acquisition Date/Time: 22-Dec-15, 01:00:42

Datafile: D:\TES\DATA\Y2013\02\122115TPH_GC3\122115 2015-12-21 18-23-19\075B3101.D

Page 8 of 15 EFS/158661 Ver. 1

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer Site

ESG Doncaster A63 Castle Street Consignment No S52497 Date Logged 17-Dec-2015

Report No

S158661

Report Due 24-Dec-2015

			MethodID	CustServ	Dep.Opt	GROHSA	ICPBOR	ICPMSS											ICPSOIL	KONECR	PAHMSUS	PHSOIL	SFAPI	Sub002	Sub040	TPHUSSI	VOCHSAS		WSLM59
ID N	Number	Description	Sampled	REPORT A	DO ID & Quant if ASB found	GRO (AA-UK) HSA-GCFID	Boron (H20 Soluble)	Antimony (MS)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Selenium (MS)	Vanadium (MS)	Zinc (MS)	Beryllium.	Chromium vi:	PAH (16) by GCMS	pH units (AR)	Cyanide(Total) (AR)	^Asbestos ID and Quantification	^Asbestos Screen DET	TPH by GCFID (Si-UKCWG)>44	BTEX-HSA GCMS analysis	Ethyl Benzene (µg/kg)	Total Organic Carbon
						✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓		✓	✓	✓	✓	✓	✓	✓	\	
CL/1573	3122	BH417 0.70	16/12/15			·				·																			

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- B C The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Where individual results are flately as Subsection of the subsecti

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer Site **Report No**

ESG Doncaster A63 Castle Street

S158661

Consignment No S52497 Date Logged 17-Dec-2015

Report Due 24-Dec-2015

		MethodID	WSLM59
ID Number	Description	Sampled	Total Organic Carbon
	·		
CL/1573122	BH417 0.70	16/12/15	

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- В С The sample was received without the correct preservation for this analysis
 - Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Where individual results are flately as Subsection of the subsecti

Report Number: EFS/158661

Method Descriptions

Matrix	MethodID	Analysis	Method Description
Soil	GROHSA	Basis As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace GCFID
Soil	ICPBOR	Oven Dried	Determination of Boron in soil samples by hot water extraction
		@ < 35°C	followed by ICPOES detection
Soil	ICPMSS	Oven Dried	Determination of Metals in soil samples by aqua regia digestion
		@ < 35°C	followed by ICPMS
Soil	ICPSOIL	Oven Dried	Determination of Metals in soil samples by aqua regia digestion
		@ < 35°C	followed by ICPOES detection
Soil	KONECR	Oven Dried	Determination of Chromium vi in soil samples by water extraction
		@ < 35°C	followed by colorimetric detection
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
			pH probe.
Soil	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Soil	TPHUSSI	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection including quantitation of Aromatic and
			Aliphatic fractions.
Soil	VOCHSAS	As Received	Determination of Volatile Organic Compounds (VOC) by
			Headspace GCMS
Soil	WSLM59	Oven Dried	Determination of Organic Carbon in soil using sulphurous Acid
		@ < 35°C	digestion followed by high temperature combustion and IR
			detection

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 15 of 15 EFS/158661 Ver. 1

Sample Descriptions

Client : ESG Doncaster
Site : A63 Castle Street
Report Number : S15_8661

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1573122	BH417 ES 1 0.70	MADE GROUND
CL/ 13/3122	DH417 ES 1 0.70	IWADE GROUND
	1	
	1	

Appendix A Page 1 of 1 30/12/2015EFS/158661 Ver. 1

TEST REPORT

Report No. EFS/158711 (Ver. 1)

ESG Doncaster ESG Doncaster Askern Road Carcroft Doncaster South Yorkshire DN6 8DG

Site: A63 Castle Street

The 4 samples described in this report were registered for analysis by ESG on 21-Dec-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 30-Dec-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 6)
Table of PCB Congener Results (Page 7)
GC-FID Chromatograms (Pages 8 to 11)
Table of WAC Analysis Results (Pages 12 to 15)
Analytical and Deviating Sample Overview (Page 16)
Table of Method Descriptions (Page 17)
Table of Report Notes (Page 18)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Date of Issue: 30-Dec-2015

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	pH Units	%	mg/kg	mg/kg	Mol/kg	%	μg/kg	% M/M	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg
		od Codes :	PHSOIL	TMSS	TPHFIDUS	TPHFIDUS	ANC		PCBUSECDAR		BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	PAHMSUS
	Method Reportii	ng Limits : ccredited :	Yes	0.2 Yes	10 Yes	10 Yes	0.04 No	0.2 No	No	0.04 No	10 Yes	10 Yes	10 Yes	30 Yes	20 No	20 Yes	10 Yes	Yes
LAB ID Number CL/	Client Sample Description	Sample Date	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Acid Neut. Capacity	L.O.I. % @ 450C	PCB-7 Congeners Analysis	Total Organic Carbon	Benzene	Toluene	Ethyl Benzene	Xylenes	MTBE	m/p Xylenes	o Xylene	PAH (17) by GCMS
1573351	S4 D 0.30	17-Dec-15	8.3	23.1	97	97	2.56	7.2	Req	2.75	<10	<10	<10	<30	<20	<20	<10	Req
1573352	S4 D 0.50	17-Dec-15	8.4	22.1	104	104	2.24	7.1	Req	2.40	<10	<10	<10	<30	<20	<20	<10	Req
1573353	S7 D 0.30	17-Dec-15	8.2	27.1	165	166	1.92	9.6	Req	3.85	<10	<10	<10	<30	<20	<20	<10	Req
1573354	S7 D 0.50	17-Dec-15	8.3	24.7	116	117	2.08	7.3	Req	2.41	<10	<10	<10	<30	<20	<20	<10	Req
	Bretby Business Park, Ashby Road		Client Na	ame	ESG De	oncaster						Sample Analysis Date Printed 30-Dec-2015						
	Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422				1	463 C	astle	Stree	t			Report N			E	FS/158711 1		

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: S15_8711 S4 D 0.30 Job Number: LIMS ID Number: CL1573351 Date Booked in: 21-Dec-15 QC Batch Number: 151307 **Date Extracted:** 23-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 24-Dec-15 Directory: 2415PAH.GC5\ Matrix: Soil Dilution: Ext Method: 1.0 Ultrasonic

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	5.76	0.24	99
Anthracene	120-12-7	5.82	0.08	100
Fluoranthene	206-44-0	7.13	0.57	97
Pyrene	129-00-0	7.42	0.53	95
Benzo[a]anthracene	56-55-3	9.12	0.29	93
Chrysene	218-01-9	9.18	0.32	98
Benzo[b]fluoranthene	205-99-2	10.67	0.46	97
Benzo[k]fluoranthene	207-08-9	10.70	0.16	97
Benzo[a]pyrene	50-32-8	11.10	0.31	97
Indeno[1,2,3-cd]pyrene	193-39-5	12.48	0.26	98
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	
Benzo[g,h,i]perylene	191-24-2	12.80	0.24	93
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 3.86	-

^{*} Denotes compound is not UKAS accredited

[&]quot;M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	86
Acenaphthene-d10	87
Phenanthrene-d10	85
Chrysene-d12	90
Perylene-d12	92

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	117
Terphenyl-d14	91

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: S15_8711 S4 D 0.50 Job Number: LIMS ID Number: CL1573352 Date Booked in: 21-Dec-15 QC Batch Number: 151307 **Date Extracted:** 23-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 24-Dec-15 Directory: 2415PAH.GC5\ Matrix: Soil Dilution: Ext Method: Ultrasonic 1.0

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	5.76	0.23	98
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	7.13	0.47	97
Pyrene	129-00-0	7.42	0.42	94
Benzo[a]anthracene	56-55-3	9.12	0.26	93
Chrysene	218-01-9	9.18	0.28	98
Benzo[b]fluoranthene	205-99-2	10.67	0.40	94
Benzo[k]fluoranthene	207-08-9	10.70	0.14	94
Benzo[a]pyrene	50-32-8	11.10	0.26	96
Indeno[1,2,3-cd]pyrene	193-39-5	12.49	0.21	93
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	12.80	0.20	89
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 3.35	-

^{*} Denotes compound is not UKAS accredited

[&]quot;M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	82
Acenaphthene-d10	83
Phenanthrene-d10	81
Chrysene-d12	86
Perylene-d12	87

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	119
Terphenyl-d14	92

Concentrations are reported on a wet weight basis.

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: S15_8711 S7 D 0.30 Job Number: LIMS ID Number: CL1573353 Date Booked in: 21-Dec-15 QC Batch Number: 151307 **Date Extracted:** 23-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 24-Dec-15 Directory: 2415PAH.GC5\ Matrix: Soil Dilution: Ext Method: Ultrasonic 1.0

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	3.34	0.11	97
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	5.76	0.73	99
Anthracene	120-12-7	5.82	0.21	99
Fluoranthene	206-44-0	7.13	1.36	97
Pyrene	129-00-0	7.42	1.16	94
Benzo[a]anthracene	56-55-3	9.12	0.64	94
Chrysene	218-01-9	9.18	0.68	99
Benzo[b]fluoranthene	205-99-2	10.67	0.88	78
Benzo[k]fluoranthene	207-08-9	10.70	0.31	94
Benzo[a]pyrene	50-32-8	11.10	0.61	97
Indeno[1,2,3-cd]pyrene	193-39-5	12.49	0.47	99
Dibenzo[a,h]anthracene	53-70-3	12.52	0.10	81
Benzo[g,h,i]perylene	191-24-2	12.80	0.44	93
Coronene	191-07-1 *	15.08	0.13	53
Total (USEPA16) PAHs	-	-	< 7.94	-

^{*} Denotes compound is not UKAS accredited

[&]quot;M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	83
Acenaphthene-d10	85
Phenanthrene-d10	83
Chrysene-d12	88
Perylene-d12	89

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	122
Terphenyl-d14	94

Concentrations are reported on a wet weight basis.

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: S7 D 0.50 Job Number: S15_8711 LIMS ID Number: CL1573354 Date Booked in: 21-Dec-15 QC Batch Number: 151307 **Date Extracted:** 23-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 24-Dec-15 Directory: 2415PAH.GC5\ Matrix: Soil Dilution: Ext Method: Ultrasonic 1.0

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	3.34	0.10	96
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	5.76	0.34	99
Anthracene	120-12-7	5.82	0.10	99
Fluoranthene	206-44-0	7.13	0.64	97
Pyrene	129-00-0	7.42	0.54	95
Benzo[a]anthracene	56-55-3	9.12	0.30	92
Chrysene	218-01-9	9.18	0.36	96
Benzo[b]fluoranthene	205-99-2	10.67	0.52	80
Benzo[k]fluoranthene	207-08-9	10.70	0.19	98
Benzo[a]pyrene	50-32-8	11.10	0.32	97
Indeno[1,2,3-cd]pyrene	193-39-5	12.48	0.27	92
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	12.80	0.25	85
Coronene	191-07-1 *	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 4.25	-

^{*} Denotes compound is not UKAS accredited

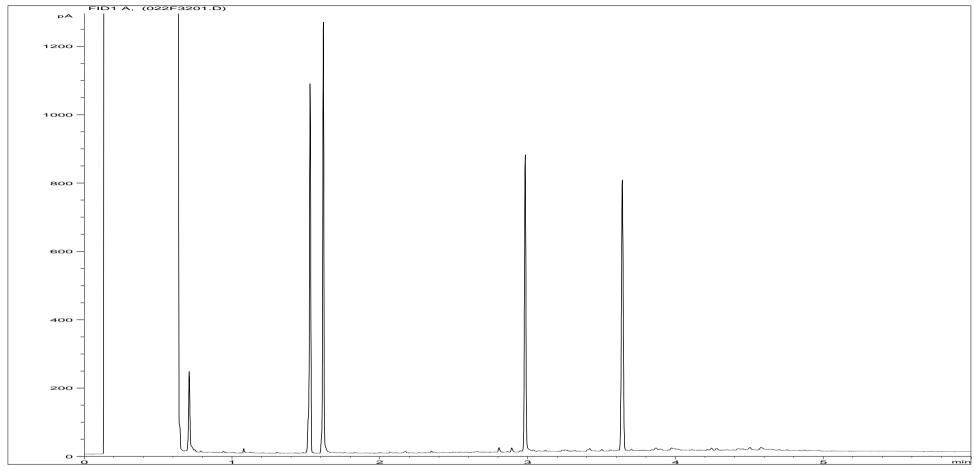
[&]quot;M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	82
Acenaphthene-d10	84
Phenanthrene-d10	81
Chrysene-d12	84
Perylene-d12	83

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	120
Terphenyl-d14	92

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

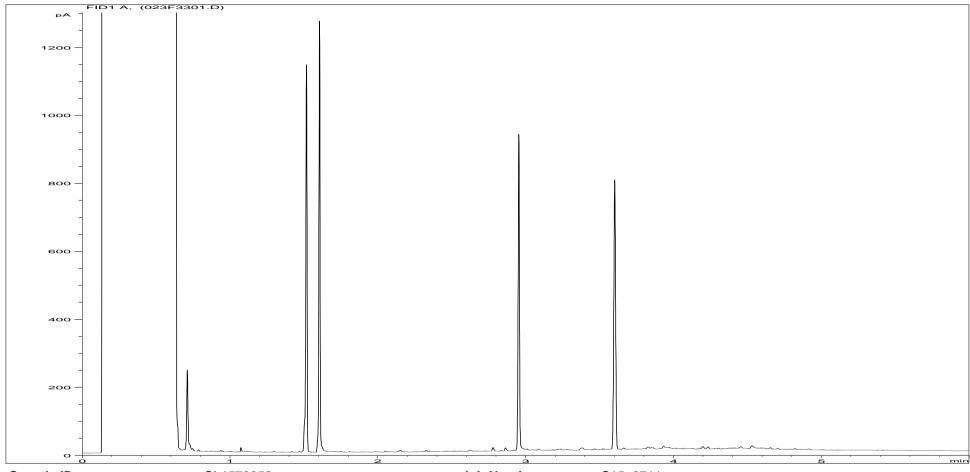

Customer and Site Details: ESG Doncaster: A63 Castle Street Matrix:

SOIL Job Number: S15 8711 Date Booked in: 21-Dec-15 QC Batch Number: 151307 Date Extracted: 23-Dec-15 1224PCB.GC8 **Directory: Date Analysed:** 24-Dec-15

Method: Ultrasonic

* This sample data is not UKAS accredited.

		Concentration, (µg/kg)						
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
* CL1573351	S4 D 0.30	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1573352	S4 D 0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1573353	S7 D 0.30	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1573354	S7 D 0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0

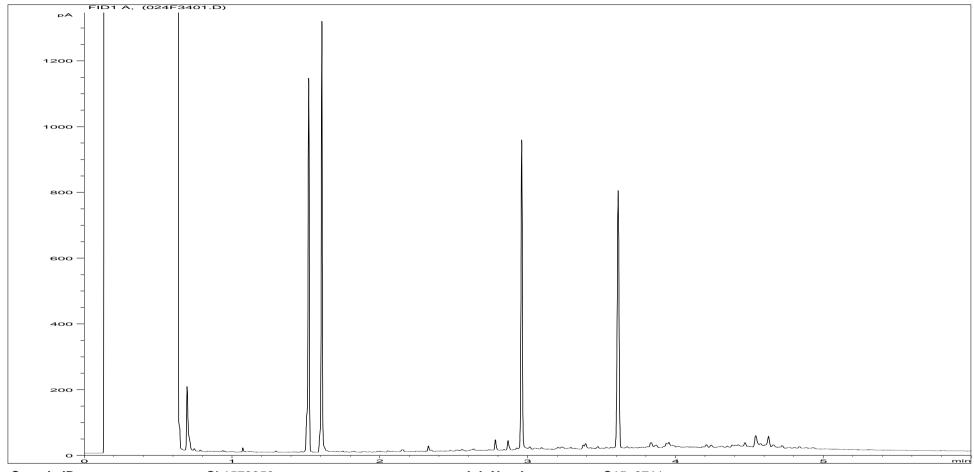

Sample ID: CL1573351 Job Number: S15 8711 Multiplier: Client: **ESG** Doncaster Dilution: Site: A63 Castle Street **Client Sample Ref:** S4 D 0.30

Acquisition Method: 5UL_RUNF.M

Acquisition Date/Time: 23-Dec-15, 17:29:29

Datafile: D:\TES\DATA\Y2015\122315TPH_GC4\122315 2015-12-23 08-27-14\022F3201.D

Page 8 of 18 EFS/158711 Ver. 1

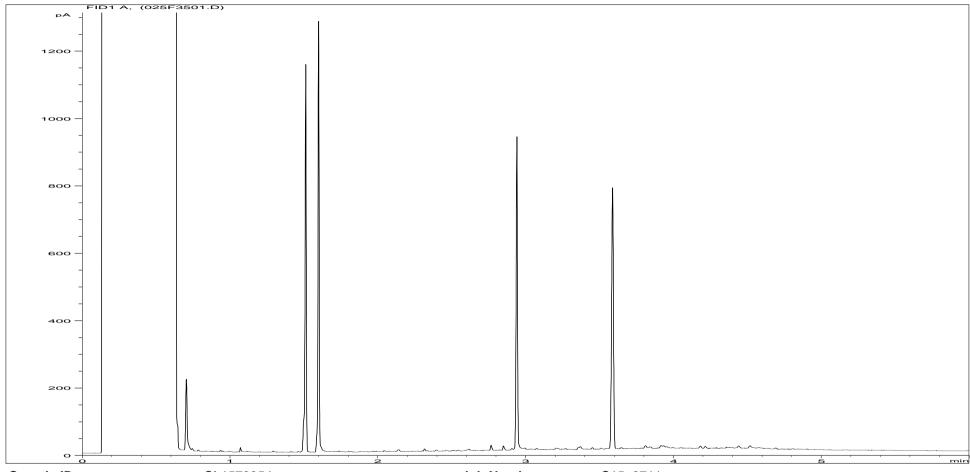

Sample ID: CL1573352 Job Number: S15 8711 Multiplier: Client: **ESG** Doncaster Dilution: Site: A63 Castle Street S4 D 0.50

Acquisition Method: 5UL_RUNF.M **Client Sample Ref:**

Acquisition Date/Time: 23-Dec-15, 17:42:48

Datafile: D:\TES\DATA\Y2015\122315TPH_GC4\122315 2015-12-23 08-27-14\023F3301.D

Page 9 of 18 EFS/158711 Ver. 1


Sample ID:CL1573353Job Number:S15_8711Multiplier:8Client:ESG DoncasterDilution:1Site:A63 Castle Street

Acquisition Method: 5UL_RUNF.M Client Sample Ref: S7 D 0.30

Acquisition Date/Time: 23-Dec-15, 17:56:25

Datafile: D:\TES\DATA\Y2015\122315TPH_GC4\122315 2015-12-23 08-27-14\024F3401.D

Page 10 of 18 EFS/158711 Ver. 1

Sample ID:CL1573354Job Number:S15_8711Multiplier:8Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:S7 D 0.50

Acquisition Date/Time: 23-Dec-15, 18:09:48

Datafile: D:\TES\DATA\Y2015\122315TPH_GC4\122315 2015-12-23 08-27-14\025F3501.D

Page 11 of 18 EFS/158711 Ver. 1

Client	ESG Doncaster		Leaching Data			
Ciletti			Weight of sample (kg)	0.296		
Contact	IMr N COOKE		Moisture content @ 105°C (% of Wet Weight)	23.1		
Contact				Equivalent Weight based on drying at 105°C (kg)	0.225	
Site	A63 Castle Street				Volume of water required to carry out 2:1 stage (litres)	0.379
Site	A65 Casile Sifeet				Fraction of sample above 4 mm %	0.000
Samp	ole Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000
S4 D 0.30 s15_87		o1E 0711	s15_8711 CL/1573351 30		Volume to undertake analysis (2:1 Stage) (litres)	0.300
		810_8/11			Weight of Deionised water to carry out 8:1 stage (kg)	1.650

Note:	Note: The >4mm fraction is crushed using a disc mill									
				Landfill Waste Acceptance Criteria Limit Values						
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
N	WSLM59	Total Organic Carbon (% M/M)	2.87	3	5	6				
N	LOI450	Loss on Ignition (%)	7.5			10				
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6						
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1						
U	TPHFIDUS	Mineral Oil (mg/kg)	126	500						
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<5.12	100						
U	PHSOIL	pH (pH units)	8.3		>6					
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	2.67		To be evaluated	To be evaluated				

		Leachate Analysis	2:1 Leachate	8:1 Leachate	Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1	Landfill Waste	Acceptance Criter	ria Limit Values for BSEN 12457/3 @ L/S 10 litre kg-1
Accreditation	Method Code	·	mg/l ex	·	mg/kg (dry weight)		kg (dry weight)	
U		pH (pH units) ⁰⁰	7.7	8.1	Calculated data	not UKAS Accredited			
U		Conductivity (µs/cm) 00	286	148	Calculated data	not orono Accreated			
U		Arsenic	0.011	0.011	0.022	0.11	0.5	2	25
U	ICPWATVAR		0.14	0.17	0.28	1.7	20	100	300
U		Cadmium	0.0004	0.0004	0.0008	0.004	0.04	1	5
U		Chromium	0.017	0.015	0.034	0.15	0.5	10	70
U	ICPMSW	Copper	0.058	0.049	0.116	0.5	2	50	100
U		Mercury	< 0.0001	< 0.0001	<0.0002	< 0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.007	0.005	0.014	0.05	0.5	10	30
U	ICPMSW	Nickel	0.007	0.006	0.014	0.06	0.4	10	40
U	ICPMSW	Lead	0.124	0.138	0.248	1.36	0.5	10	50
U	ICPMSW	Antimony	0.003	0.002	0.006	0.02	0.06	0.7	5
U	ICPMSW	Selenium	0.001	< 0.001	0.002	<0.01	0.1	0.5	7
U		Zinc	0.123	0.15	0.246	1.46	4	50	200
U	KONENS	Chloride	20	22	40	217	800	15000	25000
U	ISEF	Fluoride	1.2	1.3	2.4	13	10	150	500
U		Sulphate as SO4	8	4	16	45	1000	20000	50000
Ν	WSLM27	Total Dissolved Solids	223	116	446	1303	4000	60000	100000
U	SFAPI	Phenol Index	< 0.05	< 0.05	<0.1	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	32	17	64	190	500	800	1000

Template Ver. 1

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited.

Client	ESG Doncaster				Leaching Data			
Ciletit	ESG Doncaster				Weight of sample (kg)	0.292		
Contact Mr N Cooke					Moisture content @ 105°C (% of Wet Weight)	22.1		
Contact	IVII IN COOKE				Equivalent Weight based on drying at 105°C (kg)	0.225		
Site	A63 Castle Street				Volume of water required to carry out 2:1 stage (litres) 0.383			
Site	A03 Castle Street				Fraction of sample above 4 mm %	0.000		
Sam	ole Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000		
	S4 D 0.50	s15 8711 CL/1573352		30-Dec-15	Volume to undertake analysis (2:1 Stage) (litres)	0.300		
	34 D 0.50	s15_8711	CL/13/3352	30-Dec-12	Weight of Deionised water to carry out 8:1 stage (kg)	1.650		

Note:	The >4mm fracti	on is crushed using a disc mill				
				L	andfill Waste Acc	eptance Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
N	WSLM59	Total Organic Carbon (% M/M)	2.49	3	5	6
N	LOI450	Loss on Ignition (%)	7.4			10
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
U	TPHFIDUS	Mineral Oil (mg/kg)	134	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<4.40	100		
U	PHSOIL	pH (pH units)	8.4		>6	
Ν	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	2.32		To be evaluated	To be evaluated

		Leachate Analysis	2:1 Leachate	8:1 Leachate	Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1	Landfill Waste	Acceptance Criter	ria Limit Values for BSEN 12457/3 @ L/S 10 litre kg-1	
Accreditation	Method Code	·		cept ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)			
U		pH (pH units) 00	7.7	8.2	Calculated data	not UKAS Accredited				
U		Conductivity (µs/cm) 00	253	135	Calculated data	not orono Accreated				
U		Arsenic	0.012	0.013	0.024	0.13	0.5	2	25	
U	ICPWATVAR		0.14	0.29	0.28	2.7	20	100	300	
U		Cadmium	0.0005	0.0005	0.001	0.005	0.04	1	5	
U		Chromium	0.014	0.021	0.028	0.2	0.5	10	70	
U	ICPMSW	Copper	0.047	0.054	0.094	0.53	2 50		100	
U	ICPMSW	Mercury	< 0.0001	< 0.0001	< 0.0002	< 0.001	0.01	0.2	2	
U		Molybdenum	0.013	0.006	0.026	0.07	0.5	10	30	
U	ICPMSW	Nickel	0.008	0.009	0.016	0.09	0.4	10	40	
U	ICPMSW	Lead	0.149	0.218	0.298	2.09	0.5	10	50	
U	ICPMSW	Antimony	0.003	0.002	0.006	0.02	0.06	0.7	5	
U	ICPMSW	Selenium	0.002	0.002	0.004	0.02	0.1	0.5	7	
U		Zinc	0.121	0.175	0.242	1.68	4	50	200	
U		Chloride	28	26	56	263	800	15000	25000	
U		Fluoride	1.8	1.3	3.6	14	10	150	500	
U		Sulphate as SO4	13	5	26 61		1000	20000	50000	
Ν	WSLM27	Total Dissolved Solids	197	105	394	1173	4000	60000	100000	
U	SFAPI	Phenol Index	< 0.05	< 0.05	<0.1 <0.5		1			
Ν	WSLM13	Dissolved Organic Carbon	24	23	48	231	500	800	1000	

Template Ver. 1

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

Client	ESG Doncaster				Leaching Data					
Ciletti	ESG Doncaster				Weight of sample (kg)	0.300				
Contact Mr N Cooke					Moisture content @ 105°C (% of Wet Weight) 27.1					
Contact	IVII IN COOKE				Equivalent Weight based on drying at 105°C (kg)	0.225				
Site	A63 Castle Street				Volume of water required to carry out 2:1 stage (litres) 0.375					
Site	Ado Casile Sifeet				Fraction of sample above 4 mm %	3.400				
Samp	ole Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000				
	S7 D 0.30	-45 0744 01 (45700)		30-Dec-15	Volume to undertake analysis (2:1 Stage) (litres)	0.300				
,	37 D 0.30	s15_8711	CL/1573353	30-Dec-12	Weight of Deionised water to carry out 8:1 stage (kg)	1.650				

Note:	lote: The >4mm fraction is crushed using a disc mill									
					_andfill Waste Acc	eptance Criteria Limit Values				
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
Ν	WSLM59	Total Organic Carbon (% M/M)	4.1	3	5	6				
N	LOI450	Loss on Ignition (%)	10.2			10				
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6						
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1						
U	TPHFIDUS	Mineral Oil (mg/kg)	226	500						
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<11.07	100						
U	PHSOIL	pH (pH units)	8.2		>6					
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	2.05		To be evaluated	To be evaluated				

		Leachate Analysis	2:1 Leachate	8:1 Leachate	Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1	Landfill Waste	Acceptance Criter	ria Limit Values for BSEN 12457/3 @ L/S 10 litre kg-1	
Accreditation	Method Code	,		ccept ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)			
U		pH (pH units) 00	7.9	8	Calculated data	not UKAS Accredited				
U		Conductivity (µs/cm) 00	271	146						
U		Arsenic	0.008	0.011	0.016	0.11	0.5	2	25	
U	ICPWATVAR	Barium	0.14	0.21	0.28	2	20	100	300	
U		Cadmium	0.0005	0.0004	0.001	0.004	0.04	1	5	
U		Chromium	0.008	0.019	0.016	0.18	0.5	10	70	
U	ICPMSW	Copper	0.05	0.052	0.1	0.52	2	50	100	
U	ICPMSW	Mercury	< 0.0001	< 0.0001	< 0.0002	< 0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.002	0.001	0.004	0.01	0.5	10	30	
U	ICPMSW	Nickel	0.005	0.006	0.01	0.06	0.4	10	40	
U	ICPMSW	Lead	0.097	0.189	0.194	1.77	0.5	10	50	
U	ICPMSW	Antimony	0.003	0.002	0.006	0.02	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	< 0.001	< 0.002	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	0.12	0.149	0.24	1.45	4	50	200	
U	KONENS	Chloride	18	22	36	215	800	15000	25000	
U	ISEF	Fluoride	1.3	1	2.6	10	10	150	500	
U	ICPWATVAR	Sulphate as SO4	7	3	14 35		1000	20000	50000	
Ν	WSLM27	Total Dissolved Solids	211	114	422 1269		4000	60000	100000	
U	SFAPI	Phenol Index	< 0.05	< 0.05	<0.1 <0.5		1			
Ν	WSLM13	Dissolved Organic Carbon	23	18	46	187	500	800	1000	

Template Ver. 1

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

Client	ESG Doncaster				Leaching Data					
Ciletti	ESG Doncaster				Weight of sample (kg)	0.292				
Contact Mr N Cooke					Moisture content @ 105°C (% of Wet Weight) 24.7					
Contact	IVII IN COOKE				Equivalent Weight based on drying at 105°C (kg)	0.225				
Site	A63 Castle Street				Volume of water required to carry out 2:1 stage (litres) 0.383					
Site	Ado Casile Sifeet				Fraction of sample above 4 mm %	0.000				
Samp	ole Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000				
	S7 D 0.50	-45 0744 OL/45700		30-Dec-15	Volume to undertake analysis (2:1 Stage) (litres)	0.300				
,	37 0 0.50	s15_8711	CL/1573354	30-Dec-12	Weight of Deionised water to carry out 8:1 stage (kg)	1.650				

Note:	Note: The >4mm fraction is crushed using a disc mill									
				l	andfill Waste Acc	eptance Criteria Limit Values				
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
Ν	WSLM59	Total Organic Carbon (% M/M)	2.52	3	5	6				
N	LOI450	Loss on Ignition (%)	7.6			10				
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6						
N	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1						
U	TPHFIDUS	Mineral Oil (mg/kg)	154	500						
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<5.75	100						
U	PHSOIL	pH (pH units)	8.3		>6					
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	2.17		To be evaluated	To be evaluated				

		Leachate Analysis	2:1 Leachate	8:1 Leachate	Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1	Landfill Waste	Acceptance Criter	ria Limit Values for BSEN 12457/3 @ L/S 10 litre kg-1	
Accreditation	Method Code	·		cept ⁰⁰	mg/kg (dry weight)	mg/kg (dry weight)			
U		pH (pH units) 00	7.7	8.2	Calculated data	not UKAS Accredited				
U		Conductivity (µs/cm) 00	242	132	Calculated data	not orono Accredited				
U		Arsenic	0.011	0.014	0.022	0.14	0.5	2	25	
U	ICPWATVAR	Barium	0.17	0.22	0.34	2.1	20	100	300	
U		Cadmium	0.0003	0.0003	0.0006	0.003	0.04	1	5	
U		Chromium	0.023	0.04	0.046	0.38	0.5	10	70	
U	ICPMSW	Copper	0.064	0.059	0.128	0.6	2	50	100	
U	ICPMSW	Mercury	< 0.0001	< 0.0001	< 0.0002	<0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.003	0.002	0.006	0.02	0.5	10	30	
U	ICPMSW	Nickel	0.007	0.008	0.014	0.08	0.4	10	40	
U	ICPMSW	Lead	0.191	0.16	0.382	1.64	0.5	10	50	
U	ICPMSW	Antimony	0.002	0.001	0.004	0.01	0.06	0.7	5	
U	ICPMSW	Selenium	0.002	0.001	0.004	0.01	0.1	0.5	7	
U		Zinc	0.142	0.17	0.284	1.66	4	50	200	
U	KONENS	Chloride	25	21	50	215	800	15000	25000	
U	ISEF	Fluoride	1.6	1.2	3.2	13	10	150	500	
U		Sulphate as SO4	11	4	22	49	1000	20000	50000	
Ν	WSLM27	Total Dissolved Solids	189	103	378	1145	4000	60000	100000	
U	SFAPI	Phenol Index	< 0.05	< 0.05	<0.1 <0.5		1			
Ν	WSLM13	Dissolved Organic Carbon	26	18	52	191	500	800	1000	

Template Ver. 1

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

ESG Environmental Chemistry S158711 Analytical and Deviating Sample Overview

Customer ESG Doncaster
Site A63 Castle Street

Consignment No S52593

Date Logged 21-Dec-2015

Report No S158711

Report Due 30-Dec-2015

							rtopt	,,, D	0 00	Dec-2	-0.0					
		MethodID	ANC	BTEXHSA		CEN Leachate		CustServ	LOI(%MM)	PAHMSUS	PCBUSECDAR	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (μg/kg)	CEN Leac(P)1	CEN Leac(P)2	REPORT A	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
		-		✓						✓		✓	✓	✓	✓	
CL/1573351	S4 0.30	17/12/15														
CL/1573352	S4 0.50	17/12/15														
CL/1573353	S7 0.30	17/12/15														
CL/1573354	S7 0.50	17/12/15														

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - **Note: due date may be affected if triggered**

No analysis scheduled

Where individual results are flaggles selbenotrestes Notes due date may vary

Report Number: EFS/158711

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	·
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes
			(BTEX) by Headspace GCFID
Soil	LOI(%MM)	Oven Dried	Determination of loss on ignition for soil samples at specified
		@ < 35°C	temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB)
			congeners/aroclors by hexane/acetone extraction followed by
			GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
			pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on
			oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection.
Soil	WSLM59	Oven Dried	Determination of Organic Carbon in soil using sulphurous Acid
		@ < 35°C	digestion followed by high temperature combustion and IR
			detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using
			ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
			ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective
			Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non-
			dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical
			conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 18 of 18 EFS/158711 Ver. 1

Sample Descriptions

Client: ESG Doncaster
Site: A63 Castle Street
Report Number: S15_8711

Note: major constituent in upper case

Lab D Number U10173351 S 10 0.30 Brown MoDE GROUND U10173352 S 70 0.30 Brown MoDE GROUND U10173353 S 70 0.30 Brown Sour SUT U10173354 S 70 0.30 Brown Sour SUT U10173355 S 70 0.30 Brown Sour SUT U10173355 S 70 0.30 Brown Gwr SUT U10173355 S 70 0			Note: major constituent in upper case
CL/1573351 S4 D 0.30 Brown MADE GROUND	Lah ID Number		
CU1973351 St D 0.00 Brown MOE GROUND CU1973353 St D 0.00 Brown St T CU1973554 ST D 0.00 Brown Clay St T CU1973554 ST D 0.00 Brown Clay St T CU1973554 ST D 0.00 Brown Clay St T			Description
CL1973352 St D 0.30 Brown Stems SLIT CL1973353 St D 0.30 Brown Glay SLIT CL1973554 St D 0.30 Brown Glay SLIT CL1973554 St D 0.30 Brown Glay SLIT CL1973555 St D 0.30 Brown Glay SLIT CL197355 ST D 0.	CL/1573351	S4 D 0.30	Brown MADE GROUND
CL/15/73593 S 7 D 0.30 Brown Cliny SILT CL/15/73594 S 7 D 0.50 Brown Cliny SILT	CL/1573352	S4 D 0 50	Brown Stone SILT
CL/1573564 S7 D 0.59 Brown Clay SIL T	CL/1573353	97 D 0 20	Brown Stone SILT
GU1973394 S7 0 0.90 Birtoni Clay Sti. 1	CL/13/3333	37 D 0.30	DIOWI GIOLE GILL
	CL/1573354	S7 D 0.50	Brown Clay SILT
		1	
		+	
		+	
			I .

Appendix A Page 1 of 1 30/12/2015EFS/158711 Ver. 1

TEST REPORT

Report No. EFS/158776 (Ver. 2)

ESG Doncaster ESG Doncaster Askern Road Carcroft Doncaster South Yorkshire DN6 8DG

Site: A63 Castle Street

The 7 samples described in this report were registered for analysis by ESG on 22-Dec-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 18-Jan-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 4)

Table of PAH (MS-SIM) (80) Results (Pages 5 to 11)

Table of PCB Congener (12) Results (Page 12)

Table of SVOC Results (Pages 13 to 19)

Table of GRO Results (Page 20)

Table of TPH (Si) banding (std) (Page 21)

GC-FID Chromatograms (Pages 22 to 35)

Table of VOC (HSA) Results (Pages 36 to 42)

Subcontracted Analysis Reports (Pages 43 to 44)

The accreditation status of subcontracted analysis is displayed on the appended subcontracted analysis reports.

Table of Asbestos Screening Results (Page 45)

Analytical and Deviating Sample Overview (Pages 46 to 47)

Table of Additional Report Notes (Page 48)

Table of Method Descriptions (Page 49)

Table of Report Notes (Page 50)

Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 18-Jan-2016

		Units :	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH Units
		od Codes :	GROHSA	ICPBOR	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL	PHSOIL
	Method Reporti		0.2	0.5	0.1	0.3	0.1	0.5	0.5	0.5	1	0.1	0.5	0.5	0.5	3	0.1	V
	UKAS A	ccredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LAB ID Number CL/	Client Sample Description	Sample Date	GRO (AA) by HSA GC-FID	Boron (H20 Soluble)	Antimony (MS)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Manganese (MS)	Mercury (MS)	Molybdenum (MS)	Nickel (MS)	Selenium (MS)	Zinc (MS)	Beryllium.	pH units (AR)
1573558	WS401 ES 1 0.30	18-Dec-15	Req §	2.2 §	0.9 §	9 §	0.3 §	20.1 §	18.1 §	69.5 §	210.1 §	<0.1 §	1.9 §	20 §	<0.5 §	63.5 §	0.33 §	11.2 §
1573559	WS401 ES 3 1.60	18-Dec-15	Req	2.4	1.8	16.8	0.26	18.4	54.1	329.5	470.9	0.25	1.4	17.7	0.6	73.2	0.647	9.2
1573560	WS402 ES 1 0.10	18-Dec-15	Req	1.2	0.8	10.5	1.2	16.2	24.4	103.7	412.2	0.16	1.5	15.3	<0.5	74.9	0.36	11.7
1573561	WS402 ES 2 1.20	18-Dec-15	Req	3	0.5	13.5	0.18	32.2	15.5	23.7	570.5	<0.1	1	30.5	<0.5	77.9	0.922	8.9
1573562	WS403 ES 2 1.25	18-Dec-15	Req	3	0.4	11.9	0.21	32.8	15	21.7	772.6	<0.1	0.7	32.6	0.6	81.6	0.908	8.9
1573563	WS404 ES 1 0.10	18-Dec-15	Req §	0.9 §	0.3 §	4.9 §	1.69 §	8.5 §	15.2 §	18.3 §	933.2 §	<0.1 §	1.2 §	6.5 §	<0.5 §	80.8 §	0.218 §	11.5 §
1573564	WS404 ES 2 1.10	18-Dec-15	Req	4.4	0.6	13	0.31	26.3	37.7	103.7	536	0.25	1.8	27.4	1.2	89.4	0.806	8.9
	ESG 🔗		Client Name ESG Doncaster Sample Analysis Contact Mr N Cooke															
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ		Joinaut				aetle	Stroo	.+			Date Pri				3-Jan-2016 FS/158776		
Tel +44 (0) 1283 554400 A63 Castle Street Report Number EFS/158776 Table Number 1					1													
	Fax +44 (0) 1283 554422																	

		Units :	mg/kg	mg/kg		mg/kg	mg/kg	μg/kg	%	%	mg/kg	mg/kg	μg/kg			% M/M	μg/kg	μg/kg
		od Codes :	SFAPI	SFAPI	Sub002a	SVOCMSUS	TPHUSSI			e CEN Leachate	ICPMSS		PCBUSECDAR	Sub030	Sub030	WSLM59	VOCHSAS	VOCHSAS
	Method Reporting		0.5	0.5			20				0.6	0.1				0.04	5	1
ļ	UKAS A	ccredited :	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No			No	Yes	Yes
LAB ID Number CL/	Client Sample Description	Sample Date	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos Screen	SVOC by GCMS (AR)	TPH by GCFID (AR/Si)	VOC HSA-GCMS	Fraction of non-crushable material %	Fraction of sample above 4 mm %	Vanadium (MS)	Chromium vi:	PCB-12 Congeners Analysis	^Dioxins & Furans MW	^Dioxins like PCBs	Total Organic Carbon	Toluene	Benzene
1573558	WS401 ES 1 0.30	18-Dec-15	<0.5 §	<0.5 §	NAIIS	Req §	Req §	Req §			16.2	<0.1				0.55	<5 §	<1 §
1573559	WS401 ES 3 1.60	18-Dec-15	<0.5	<0.5	NAIIS	Req	Req	Req	0	40	31	<0.1	Req			1.97	<5	<1
1573560	WS402 ES 1 0.10	18-Dec-15	<0.5	<0.5	NAIIS	Req	Req	Req	0	58	19.5	0.2	Req			0.92	<5	<1
1573561	WS402 ES 2 1.20	18-Dec-15	<0.5	<0.5	NAIIS	Req	Req	Req			49	<0.1				0.98	<5	<1
1573562	WS403 ES 2 1.25	18-Dec-15	<0.5	<0.5	NAIIS	Req	Req	Req			49.3	<0.1				1.23	<5	<1
1573563	WS404 ES 1 0.10	18-Dec-15	<0.5 §	<0.5 §	NAIIS	Req §	Req §	Req §			9.2	<0.1		Req	Req	1.39	<5 §	<1 §
1573564	WS404 ES 2 1.10	18-Dec-15	<0.5	<0.5	NAIIS	Req	Req	Req	0	36	45	<0.1				5.25	<5	<1
	ESG 😥	Client Name ESG Doncaster Sample Analysis Contact Mr N Cooke																
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422	A63 Castle Street Report Number EFS/15877				8-Jan-2016 FS/158776 1												

		Units :	ug/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				
		od Codes :				VOCHSAS	VOCHSAS	PAHMSUS					PHEHPLC				
	Method Reportii	credited :	2 Yes	6 Yes	4 Yes	2 Yes	Yes	Yes	0.3 Yes	0.3 Yes	0.3 Yes	0.3 Yes	Yes				
LAB ID Number CL/	Client Sample Description	Sample Date	Ethyl Benzene	Xylenes	m/p Xylenes	o Xylene	BTEX-HSA GCMS analysis	PAH (16) by GCMS	Phenol	Cresols	Xylenols	Trimethylphenols	Total Phenois				
1573558	WS401 ES 1 0.30	18-Dec-15	<2 §	<6 §	<4 §	<2 §	Req §	Req §									
1573559	WS401 ES 3 1.60	18-Dec-15	<2	<6	<4	<2	Req	Req	<0.3	<0.3	<0.3	<0.3	<1.2				
1573560	WS402 ES 1 0.10	18-Dec-15	<2	<6	<4	<2	Req	Req	<0.3	<0.3	<0.3	<0.3	<1.2				
1573561	WS402 ES 2 1.20	18-Dec-15	<2	<6	<4	<2	Req	Req									
1573562	WS403 ES 2 1.25	18-Dec-15	<2	<6	<4	<2	Req	Req									
1573563	WS404 ES 1 0.10	18-Dec-15	<2 §	<6 §	<4 §	<2 §	Req §	Req §									
1573564	WS404 ES 2 1.10	18-Dec-15	<2	<6	<4	<2	Req	Req									
	ESG 🧟	Client Name ESG Doncaster					Samı	ole Ana	alysis								
			Contact Mr N Cooke														
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400					A63 C	astle	Stree	t		Date Printed 18-Jan-2016 Report Number EFS/158776						
	Fax +44 (0) 1283 554422											Table Number 1					

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS401 ES 1 0.30 Job Number: S15_8776 **LIMS ID Number:** CL1573558 Date Booked in: 22-Dec-15 QC Batch Number: 151315 Date Extracted: 29-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 29-Dec-15 Directory: 2915PAHMS14\ Matrix: Soil Dilution: **Ext Method:** Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	6.97	0.09	90
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.29	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	98
Acenaphthene-d10	98
Phenanthrene-d10	98
Chrysene-d12	86
Perylene-d12	81

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	109
Terphenyl-d14	83

Concentrations are reported on a wet weight basis.

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS401 ES 3 1.60 Job Number: S15_8776 **LIMS ID Number:** CL1573559 Date Booked in: 22-Dec-15 QC Batch Number: 151315 Date Extracted: 29-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 29-Dec-15 Directory: 2915PAHMS14\ Matrix: Soil Dilution: Ext Method: Ultrasonic 1.0

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	3.26	0.14	97
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	5.63	0.19	100
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	6.96	0.21	91
Pyrene	129-00-0	7.24	0.17	88
Benzo[a]anthracene	56-55-3	8.91	0.13	96
Chrysene	218-01-9	8.97	0.12	99
Benzo[b]fluoranthene	205-99-2	10.45	0.11	96
Benzo[k]fluoranthene	207-08-9	10.48	0.08	97
Benzo[a]pyrene	50-32-8	10.87	0.10	90
Indeno[1,2,3-cd]pyrene	193-39-5	12.25	0.09	84
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	12.53	0.09	63
Total (USEPA16) PAHs	-	-	< 1.83	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	96
Acenaphthene-d10	95
Phenanthrene-d10	94
Chrysene-d12	89
Perylene-d12	90

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	107
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS402 ES 1 0.10 Job Number: S15_8776 **LIMS ID Number:** CL1573560 Date Booked in: 22-Dec-15 QC Batch Number: 151315 Date Extracted: 29-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 29-Dec-15 Directory: 2915PAHMS14\ Matrix: Soil Dilution: Ext Method: Ultrasonic 1.0

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	4.42	0.10	95
Fluorene	86-73-7	4.79	0.12	91
Phenanthrene	85-01-8	5.63	1.18	98
Anthracene	120-12-7	5.67	0.33	92
Fluoranthene	206-44-0	6.96	2.03	91
Pyrene	129-00-0	7.24	1.58	87
Benzo[a]anthracene	56-55-3	8.92	1.11	90
Chrysene	218-01-9	8.97	1.00	97
Benzo[b]fluoranthene	205-99-2	10.45	0.84	97
Benzo[k]fluoranthene	207-08-9	10.47	0.95	95
Benzo[a]pyrene	50-32-8	10.87	0.90	97
Indeno[1,2,3-cd]pyrene	193-39-5	12.25	0.55	89
Dibenzo[a,h]anthracene	53-70-3	12.27	0.09	58
Benzo[g,h,i]perylene	191-24-2	12.53	0.44	95
Total (USEPA16) PAHs	-	-	< 11.38	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	99
Acenaphthene-d10	97
Phenanthrene-d10	97
Chrysene-d12	89
Perylene-d12	87

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	103
Terphenyl-d14	79

Concentrations are reported on a wet weight basis.

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS402 ES 2 1.20 Job Number: S15_8776 **LIMS ID Number:** CL1573561 Date Booked in: 22-Dec-15 QC Batch Number: 151315 Date Extracted: 29-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 29-Dec-15 Directory: 2915PAHMS14\ Matrix: Soil Dilution: **Ext Method:** Ultrasonic 1.0

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	ī
Acenaphthene	83-32-9	-	< 0.08	ī
Fluorene	86-73-7	-	< 0.08	ī
Phenanthrene	85-01-8	-	< 0.08	ī
Anthracene	120-12-7	-	< 0.08	ī
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	_	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	_	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	ī
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	ī
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	101
Acenaphthene-d10	99
Phenanthrene-d10	97
Chrysene-d12	87
Perylene-d12	83

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	106
Terphenyl-d14	80

Concentrations are reported on a wet weight basis.

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: Job Number: WS403 ES 2 1.25 S15_8776 LIMS ID Number: CL1573562 Date Booked in: 22-Dec-15 QC Batch Number: 151315 Date Extracted: 29-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 29-Dec-15 Directory: 2915PAHMS14\ Matrix: Soil Dilution: Ext Method: Ultrasonic 1.0

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	98
Acenaphthene-d10	96
Phenanthrene-d10	95
Chrysene-d12	80
Perylene-d12	74

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	111
Terphenyl-d14	83

Concentrations are reported on a wet weight basis.

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: Job Number: WS404 ES 1 0.10 S15_8776 LIMS ID Number: CL1573563 Date Booked in: 22-Dec-15 QC Batch Number: 151315 Date Extracted: 29-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 29-Dec-15 Directory: 2915PAHMS14\ Matrix: Soil Dilution: Ext Method: Ultrasonic 1.0

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	5.63	0.08	93
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	6.96	0.17	94
Pyrene	129-00-0	7.24	0.19	88
Benzo[a]anthracene	56-55-3	8.91	0.12	95
Chrysene	218-01-9	8.97	0.14	94
Benzo[b]fluoranthene	205-99-2	10.45	0.09	63
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	10.87	0.08	89
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.59	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	98
Acenaphthene-d10	98
Phenanthrene-d10	99
Chrysene-d12	92
Perylene-d12	102

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	107
Terphenyl-d14	82

Concentrations are reported on a wet weight basis.

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS404 ES 2 1.10 Job Number: S15_8776 **LIMS ID Number:** CL1573564 Date Booked in: 22-Dec-15 QC Batch Number: 151315 Date Extracted: 29-Dec-15 **Quantitation File: Initial Calibration** Date Analysed: 29-Dec-15 Directory: 2915PAHMS14\ Matrix: Soil Dilution: **Ext Method:** Ultrasonic 1.0

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	6.96	0.29	91
Pyrene	129-00-0	7.24	0.22	88
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.63	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	99
Acenaphthene-d10	98
Phenanthrene-d10	96
Chrysene-d12	91
Perylene-d12	97

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	105
Terphenyl-d14	81

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Job Number: S15_8776
QC Batch Number: 151315
Directory: 1230PCB.GC8
Method: Ultrasonic

* This sample data is not UKAS accredited.

						Conce	ntration,	(µg/kg)					
Sample ID	Customer ID	PCB 81	PCB 77	PCB 123	PCB 118	PCB 114	PCB 105	PCB 126	PCB 167	PCB 156	PCB 157	PCB 169	PCB 189
CL1573559	WS401 ES 3 1.60	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1573560	WS402 ES 1 0.10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<u> </u>													

Soil

22-Dec-15

29-Dec-15

31-Dec-15

Matrix:

Date Booked in:

Date Extracted:

Date Analysed:

Soil

UKAS accredited?: No

Customer and Site Details: ESG Doncaster: A63 Castle Street

WS401 ES 1 0.30

Date Booked in: 22-Dec-15

Operator:

Matrix:

Ext Method:

Soil Ultrasonic JO

CAS#

QC Batch Number: Multiplier:

Concentration

Ν

258

0.2

% Fit

Job Number: S15_8776

Sample Details:

LIMS ID Number:

CL1573558 Date Analysed:

Date Extracted: 29-Dec-15 30-Dec-15

Directory/Quant File:

Target Compounds

15SVOC.GC11\

Dilution Factor: GPC (Y/N)

Target Compounds	CAS#	R.T. (min)	Concentration mg/kg	% Fit
Phenol	108-95-2	-	< 0.1	_
bis(2-Chloroethyl)ether	111-44-4	_	< 0.1	_
2-Chlorophenol	95-57-8	_	< 0.1	-
1,3-Dichlorobenzene	541-73-1	-	< 0.1	_
1.4-Dichlorobenzene	106-46-7	_	< 0.1	_
Benzyl alcohol	100-51-6	-	< 0.5	-
1,2-Dichlorobenzene	95-50-1	-	< 0.1	-
2-Methylphenol	95-48-7	-	< 0.1	-
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.5	-
Hexachloroethane	67-72-1	-	< 0.1	-
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.9	-
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 0.1	-
Nitrobenzene	98-95-3	-	< 0.5	-
Isophorone	78-59-1	-	< 0.1	-
2-Nitrophenol	88-75-5	-	< 0.1	-
2,4-Dimethylphenol	105-67-9	-	< 0.1	-
Benzoic Acid	65-85-0	-	< 0.5	-
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.1	-
2,4-Dichlorophenol	120-83-2	-	< 0.1	-
1,2,4-Trichlorobenzene	120-82-1	-	< 0.1	-
Naphthalene	91-20-3	-	< 0.1	-
4-Chlorophenol	106-48-9	-	< 0.5	-
4-Chloroaniline	106-47-8	-	< 0.5	-
Hexachlorobutadiene	87-68-3	-	< 0.1	-
4-Chloro-3-methylphenol	59-50-7	-	< 0.1	-
2-Methylnaphthalene	91-57-6	-	< 0.1	-
1-Methylnaphthalene	90-12-0	-	< 0.1	-
Hexachlorocyclopentadiene	77-47-4	-	< 0.1	-
2,4,6-Trichlorophenol	88-06-2	-	< 0.1	-
2,4,5-Trichlorophenol	95-95-4	-	< 0.1	-
2-Chloronaphthalene	91-58-7	-	< 0.1	-
Biphenyl .	92-52-4	-	< 0.1	-
Diphenyl ether	101-84-8	-	< 0.1	-
2-Nitroaniline	88-74-4	-	< 0.5	-
Acenaphthylene	208-96-8	-	< 0.1	-
Dimethylphthalate	131-11-3	-	< 0.1	-
2,6-Dinitrotoluene	606-20-2	-	< 0.5	-
Acenaphthene	83-32-9	-	< 0.1	-
3-Nitroaniline	99-09-2	-	< 14.5	-

			mg/kg	
2,4-Dinitrophenol	51-28-5	-	< 0.5	-
Dibenzofuran	132-64-9	-	< 0.1	-
4-Nitrophenol	100-02-7	-	< 0.5	-
2,4-Dinitrotoluene	121-14-2	-	< 0.2	-
Fluorene	86-73-7	-	< 0.1	-
Diethylphthalate	84-66-2	-	< 0.1	-
4-Chlorophenyl-phenylether	7005-72-3	-	< 0.1	-
4,6-Dinitro-2-methylphenol	534-52-1	-	< 0.2	-
4-Nitroaniline	100-01-6	-	< 0.6	-
N-Nitrosodiphenylamine	86-30-6	-	< 0.1	-
4-Bromophenyl-phenylether	101-55-3	-	< 0.1	-
Hexachlorobenzene	118-74-1	-	< 0.1	-
Pentachlorophenol	87-86-5	-	< 0.5	-
Phenanthrene	85-01-8	-	< 0.1	-
Anthracene	120-12-7	-	< 0.1	-
Di-n-butylphthalate	84-74-2	-	< 0.1	-
Fluoranthene	206-44-0	-	< 0.2	-
Pyrene	129-00-0	-	< 0.2	-
Butylbenzylphthalate	85-68-7	-	< 0.2	-
Benzo[a]anthracene	56-55-3	-	< 0.2	-
Chrysene	218-01-9	-	< 0.2	-
3,3'-Dichlorobenzidine	91-94-1	-	< 0.5	-
bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.2	-
Di-n-octylphthalate	117-84-0	-	< 0.2	-
Benzo[b]fluoranthene	205-99-2	-	< 0.2	-
Benzo[k]fluoranthene	207-08-9	-	< 0.2	-
Benzo[a]pyrene	50-32-8	-	< 0.2	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.5	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.5	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.5	-
Coronene	191-07-1*	-	< 0.3	-

R.T.

Internal Standards	% Area
1,4-Dichlorobenzene-d4	127
Naphthalene-d8	131
Acenaphthene-d10	133
Phenanthrene-d10	135
Chrysene-d12	153
Perylene-d12	168

[&]quot;*" denotes compounds which are not UKAS accredited

% Rec

84

86

81

87

27

93

Surrogates

2-Fluorophenol

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

2,4,6-Tribromophenol

Phenol-d5

Concentrations are reported on a wet weight basis.

[&]quot;M" denotes that % fit has been manually interpreted

Matrix:

Ext Method:

Directory/Quant File:

Operator:

UKAS accredited?: Yes

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details:

WS401 ES 3 1.60

Date Booked in: 22-Dec-15 Date Extracted: 29-Dec-15

Date Analysed: 30-Dec-15

LIMS ID Number: CL1573559 Job Number: S15_8776

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Phenol	108-95-2	-	< 0.1	-
bis(2-Chloroethyl)ether	111-44-4	-	< 0.1	-
2-Chlorophenol	95-57-8	-	< 0.1	-
1,3-Dichlorobenzene	541-73-1	-	< 0.1	-
1,4-Dichlorobenzene	106-46-7	-	< 0.1	-
Benzyl alcohol	100-51-6	-	< 0.5	-
1,2-Dichlorobenzene	95-50-1	-	< 0.1	-
2-Methylphenol	95-48-7	-	< 0.1	-
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.5	-
Hexachloroethane	67-72-1	-	< 0.1	-
N-Nitroso-di-n-propylamine	621-64-7*	-	< 0.9	-
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 0.1	-
Nitrobenzene	98-95-3	-	< 0.5	-
Isophorone	78-59-1*	-	< 0.1	-
2-Nitrophenol	88-75-5	-	< 0.1	-
2,4-Dimethylphenol	105-67-9	-	< 0.1	-
Benzoic Acid	65-85-0*	-	< 0.5	-
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.1	-
2,4-Dichlorophenol	120-83-2	-	< 0.1	-
1,2,4-Trichlorobenzene	120-82-1*	-	< 0.1	-
Naphthalene	91-20-3	-	< 0.1	-
4-Chlorophenol	106-48-9	-	< 0.5	-
4-Chloroaniline	106-47-8*	-	< 0.5	-
Hexachlorobutadiene	87-68-3*	-	< 0.1	-
4-Chloro-3-methylphenol	59-50-7	-	< 0.1	-
2-Methylnaphthalene	91-57-6*	-	< 0.1	-
1-Methylnaphthalene	90-12-0	-	< 0.1	-
Hexachlorocyclopentadiene	77-47-4*	-	< 0.1	-
2,4,6-Trichlorophenol	88-06-2	-	< 0.1	-
2,4,5-Trichlorophenol	95-95-4	-	< 0.1	-
2-Chloronaphthalene	91-58-7	-	< 0.1	-
Biphenyl	92-52-4	-	< 0.1	-
Diphenyl ether	101-84-8	-	< 0.1	-
2-Nitroaniline	88-74-4*	-	< 0.5	-
Acenaphthylene	208-96-8	-	< 0.1	-
Dimethylphthalate	131-11-3	-	< 0.1	-
2,6-Dinitrotoluene	606-20-2	-	< 0.5	-
Acenaphthene	83-32-9	-	< 0.1	-
3-Nitroaniline	99-09-2*	-	< 14.5	_

Benzo[g,h,i]perylene	191-24-2
Coronene	191-07-1*
Internal Standards	% Area
1,4-Dichlorobenzene-d4	104
Naphthalene-d8	107
Acenaphthene-d10	107
Phenanthrene-d10	108
Chrysene-d12	127
Perylene-d12	147

[&]quot;*" denotes compounds which are not UKAS accredited

Target Compounds	CAS#	R.T.	Concentration mg/kg	% Fit
2,4-Dinitrophenol	51-28-5*	-	< 0.5	-
Dibenzofuran	132-64-9	-	< 0.1	-
4-Nitrophenol	100-02-7*	-	< 0.5	-
2,4-Dinitrotoluene	121-14-2	-	< 0.2	-
Fluorene	86-73-7	-	< 0.1	-
Diethylphthalate	84-66-2	-	< 0.1	-
4-Chlorophenyl-phenylether	7005-72-3	-	< 0.1	-
4,6-Dinitro-2-methylphenol	534-52-1*	-	< 0.2	-
4-Nitroaniline	100-01-6*	-	< 0.6	-
N-Nitrosodiphenylamine	86-30-6*	-	< 0.1	-
4-Bromophenyl-phenylether	101-55-3	-	< 0.1	-
Hexachlorobenzene	118-74-1	-	< 0.1	-
Pentachlorophenol	87-86-5*	-	< 0.5	-
Phenanthrene	85-01-8	5.91	0.3	99
Anthracene	120-12-7	5.95	0.1	98
Di-n-butylphthalate	84-74-2	-	< 0.1	-
Fluoranthene	206-44-0	6.73	0.4	97
Pyrene	129-00-0	6.92	0.3	99
Butylbenzylphthalate	85-68-7	-	< 0.2	-
Benzo[a]anthracene	56-55-3	8.23	0.2	90
Chrysene	218-01-9	-	< 0.2	-
3,3'-Dichlorobenzidine	91-94-1*	-	< 0.5	-
bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.2	-
Di-n-octylphthalate	117-84-0	-	< 0.2	-
Benzo[b]fluoranthene	205-99-2	9.96	0.2	72
Benzo[k]fluoranthene	207-08-9	-	< 0.2	-
Benzo[a]pyrene	50-32-8	-	< 0.2	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.5	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.5	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.5	-
Coronene	191-07-1*	-	< 0.3	-

Soil

JO

Ultrasonic

15SVOC.GC11\

Surrogates

QC Batch Number:

Dilution Factor:

Multiplier:

GPC (Y/N)

258

0.2

Ν

% Rec

²⁻Fluorophenol 96 Phenol-d5 91 Nitrobenzene-d5 85 2-Fluorobiphenyl 87 2,4,6-Tribromophenol 101 Terphenyl-d14 88

Concentrations are reported on a wet weight basis.

[&]quot;M" denotes that % fit has been manually interpreted

UKAS accredited?: Yes

% Fit

Customer and Site Details: ESG Doncaster: A63 Castle Street

CL1573560

S15_8776

CAS#

91-58-7

92-52-4

101-84-8

88-74-4*

208-96-8

131-11-3

606-20-2

83-32-9

99-09-2*

Sample Details:

Job Number:

LIMS ID Number:

Target Compounds

WS402 ES 1 0.10

R.T.

Date Booked in: 22-Dec-15 **Date Extracted:** 29-Dec-15

Concentration

< 0.1

< 0.1

< 0.1

< 0.5

< 0.1

< 0.1

< 0.5

< 0.1

< 14.5

-

-

Date Analysed: 30-Dec-15 Operator: **Directory/Quant File:**

Matrix:

Ext Method:

Soil Ultrasonic JO

15SVOC.GC11\

QC Batch Number: Multiplier: **Dilution Factor:**

GPC (Y/N)

Ν

258

0.2

		(min)	mg/kg	
Phenol	108-95-2	-	< 0.1	-
bis(2-Chloroethyl)ether	111-44-4	-	< 0.1	-
2-Chlorophenol	95-57-8	-	< 0.1	-
1,3-Dichlorobenzene	541-73-1	-	< 0.1	-
1,4-Dichlorobenzene	106-46-7	-	< 0.1	-
Benzyl alcohol	100-51-6	-	< 0.5	-
1,2-Dichlorobenzene	95-50-1	-	< 0.1	-
2-Methylphenol	95-48-7	-	< 0.1	-
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.5	-
Hexachloroethane	67-72-1	-	< 0.1	-
N-Nitroso-di-n-propylamine	621-64-7*	-	< 0.9	-
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 0.1	-
Nitrobenzene	98-95-3	-	< 0.5	-
Isophorone	78-59-1*	-	< 0.1	-
2-Nitrophenol	88-75-5	-	< 0.1	-
2,4-Dimethylphenol	105-67-9	-	< 0.1	-
Benzoic Acid	65-85-0*	-	< 0.5	-
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.1	-
2,4-Dichlorophenol	120-83-2	-	< 0.1	-
1,2,4-Trichlorobenzene	120-82-1*	-	< 0.1	-
Naphthalene	91-20-3	-	< 0.1	-
4-Chlorophenol	106-48-9	-	< 0.5	-
4-Chloroaniline	106-47-8*	-	< 0.5	-
Hexachlorobutadiene	87-68-3*	-	< 0.1	-
4-Chloro-3-methylphenol	59-50-7	-	< 0.1	-
2-Methylnaphthalene	91-57-6*	-	< 0.1	-
1-Methylnaphthalene	90-12-0	-	< 0.1	-
Hexachlorocyclopentadiene	77-47-4*	-	< 0.1	-
2,4,6-Trichlorophenol	88-06-2	1	< 0.1	-
2,4,5-Trichlorophenol	95-95-4	-	< 0.1	-
0.011	04.50.5			

Colonelle	191-01-1
Internal Standards	% Area
1,4-Dichlorobenzene-d4	116
Naphthalene-d8	121
Acenaphthene-d10	121
Phenanthrene-d10	125
Chrysene-d12	152
Perylene-d12	180
"*" donotos compounds which are	not LIKAS accredit

denotes compounds which are not UKAS accredited

Target Compounds	CAS#	R.T.	Concentration	% Fit
			mg/kg	
2,4-Dinitrophenol	51-28-5*	-	< 0.5	-
Dibenzofuran	132-64-9	-	< 0.1	-
4-Nitrophenol	100-02-7*	-	< 0.5	-
2,4-Dinitrotoluene	121-14-2	-	< 0.2	-
Fluorene	86-73-7	5.32	0.1	92
Diethylphthalate	84-66-2	-	< 0.1	-
4-Chlorophenyl-phenylether	7005-72-3	-	< 0.1	-
4,6-Dinitro-2-methylphenol	534-52-1*	-	< 0.2	-
4-Nitroaniline	100-01-6*	-	< 0.6	-
N-Nitrosodiphenylamine	86-30-6*	-	< 0.1	-
4-Bromophenyl-phenylether	101-55-3	-	< 0.1	-
Hexachlorobenzene	118-74-1	-	< 0.1	-
Pentachlorophenol	87-86-5*	-	< 0.5	-
Phenanthrene	85-01-8	5.91	1.1	99
Anthracene	120-12-7	5.95	0.4	94
Di-n-butylphthalate	84-74-2	-	< 0.1	-
Fluoranthene	206-44-0	6.73	1.5	98
Pyrene	129-00-0	6.93	1.2	99
Butylbenzylphthalate	85-68-7	-	< 0.2	-
Benzo[a]anthracene	56-55-3	8.24	0.8	88
Chrysene	218-01-9	8.29	0.7	94
3,3'-Dichlorobenzidine	91-94-1*	-	< 0.5	-
bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.2	-
Di-n-octylphthalate	117-84-0	-	< 0.2	-
Benzo[b]fluoranthene	205-99-2	9.97	0.8	72
Benzo[k]fluoranthene	207-08-9	10.02	0.3	69
Benzo[a]pyrene	50-32-8	10.57	0.7	96
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.5	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.5	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.5	-
Coronene	191-07-1*	-	< 0.3	-

Surrogates	% Rec
2-Fluorophenol	72
Phenol-d5	83
Nitrobenzene-d5	74
2-Fluorobiphenyl	84
2,4,6-Tribromophenol	31
Terphenyl-d14	85

-

2-Chloronaphthalene

Biphenyl

Diphenyl ether

Acenaphthylene

Dimethylphthalate

2,6-Dinitrotoluene

Acenaphthene

3-Nitroaniline

2-Nitroaniline

Concentrations are reported on a wet weight basis.

[&]quot;M" denotes that % fit has been manually interpreted

UKAS accredited?: Yes

Customer and Site Details: ESG Doncaster: A63 Castle Street

WS402 ES 2 1.20

Date Booked in: 22-Dec-15 Matrix: Ext Method: Operator:

QC Batch Number: 258 Multiplier: Dilution Factor:

LIMS ID Number: Job Number:

Sample Details:

CL1573561 S15 8776

Date Extracted: Date Analysed:

29-Dec-15 30-Dec-15

Directory/Quant File:

15SVOC.GC11\

Soil

JO

Ultrasonic

0.2 GPC (Y/N) Ν

Target Compounds CAS# R.T. Concentration % Fit (min) mg/kg 108-95-2 Phenol < 0.1 bis(2-Chloroethyl)ether 111-44-4 < 0.1 2-Chlorophenol 95-57-8 -< 0.1 -1.3-Dichlorobenzene 541-73-1 < 0.1 1,4-Dichlorobenzene 106-46-7 < 0.1 Benzyl alcohol 100-51-6 -< 0.5 1.2-Dichlorobenzene 95-50-1 < 0.1 2-Methylphenol 95-48-7 < 0.1 108-60-1 bis(2-Chloroisopropyl)ether -< 0.5 -Hexachloroethane 67-72-1 < 0.1 N-Nitroso-di-n-propylamine 621-64-7* < 0.9 3- & 4-Methylphenol 108-39-4/106-44-5 -< 0.1 Nitrobenzene 98-95-3 < 0.5 78-59-1* Isophorone < 0.1 88-75-5 2-Nitrophenol -< 0.1 2,4-Dimethylphenol 105-67-9 < 0.1 Benzoic Acid 65-85-0* < 0.5 bis(2-Chloroethoxy)methane 111-91-1 < 0.1 2,4-Dichlorophenol 120-83-2 < 0.1 1,2,4-Trichlorobenzene 120-82-1* < 0.1 Naphthalene 91-20-3 < 0.1 4-Chlorophenol 106-48-9 < 0.5 4-Chloroaniline 106-47-8* < 0.5 87-68-3* Hexachlorobutadiene < 0.1 --4-Chloro-3-methylphenol 59-50-7 < 0.1 2-Methylnaphthalene 91-57-6* < 0.1 90-12-0 1-Methylnaphthalene -< 0.1 -Hexachlorocyclopentadiene 77-47-4* < 0.1 2,4,6-Trichlorophenol 88-06-2 < 0.1 2,4,5-Trichlorophenol 95-95-4 < 0.1 --2-Chloronaphthalene 91-58-7 < 0.1 Biphenyl 92-52-4 < 0.1 101-84-8 < 0.1 Diphenyl ether --2-Nitroaniline 88-74-4* < 0.5 Acenaphthylene 208-96-8 < 0.1 Dimethylphthalate 131-11-3 < 0.1 -_ 2,6-Dinitrotoluene 606-20-2 < 0.5 Acenaphthene 83-32-9 < 0.1 3-Nitroaniline 99-09-2* < 14.5 _

Target Compounds	CAS#	R.T.	Concentration mg/kg	% Fit
2,4-Dinitrophenol	51-28-5*	-	< 0.5	-
Dibenzofuran	132-64-9	-	< 0.1	-
4-Nitrophenol	100-02-7*	-	< 0.5	-
2,4-Dinitrotoluene	121-14-2	-	< 0.2	-
Fluorene	86-73-7	-	< 0.1	-
Diethylphthalate	84-66-2	-	< 0.1	-
4-Chlorophenyl-phenylether	7005-72-3	-	< 0.1	-
4,6-Dinitro-2-methylphenol	534-52-1*	-	< 0.2	-
4-Nitroaniline	100-01-6*	-	< 0.6	-
N-Nitrosodiphenylamine	86-30-6*	-	< 0.1	-
4-Bromophenyl-phenylether	101-55-3	-	< 0.1	-
Hexachlorobenzene	118-74-1	-	< 0.1	-
Pentachlorophenol	87-86-5*	-	< 0.5	-
Phenanthrene	85-01-8	-	< 0.1	-
Anthracene	120-12-7	-	< 0.1	-
Di-n-butylphthalate	84-74-2	-	< 0.1	-
Fluoranthene	206-44-0	-	< 0.2	-
Pyrene	129-00-0	-	< 0.2	-
Butylbenzylphthalate	85-68-7	-	< 0.2	-
Benzo[a]anthracene	56-55-3	-	< 0.2	-
Chrysene	218-01-9	-	< 0.2	-
3,3'-Dichlorobenzidine	91-94-1*	-	< 0.5	-
bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.2	-
Di-n-octylphthalate	117-84-0	-	< 0.2	-
Benzo[b]fluoranthene	205-99-2	-	< 0.2	-
Benzo[k]fluoranthene	207-08-9	-	< 0.2	-
Benzo[a]pyrene	50-32-8	-	< 0.2	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.5	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.5	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.5	-
Coronene	191-07-1*	-	< 0.3	-

Internal Standards	% Area
1,4-Dichlorobenzene-d4	128
Naphthalene-d8	132
Acenaphthene-d10	132
Phenanthrene-d10	136
Chrysene-d12	163
Perylene-d12	185

[&]quot;*" denotes compounds which are not UKAS accredited

% Rec

97

91

82

85

87 89

Surrogates

2-Fluorophenol

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

2.4.6-Tribromophenol

Phenol-d5

Concentrations are reported on a wet weight basis.

[&]quot;M" denotes that % fit has been manually interpreted

UKAS accredited?: Yes

Customer and Site Details: ESG Doncaster: A63 Castle Street

CL1573562

S15_8776

Sample Details:

Job Number:

LIMS ID Number:

WS403 ES 2 1.25

Date Booked in: 22-Dec-15 **Date Extracted:** 29-Dec-15

Date Analysed: 30-Dec-15

Matrix:

Soil Ext Method: Ultrasonic Operator:

Target Compounds

JO

CAS#

QC Batch Number: Multiplier: **Dilution Factor:**

> Concentration mg/kg

GPC (Y/N)

0.2 Ν

258

% Fit

Directory/Quant File: 15SVOC.GC11\

Target Compounds	CAS#	R.T. (min)	Concentration mg/kg	% Fit
Phenol	108-95-2	-	< 0.1	-
bis(2-Chloroethyl)ether	111-44-4	-	< 0.1	-
2-Chlorophenol	95-57-8	-	< 0.1	-
1,3-Dichlorobenzene	541-73-1	-	< 0.1	-
1,4-Dichlorobenzene	106-46-7		< 0.1	-
Benzyl alcohol	100-51-6	-	< 0.5	-
1,2-Dichlorobenzene	95-50-1		< 0.1	-
2-Methylphenol	95-48-7		< 0.1	-
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.5	-
Hexachloroethane	67-72-1		< 0.1	-
N-Nitroso-di-n-propylamine	621-64-7*		< 0.9	-
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 0.1	-
Nitrobenzene	98-95-3	-	< 0.5	-
Isophorone	78-59-1*	-	< 0.1	-
2-Nitrophenol	88-75-5	-	< 0.1	-
2,4-Dimethylphenol	105-67-9	-	< 0.1	-
Benzoic Acid	65-85-0*	-	< 0.5	-
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.1	-
2,4-Dichlorophenol	120-83-2	-	< 0.1	-
1,2,4-Trichlorobenzene	120-82-1*	-	< 0.1	-
Naphthalene	91-20-3	-	< 0.1	-
4-Chlorophenol	106-48-9	-	< 0.5	-
4-Chloroaniline	106-47-8*	-	< 0.5	-
Hexachlorobutadiene	87-68-3*	-	< 0.1	-
4-Chloro-3-methylphenol	59-50-7	-	< 0.1	-
2-Methylnaphthalene	91-57-6*	-	< 0.1	-
1-Methylnaphthalene	90-12-0	-	< 0.1	-
Hexachlorocyclopentadiene	77-47-4*	-	< 0.1	-
2,4,6-Trichlorophenol	88-06-2	-	< 0.1	-
2,4,5-Trichlorophenol	95-95-4	-	< 0.1	-
2-Chloronaphthalene	91-58-7	-	< 0.1	-
Biphenyl	92-52-4	-	< 0.1	-
Diphenyl ether	101-84-8	-	< 0.1	-
2-Nitroaniline	88-74-4*	-	< 0.5	-
Acenaphthylene	208-96-8	-	< 0.1	-
Dimethylphthalate	131-11-3	-	< 0.1	-
2,6-Dinitrotoluene	606-20-2	-	< 0.5	-
Acenaphthene	83-32-9	-	< 0.1	-
3-Nitroaniline	99-09-2*		< 14.5	-

			9/9	
2,4-Dinitrophenol	51-28-5*	-	< 0.5	-
Dibenzofuran	132-64-9	-	< 0.1	-
4-Nitrophenol	100-02-7*	-	< 0.5	-
2,4-Dinitrotoluene	121-14-2	-	< 0.2	-
Fluorene	86-73-7	-	< 0.1	-
Diethylphthalate	84-66-2	-	< 0.1	-
4-Chlorophenyl-phenylether	7005-72-3	-	< 0.1	-
4,6-Dinitro-2-methylphenol	534-52-1*	-	< 0.2	-
4-Nitroaniline	100-01-6*	-	< 0.6	-
N-Nitrosodiphenylamine	86-30-6*	-	< 0.1	-
4-Bromophenyl-phenylether	101-55-3	-	< 0.1	-
Hexachlorobenzene	118-74-1	-	< 0.1	-
Pentachlorophenol	87-86-5*	-	< 0.5	-
Phenanthrene	85-01-8	-	< 0.1	-
Anthracene	120-12-7	-	< 0.1	-
Di-n-butylphthalate	84-74-2	-	< 0.1	-
Fluoranthene	206-44-0	-	< 0.2	-
Pyrene	129-00-0	-	< 0.2	-
Butylbenzylphthalate	85-68-7	-	< 0.2	-
Benzo[a]anthracene	56-55-3	-	< 0.2	-
Chrysene	218-01-9	-	< 0.2	-
3,3'-Dichlorobenzidine	91-94-1*	-	< 0.5	-
bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.2	-
Di-n-octylphthalate	117-84-0	-	< 0.2	-
Benzo[b]fluoranthene	205-99-2	-	< 0.2	-
Benzo[k]fluoranthene	207-08-9	-	< 0.2	-
Benzo[a]pyrene	50-32-8	-	< 0.2	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.5	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.5	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.5	-
Coronene	191-07-1*	-	< 0.3	-

R.T.

Internal Standards	% Area
1,4-Dichlorobenzene-d4	122
Naphthalene-d8	123
Acenaphthene-d10	122
Phenanthrene-d10	126
Chrysene-d12	145
Perylene-d12	157

[&]quot;*" denotes compounds which are not UKAS accredited

2-Fluorophenol	97
Phenol-d5	89
Nitrobenzene-d5	80
2-Fluorobiphenyl	85
2,4,6-Tribromophenol	89
Terphenyl-d14	91

Surrogates

% Rec

Concentrations are reported on a wet weight basis.

[&]quot;M" denotes that % fit has been manually interpreted

UKAS accredited?: No

Customer and Site Details: ESG Doncaster: A63 Castle Street

 Sample Details:
 WS404 ES 1 0.10
 Date Booked in:
 22-Dec-15

 LIMS ID Number:
 CL1573563
 Date Extracted:
 29-Dec-15

 Job Number:
 S15_8776
 Date Analysed:
 30-Dec-15

Target Compounds	CAS#	R.T.	Concentration mg/kg	% Fit
Phenol	108-95-2	-	< 0.5	_
bis(2-Chloroethyl)ether	111-44-4	-	< 0.5	-
2-Chlorophenol	95-57-8	-	< 0.5	-
1,3-Dichlorobenzene	541-73-1	-	< 0.5	-
1,4-Dichlorobenzene	106-46-7	_	< 0.5	-
Benzyl alcohol	100-51-6	-	< 2.5	-
1,2-Dichlorobenzene	95-50-1	_	< 0.5	-
2-Methylphenol	95-48-7	_	< 0.5	-
bis(2-Chloroisopropyl)ether	108-60-1	-	< 2.5	-
Hexachloroethane	67-72-1	_	< 0.5	-
N-Nitroso-di-n-propylamine	621-64-7	_	< 4.5	-
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 0.5	-
Nitrobenzene	98-95-3	-	< 2.5	-
Isophorone	78-59-1	-	< 0.5	-
2-Nitrophenol	88-75-5	-	< 0.5	-
2,4-Dimethylphenol	105-67-9	-	< 0.5	-
Benzoic Acid	65-85-0	-	< 2.5	-
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.5	-
2,4-Dichlorophenol	120-83-2	-	< 0.5	-
1,2,4-Trichlorobenzene	120-82-1	-	< 0.5	-
Naphthalene	91-20-3	-	< 0.5	-
4-Chlorophenol	106-48-9	-	< 2.5	-
4-Chloroaniline	106-47-8	-	< 2.5	-
Hexachlorobutadiene	87-68-3	-	< 0.5	-
4-Chloro-3-methylphenol	59-50-7	-	< 0.5	-
2-Methylnaphthalene	91-57-6	-	< 0.5	-
1-Methylnaphthalene	90-12-0	-	< 0.5	-
Hexachlorocyclopentadiene	77-47-4	-	< 0.5	-
2,4,6-Trichlorophenol	88-06-2	-	< 0.5	-
2,4,5-Trichlorophenol	95-95-4	-	< 0.5	-
2-Chloronaphthalene	91-58-7	-	< 0.5	-
Biphenyl	92-52-4	-	< 0.5	-
Diphenyl ether	101-84-8	-	< 0.5	-
2-Nitroaniline	88-74-4	-	< 2.5	-
Acenaphthylene	208-96-8	-	< 0.5	-
Dimethylphthalate	131-11-3	-	< 0.5	-
2,6-Dinitrotoluene	606-20-2	-	< 2.5	-
Acenaphthene	83-32-9	-	< 0.5	-
3-Nitroaniline	99-09-2	-	< 72.5	-

00.000	
	1
Internal Standards	% Area
1,4-Dichlorobenzene-d4	114
Naphthalene-d8	117
Acenaphthene-d10	116
Phenanthrene-d10	117
Chrysene-d12	134
Pervlene-d12	155

[&]quot;*" denotes compounds which are not UKAS accredited

Matrix:	Soil		QC Batch Number:	
Ext Method:	Ultrasonic		Multiplier:	1
Operator: Directory/Quant File:	JO 15SVOC.GC11\		Dilution Factor:	5 N
Directory/Quant File:	155VOC.GC11\		GPC (Y/N)	IN
Target Compounds	CAS#	R.T.	Concentration mg/kg	% Fit
2.4 Dinitrophonol	E1 20 E		- 25	

			99	
2,4-Dinitrophenol	51-28-5	-	< 2.5	-
Dibenzofuran	132-64-9	-	< 0.5	-
4-Nitrophenol	100-02-7	-	< 2.5	-
2,4-Dinitrotoluene	121-14-2	-	< 1.0	-
Fluorene	86-73-7	-	< 0.5	-
Diethylphthalate	84-66-2	-	< 0.5	-
4-Chlorophenyl-phenylether	7005-72-3	-	< 0.5	-
4,6-Dinitro-2-methylphenol	534-52-1	-	< 1.0	-
4-Nitroaniline	100-01-6	-	< 3.0	-
N-Nitrosodiphenylamine	86-30-6	-	< 0.5	-
4-Bromophenyl-phenylether	101-55-3	-	< 0.5	-
Hexachlorobenzene	118-74-1	-	< 0.5	-
Pentachlorophenol	87-86-5	-	< 2.5	-
Phenanthrene	85-01-8	-	< 0.5	-
Anthracene	120-12-7	-	< 0.5	-
Di-n-butylphthalate	84-74-2	-	< 0.5	-
Fluoranthene	206-44-0	-	< 1.0	-
Pyrene	129-00-0	-	< 1.0	-
Butylbenzylphthalate	85-68-7	-	< 1.0	-
Benzo[a]anthracene	56-55-3	-	< 1.0	-
Chrysene	218-01-9	-	< 1.0	-
3,3'-Dichlorobenzidine	91-94-1	-	< 2.5	-
bis(2-Ethylhexyl)phthalate	117-81-7	-	< 1.0	-
Di-n-octylphthalate	117-84-0	-	< 1.0	-
Benzo[b]fluoranthene	205-99-2	-	< 1.0	-
Benzo[k]fluoranthene	207-08-9	-	< 1.0	-
Benzo[a]pyrene	50-32-8	-	< 1.0	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 2.5	-
Dibenzo[a,h]anthracene	53-70-3	-	< 2.5	-
Benzo[g,h,i]perylene	191-24-2	-	< 2.5	-
Coronene	191-07-1*	-	< 1.5	-

Surrogates
 % Rec

 2-Fluorophenol
 87

 Phenol-d5
 83

 Nitrobenzene-d5
 79

 2-Fluorobiphenyl
 89

 2,4,6-Tribromophenol
 56

 Terphenyl-d14
 92

Concentrations are reported on a wet weight basis.

[&]quot;M" denotes that % fit has been manually interpreted

UKAS accredited?: Yes

Customer and Site Details: ESG Doncaster: A63 Castle Street

CL1573564

S15_8776

Sample Details:

Job Number:

LIMS ID Number:

WS404 ES 2 1.10

22-Dec-15 Date Booked in: **Date Extracted:** 31-Dec-15

Date Analysed: 30-Dec-15

Directory/Quant File:

2.4-Dinitrophenol

2.4-Dinitrotoluene

Dibenzofuran

4-Nitrophenol

Target Compounds

Matrix:

Soil Ultrasonic

Ext Method: Operator: JO

15SVOC.GC11\

CAS#

51-28-5*

132-64-9

100-02-7*

121-14-2

QC Batch Number: 258 Multiplier: 0.2 **Dilution Factor:**

Concentration

mg/kg

< 0.5

< 0.1

< 0.5

< 0.2

Surrogates

2-Fluorophenol

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

2,4,6-Tribromophenol

Phenol-d5

GPC (Y/N)

Ν

% Fit

-

% Rec

98

91

84

89

92

90

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Phenol	108-95-2	-	< 0.1	-
bis(2-Chloroethyl)ether	111-44-4	-	< 0.1	-
2-Chlorophenol	95-57-8	-	< 0.1	-
1,3-Dichlorobenzene	541-73-1	-	< 0.1	-
1,4-Dichlorobenzene	106-46-7	-	< 0.1	-
Benzyl alcohol	100-51-6	-	< 0.5	-
1,2-Dichlorobenzene	95-50-1	-	< 0.1	-
2-Methylphenol	95-48-7	-	< 0.1	-
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.5	-
Hexachloroethane	67-72-1	-	< 0.1	-
N-Nitroso-di-n-propylamine	621-64-7*	-	< 0.9	-
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 0.1	-
Nitrobenzene	98-95-3	-	< 0.5	-
Isophorone	78-59-1*	-	< 0.1	-
2-Nitrophenol	88-75-5	-	< 0.1	-
2,4-Dimethylphenol	105-67-9	-	< 0.1	-
Benzoic Acid	65-85-0*	-	< 0.5	-
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.1	-
2,4-Dichlorophenol	120-83-2	-	< 0.1	-
1,2,4-Trichlorobenzene	120-82-1*	-	< 0.1	-
Naphthalene	91-20-3	-	< 0.1	-
4-Chlorophenol	106-48-9	-	< 0.5	-
4-Chloroaniline	106-47-8*	-	< 0.5	-
Hexachlorobutadiene	87-68-3*	-	< 0.1	-
4-Chloro-3-methylphenol	59-50-7	-	< 0.1	-
2-Methylnaphthalene	91-57-6*	-	< 0.1	-
1-Methylnaphthalene	90-12-0	-	< 0.1	-
Hexachlorocyclopentadiene	77-47-4*	-	< 0.1	-
2,4,6-Trichlorophenol	88-06-2	-	< 0.1	-
2,4,5-Trichlorophenol	95-95-4	-	< 0.1	-
2-Chloronaphthalene	91-58-7	-	< 0.1	-
Biphenyl	92-52-4	-	< 0.1	-
Diphenyl ether	101-84-8	-	< 0.1	-
2-Nitroaniline	88-74-4*	-	< 0.5	-
Acenaphthylene	208-96-8	-	< 0.1	-
Dimethylphthalate	131-11-3	-	< 0.1	-
2,6-Dinitrotoluene	606-20-2	-	< 0.5	-
Acenaphthene	83-32-9	-	< 0.1	-
3-Nitroaniline	99-09-2*	-	< 14.5	-

Benzo[g,h,i]perylene	191-24-2		
Coronene	191-07-1*		
Internal Standards	% Area		
1,4-Dichlorobenzene-d4	114		
Naphthalene-d8	115		
Acenaphthene-d10	117		
Phenanthrene-d10	118		
Chrysene-d12	142		
Perylene-d12	171		
"*" denotes compounds which are not LIKAS accredi			

denotes compounds which are not UKAS accredited

2, . 2 010100			- 0.2	
Fluorene	86-73-7	-	< 0.1	-
Diethylphthalate	84-66-2	-	< 0.1	-
4-Chlorophenyl-phenylether	7005-72-3	-	< 0.1	-
4,6-Dinitro-2-methylphenol	534-52-1*	-	< 0.2	-
4-Nitroaniline	100-01-6*	-	< 0.6	-
N-Nitrosodiphenylamine	86-30-6*	-	< 0.1	-
4-Bromophenyl-phenylether	101-55-3	-	< 0.1	-
Hexachlorobenzene	118-74-1	-	< 0.1	-
Pentachlorophenol	87-86-5*	-	< 0.5	-
Phenanthrene	85-01-8	-	< 0.1	-
Anthracene	120-12-7	-	< 0.1	-
Di-n-butylphthalate	84-74-2	-	< 0.1	-
Fluoranthene	206-44-0	-	< 0.2	-
Pyrene	129-00-0	-	< 0.2	-
Butylbenzylphthalate	85-68-7	-	< 0.2	-
Benzo[a]anthracene	56-55-3	-	< 0.2	-
Chrysene	218-01-9	-	< 0.2	-
3,3'-Dichlorobenzidine	91-94-1*	-	< 0.5	-
bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.2	-
Di-n-octylphthalate	117-84-0	-	< 0.2	-
Benzo[b]fluoranthene	205-99-2	-	< 0.2	-
Benzo[k]fluoranthene	207-08-9	-	< 0.2	-
Benzo[a]pyrene	50-32-8	-	< 0.2	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.5	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.5	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.5	-
Coronene	191-07-1*	-	< 0.3	-

R.T.

-

Concentrations are reported on a wet weight basis. "M" denotes that % fit has been manually interpreted

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Job Number: \$15_8776

Directory: C:\CHEM32\1\DATA\1223HSA_GC12\122315 2015-12-23 11-00-19\144B4401.D

Method: Headspace GCFID

Matrix: Soil

Date Booked in:22-Dec-15Date extracted:23-Dec-15

Date Analysed: 24-Dec-15, 01:0

* Sample data with an asterisk are not UKAS accredited.

		Concentration, (mg/kg) - as wet weight			Aliphatics						
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
* CL1573558	WS401 ES 1 0.30	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1573559	WS401 ES 3 1.60	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1573560	WS402 ES 1 0.10	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1573561	WS402 ES 2 1.20	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1573562	WS403 ES 2 1.25	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1573563	WS404 ES 1 0.10	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2
CL1573564	WS404 ES 2 1.10	<0.010	<0.010	<0.010	<0.010	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: ESG Doncaster : A63 Castle Street

 Job Number:
 S15_8776
 Separation:
 Silica gel

 QC Batch Number:
 151314
 Eluents:
 Hexane, DCM

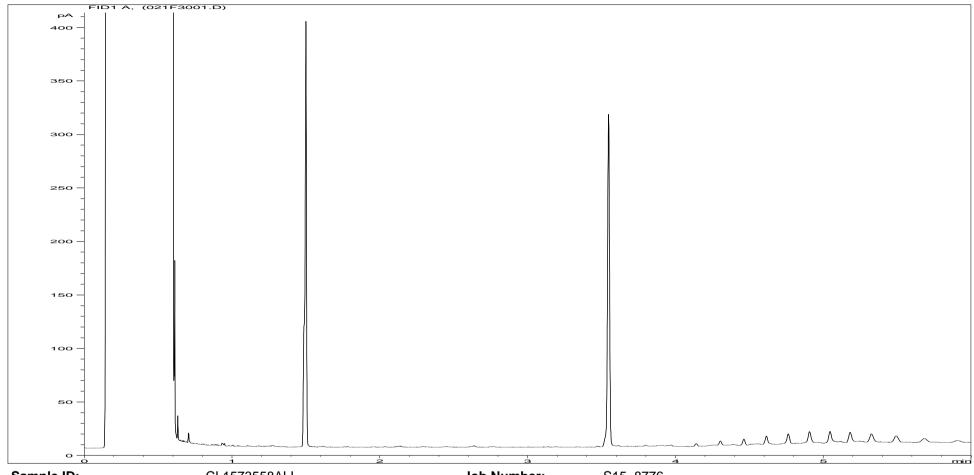
 Directory:
 D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\077B3601.D

Method: Ultra Sonic

10a: U	itra Sonic				Conce	entration, (mg	/kg) - as wet	weight					
This sample data is not UKAS	accredited.	>C8	- C10	>C10) - C12		- C16		6 - C21	>C21	- C35	>C8	- C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatic
CL1573558	WS401 ES 1 0.30	<4.2	<4	<4.2	<4	8	<4	<4.2	<4	10	<8.76	22.2	<20
CL1573559	WS401 ES 3 1.60	<4.2	<4	<4.2	<4	8.13	<4	<4.2	<4	11.4	<8.76	21.1	<20
CL1573560	WS402 ES 1 0.10	<4.12	<4	<4.12	<4	7.86	4.23	<4.12	4.9	14.9	26.4	25.4	42.6
CL1573561	WS402 ES 2 1.20	<4.2	<4	<4.2	<4	7.76	6.09	<4.2	<4	9.5	<8.76	<21	<20
CL1573562	WS403 ES 2 1.25	<4.24	<4	<4.24	<4	7.89	5.58	<4.24	<4	9.7	<8.76	<21.2	<20
CL1573563	WS404 ES 1 0.10	<4.12	<4	<4.12	<4	10.9	11.3	29.5	15.7	149	261	284	502
CL1573564	WS404 ES 2 1.10	<4.28	<4	<4.28	<4	7.75	5.52	<4.28	<4	<9.4	30.7	<21.4	55
													-
													-
													
													ļ
													1

Matrix:

Date Booked in

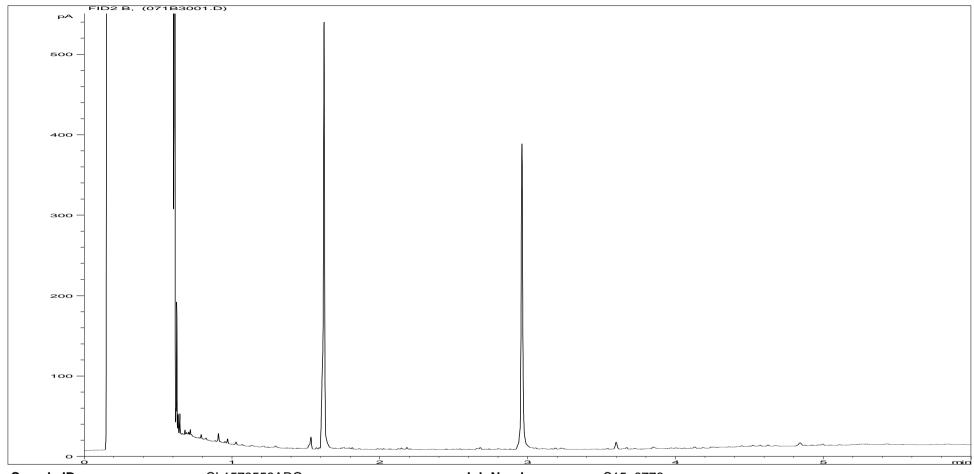

Date Extracted:

Soil

Date Analysed: 30-Dec-15, 20:59:28

22-Dec-15

29-Dec-15

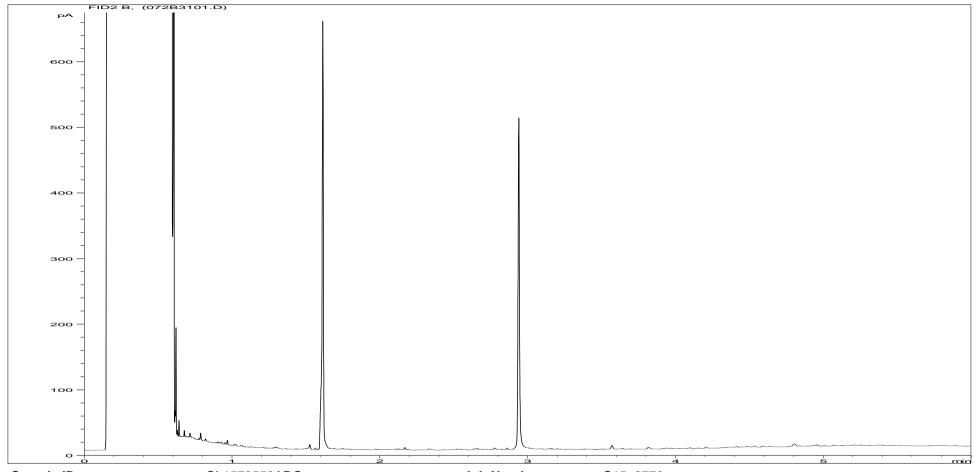


Sample ID:CL1573558ALIJob Number:S15_8776Multiplier:16.8Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:WS401 ES 1 0.30

Acquisition Date/Time: 30-Dec-15, 19:38:03

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\021F3001.D

Page 22 of 50 EFS/158776 Ver. 2

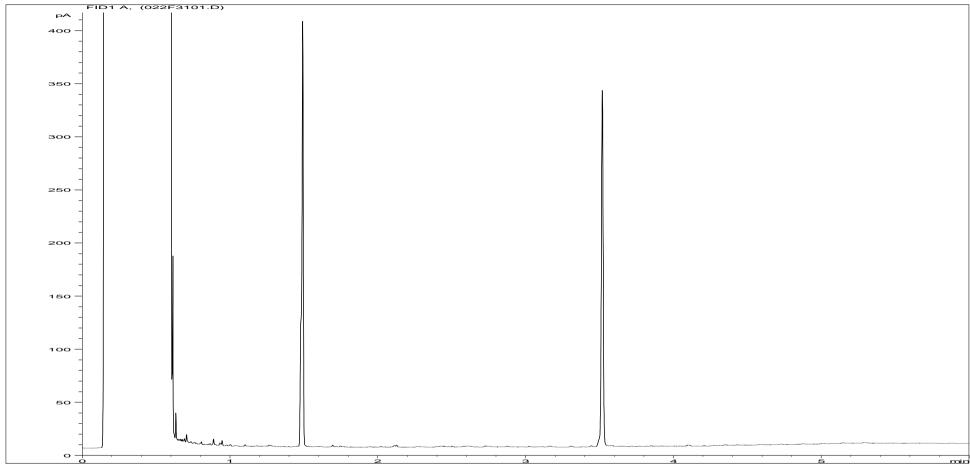


Sample ID:CL1573558AROJob Number:S15_8776Multiplier:10.72Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:WS401 ES 1 0.30

Acquisition Date/Time: 30-Dec-15, 19:38:03

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\071B3001.D

Page 23 of 50 EFS/158776 Ver. 2

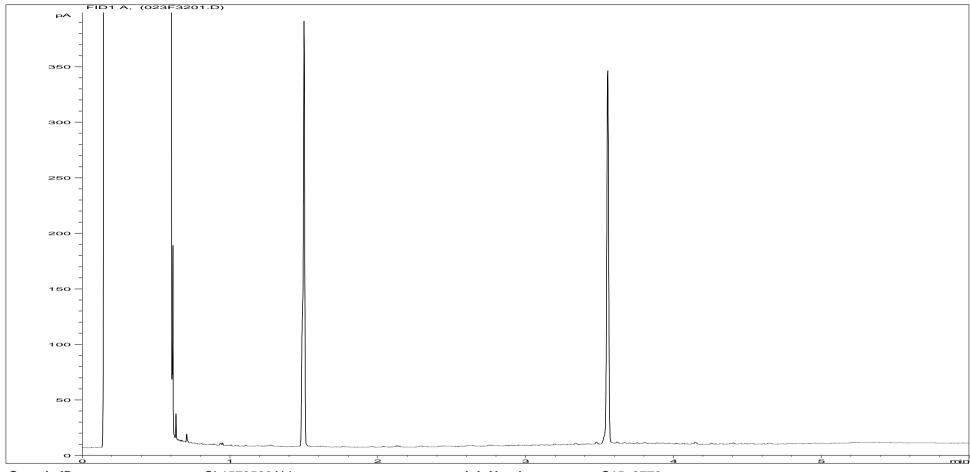


Sample ID:CL1573559AROJob Number:S15_8776Multiplier:10.72Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:WS401 ES 3 1.60

Acquisition Date/Time: 30-Dec-15, 19:51:32

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\072B3101.D

Page 24 of 50 EFS/158776 Ver. 2

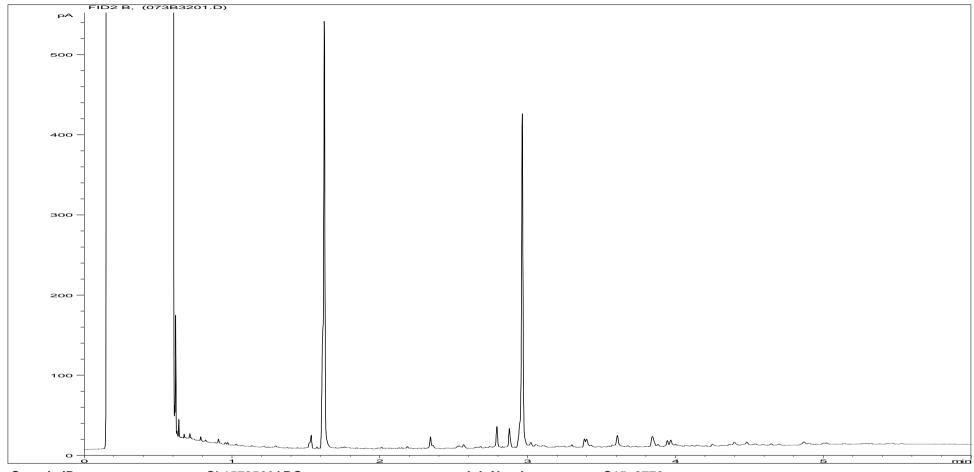


Sample ID:CL1573559ALIJob Number:S15_8776Multiplier:16.8Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:WS401 ES 3 1.60

Acquisition Date/Time: 30-Dec-15, 19:51:32

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\022F3101.D

Page 25 of 50 EFS/158776 Ver. 2



Sample ID:CL1573560ALIJob Number:S15_8776Multiplier:16.48Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:WS402 ES 1 0.10

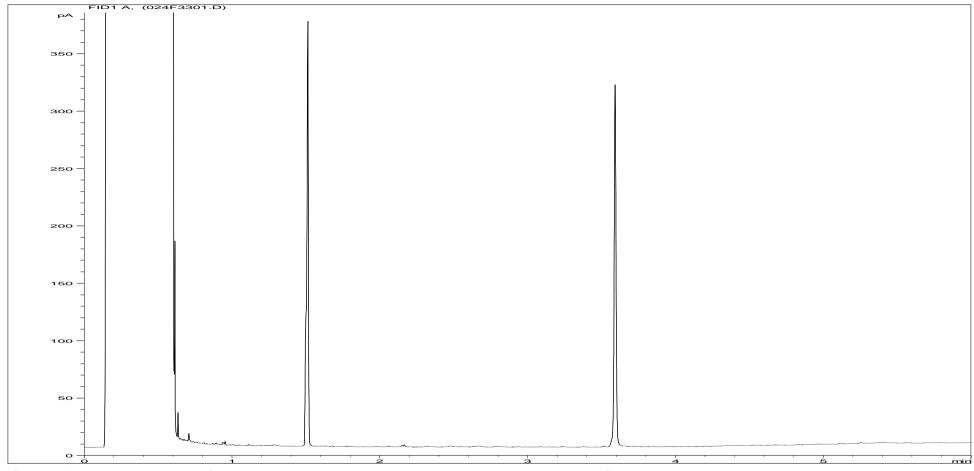
Acquisition Date/Time: 30-Dec-15, 20:05:03

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\023F3201.D

Page 26 of 50 EFS/158776 Ver. 2

 Sample ID:
 CL1573560ARO
 Job Number:
 S15_8776

 Multiplier:
 10.88
 Client:
 ESG Doncaster

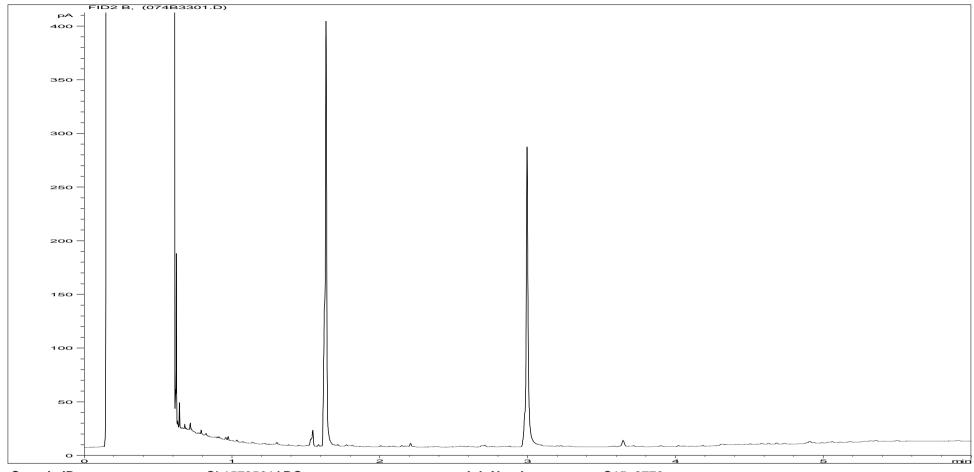

 Dilution:
 1
 Site:
 A63 Castle Street

 Acquisition Method:
 5UL_RUNF.M
 Client Sample Ref:
 WS402 ES 1 0.10

Acquisition Date/Time: 30-Dec-15, 20:05:03

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\073B3201.D

Page 27 of 50 EFS/158776 Ver. 2

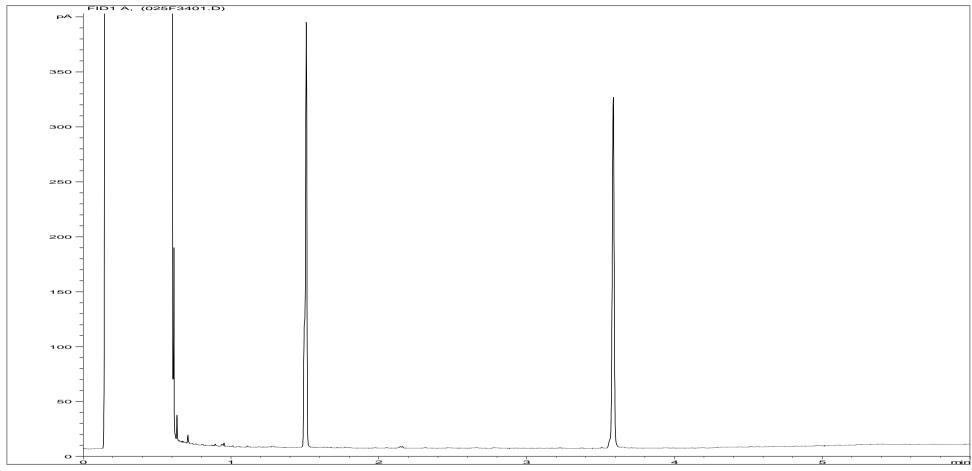


Sample ID:CL1573561ALIJob Number:S15_8776Multiplier:16.8Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:WS402 ES 2 1.20

Acquisition Date/Time: 30-Dec-15, 20:18:35

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\024F3301.D

Page 28 of 50 EFS/158776 Ver. 2

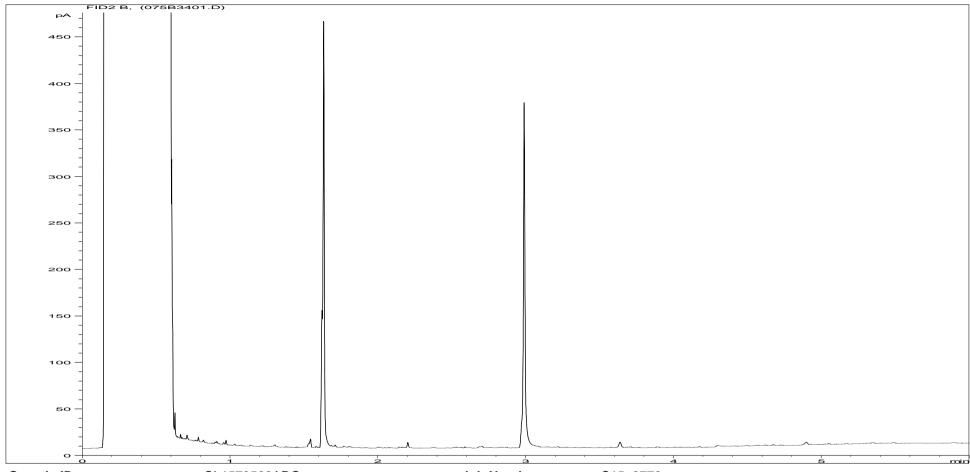


Sample ID:CL1573561AROJob Number:S15_8776Multiplier:10.88Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:WS402 ES 2 1.20

Acquisition Date/Time: 30-Dec-15, 20:18:35

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\074B3301.D

Page 29 of 50 EFS/158776 Ver. 2

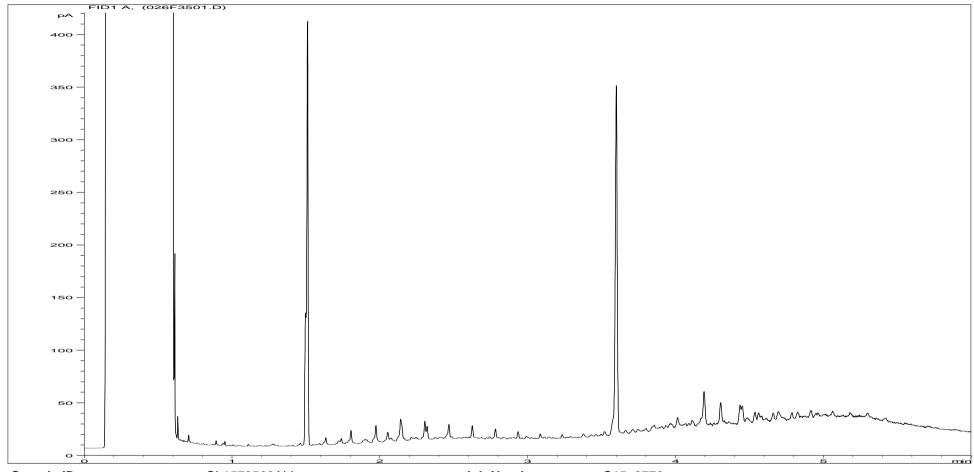


Sample ID:CL1573562ALIJob Number:S15_8776Multiplier:16.96Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:WS403 ES 2 1.25

Acquisition Date/Time: 30-Dec-15, 20:32:09

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\025F3401.D

Page 30 of 50 EFS/158776 Ver. 2

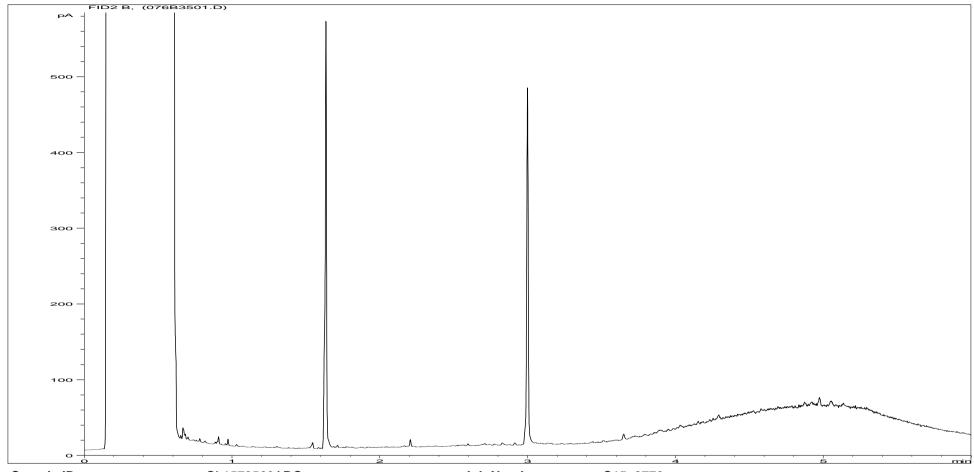


Sample ID:CL1573562AROJob Number:S15_8776Multiplier:10.72Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:WS403 ES 2 1.25

Acquisition Date/Time: 30-Dec-15, 20:32:09

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\075B3401.D

Page 31 of 50 EFS/158776 Ver. 2

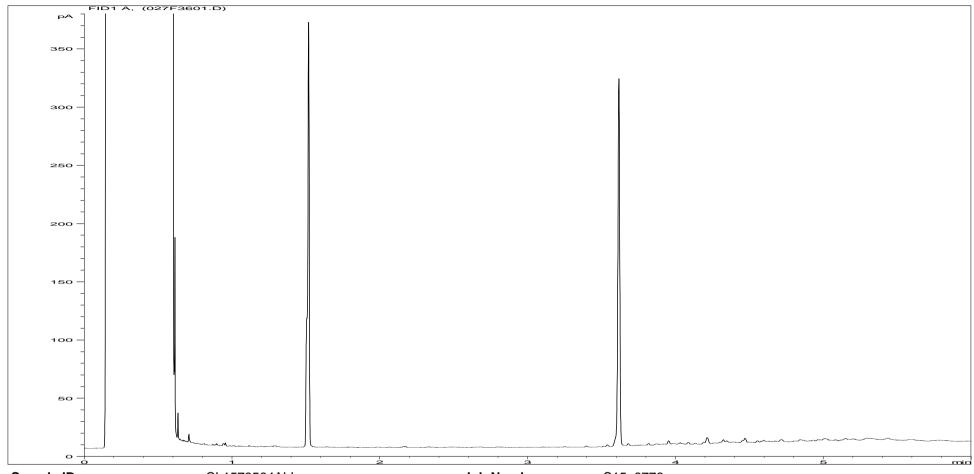


Sample ID:CL1573563ALIJob Number:S15_8776Multiplier:16.48Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:WS404 ES 1 0.10

Acquisition Date/Time: 30-Dec-15, 20:45:55

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\026F3501.D

Page 32 of 50 EFS/158776 Ver. 2

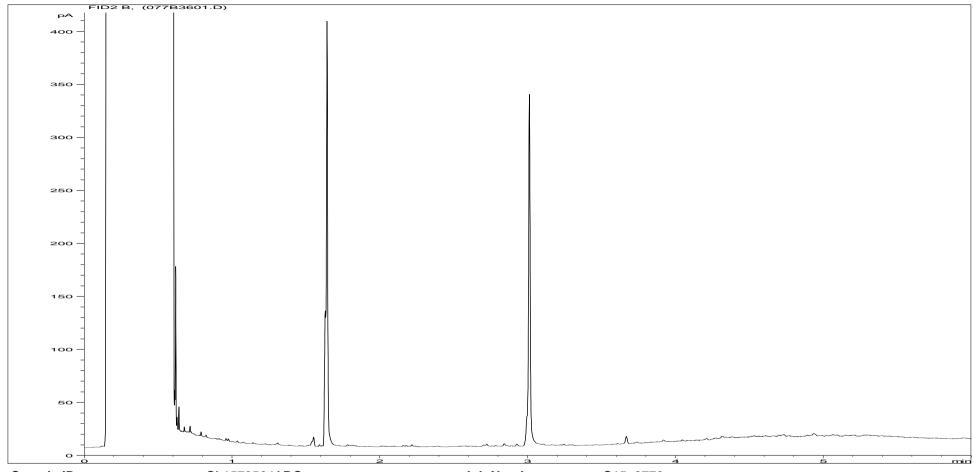


Sample ID:CL1573563AROJob Number:S15_8776Multiplier:11.52Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:WS404 ES 1 0.10

Acquisition Date/Time: 30-Dec-15, 20:45:55

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\076B3501.D

Page 33 of 50 EFS/158776 Ver. 2



Sample ID:CL1573564ALIJob Number:S15_8776Multiplier:17.12Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:WS404 ES 2 1.10

Acquisition Date/Time: 30-Dec-15, 20:59:28

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\027F3601.D

Page 34 of 50 EFS/158776 Ver. 2

Sample ID:CL1573564AROJob Number:S15_8776Multiplier:10.56Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:WS404 ES 2 1.10

Acquisition Date/Time: 30-Dec-15, 20:59:28

Datafile: D:\TES\DATA\Y2015\123015TPH_GC4\123015 2015-12-30 12-56-11\077B3601.D

Page 35 of 50 EFS/158776 Ver. 2

UKAS accredited?: No

Customer and Site Details: ESG Doncaster: A63 Castle Street

WS401 ES 1 0.30 Sample Details:

LIMS ID Number: CL1573558 Job Number: S15 8776

Target Compounds	CAS#	R.T. (min.)	Concentration µg/kg	% Fit
Dichlorodifluoromethane	75-71-8	-	< 1	-
Chloromethane	74-87-3	-	< 3	_
Vinyl Chloride	75-01-4	-	< 1	-
Bromomethane	74-83-9	-	< 1	-
Chloroethane	75-00-3	-	< 2	
Trichlorofluoromethane	75-69-4	-	< 1	-
1,1-Dichloroethene	75-35-48	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	-	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	-
MTBE	1634-04-4	-	< 1	-
2,2-Dichloropropane	594-20-7	-	< 1	-
cis 1,2-Dichloroethene	156-59-2	-	< 5	-
Bromochloromethane	74-97-5	-	< 1	-
Chloroform	67-66-3	-	< 1	-
1,1,1-Trichloroethane	71-55-6	-	< 1	1
Carbon Tetrachloride	56-23-5	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	-
Benzene	71-43-2	-	< 1	-
1,2-Dichloroethane	107-06-2	-	< 1	-
Trichloroethene	79-01-6	-	< 1	-
1,2-Dichloropropane	78-87-5	-	< 1	-
Dibromomethane	74-95-3	-	< 1	-
Bromodichloromethane	75-27-4	-	< 1	-
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-
Toluene	108-88-3	-	< 5	-
trans 1,3-Dichloropropene	10061-02-6	-	< 1	ı
1,1,2-Trichloroethane	79-00-5	-	< 1	-
Tetrachloroethene	127-18-4	-	< 3	-
1,3-Dichloropropane	142-28-9	-	< 1	-
Dibromochloromethane	124-48-1	-	< 1	-
1,2-Dibromoethane	106-93-4	-	< 1	,
Chlorobenzene	108-90-7	-	< 1	ı
Ethylbenzene	100-41-4	-	< 2	-
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-
m and p-Xylene	108-38-3/106-42-3	-	< 4	-

Directory/Quant file:	223VOC.MS19\	Initial Calibration	Matrix:	Soil
Date Booked in:	22-Dec-15		Method:	Headspace
Date Analysed:	24-Dec-15		Multiplier:	0.95
Operator:	TP		Position:	18

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min.)	μg/kg	
o-Xylene	95-47-6	-	< 2	-
Styrene	100-42-5	-	< 1	-
Bromoform	75-25-2	-	< 1	-
iso-Propylbenzene	98-82-8	-	< 1	-
1,1,2,2-Tetrachloroethane	79-34-5 **	-	< 1	-
Propylbenzene	103-65-1	-	< 1	-
Bromobenzene	108-86-1	-	< 1	-
1,2,3-Trichloropropane	96-18-4	-	< 1	-
2-Chlorotoluene	95-49-8	-	< 1	-
1,3,5-Trimethylbenzene	108-67-8	-	< 1	-
4-Chlorotoluene	106-43-4	-	< 1	-
tert-Butylbenzene	98-06-6	-	< 1	-
1,2,4-Trimethylbenzene	95-63-6	-	< 1	-
sec-Butylbenzene	135-98-8	-	< 1	-
p-Isopropyltoluene	99-87-6	-	< 1	-
1,3-Dichlorobenzene	541-73-1	-	< 1	-
1,4-Dichlorobenzene	106-46-7	-	< 1	-
n-Butylbenzene	104-51-8 *	-	< 1	-
1,2-Dichlorobenzene	95-50-1	-	< 1	-
1,2-Dibromo-3-chloropropane	96-12-8 **	-	< 1	-
1,2,4-Trichlorobenzene	120-82-1 *	-	< 3	-
Hexachlorobutadiene	87-68-3 **	-	< 2	-
Naphthalene	91-20-3	7.11	6	М
1,2,3-Trichlorobenzene	87-61-6	-	< 3	-

Compounds marked * are not MCERTS accredited Compounds marked ** are not UKAS or Mcerts accredited "M" denotes that % fit has been manually interpreted

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	4.01	96	Dibromofluoromethane	94
1,4-Difluorobenzene	4.35	99	Toluene-d8	96
Chlorobenzene-d5	5.46	86		
Bromofluorobenzene	5.86	73		
1,4-Dichlorobenzene-d4	6.26	56		

7.09

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling. Where individual results are flagged see report notes for status.

UKAS accredited?: Yes

Customer and Site Details: ESG Doncaster: A63 Castle Street

WS401 ES 3 1.60 Sample Details:

LIMS ID Number: CL1573559 Job Number: S15 8776

m and p-Xylene

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min.)	μg/kg	
Dichlorodifluoromethane	75-71-8 **	-	< 1	-
Chloromethane	74-87-3 *	-	< 3	-
Vinyl Chloride	75-01-4	-	< 1	-
Bromomethane	74-83-9	-	< 1	-
Chloroethane	75-00-3	-	< 2	-
Trichlorofluoromethane	75-69-4	-	< 1	-
1,1-Dichloroethene	75-35-48 *	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	-	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	-
MTBE	1634-04-4	-	< 1	-
2,2-Dichloropropane	594-20-7	-	< 1	-
cis 1,2-Dichloroethene	156-59-2	-	< 5	-
Bromochloromethane	74-97-5	-	< 1	-
Chloroform	67-66-3	-	< 1	-
1,1,1-Trichloroethane	71-55-6	-	< 1	-
Carbon Tetrachloride	56-23-5	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	-
Benzene	71-43-2	-	< 1	-
1,2-Dichloroethane	107-06-2	-	< 1	-
Trichloroethene	79-01-6 **	-	< 1	-
1,2-Dichloropropane	78-87-5	-	< 1	-
Dibromomethane	74-95-3	-	< 1	-
Bromodichloromethane	75-27-4	-	< 1	-
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-
Toluene	108-88-3	-	< 5	-
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-
1,1,2-Trichloroethane	79-00-5	-	< 1	-
Tetrachloroethene	127-18-4	-	< 3	-
1,3-Dichloropropane	142-28-9	-	< 1	-
Dibromochloromethane	124-48-1	-	< 1	-
1,2-Dibromoethane	106-93-4	-	< 1	-
Chlorobenzene	108-90-7	-	< 1	-
Ethylbenzene	100-41-4	-	< 2	-
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-
i, i, i, = Totiaomorootilane	000 20 0		` '	

108-38-3/106-42-3

Directory/Quant file:	223VOC.MS19\	Initial Calibration	Matrix:	Soil
Date Booked in:	22-Dec-15		Method:	Headspace
Date Analysed:	24-Dec-15		Multiplier:	1.03
Operator:	TP		Position:	19

Target Compounds	CAS#	R.T. (min.)	Concentration µg/kg	% Fit
o-Xylene	95-47-6	-	< 2	-
Styrene	100-42-5	-	< 1	-
Bromoform	75-25-2	-	< 1	-
iso-Propylbenzene	98-82-8	-	< 1	-
1,1,2,2-Tetrachloroethane	79-34-5 **	-	< 1	-
Propylbenzene	103-65-1	-	< 1	•
Bromobenzene	108-86-1	-	< 1	-
1,2,3-Trichloropropane	96-18-4	-	< 1	•
2-Chlorotoluene	95-49-8	-	< 1	1
1,3,5-Trimethylbenzene	108-67-8	-	< 1	1
4-Chlorotoluene	106-43-4	-	< 1	1
tert-Butylbenzene	98-06-6	-	< 1	1
1,2,4-Trimethylbenzene	95-63-6	-	< 1	1
sec-Butylbenzene	135-98-8	-	< 1	1
p-Isopropyltoluene	99-87-6	-	< 1	1
1,3-Dichlorobenzene	541-73-1	-	< 1	-
1,4-Dichlorobenzene	106-46-7	-	< 1	•
n-Butylbenzene	104-51-8 *	-	< 1	1
1,2-Dichlorobenzene	95-50-1	-	< 1	-
1,2-Dibromo-3-chloropropane	96-12-8 **	-	< 1	1
1,2,4-Trichlorobenzene	120-82-1 *	-	< 3	-
Hexachlorobutadiene	87-68-3 **	-	< 2	1
Naphthalene	91-20-3	-	< 5	-
1,2,3-Trichlorobenzene	87-61-6	-	< 3	-

Compounds marked * are not MCERTS accredited Compounds marked ** are not UKAS or Mcerts accredited "M" denotes that % fit has been manually interpreted

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	4.01	58	Dibromofluoromethane	107
1,4-Difluorobenzene	4.35	58	Toluene-d8	99
Chlorobenzene-d5	5.46	59		
Bromofluorobenzene	5.86	56		
1,4-Dichlorobenzene-d4	6.26	47		

24

7.09

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling. Where individual results are flagged see report notes for status.

< 4

Operator:

UKAS accredited?: Yes

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS402 ES 1 0.10

LIMS ID Number: CL1573560 **Job Number:** S15 8776

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min.)	μg/kg	
Dichlorodifluoromethane	75-71-8 **	-	< 1	-
Chloromethane	74-87-3 *	-	< 3	-
Vinyl Chloride	75-01-4	-	< 1	-
Bromomethane	74-83-9	-	< 1	-
Chloroethane	75-00-3	-	< 2	-
Trichlorofluoromethane	75-69-4	-	< 1	-
1,1-Dichloroethene	75-35-48 *	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	-	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	-
MTBE	1634-04-4	-	< 1	-
2,2-Dichloropropane	594-20-7	-	< 1	-
cis 1,2-Dichloroethene	156-59-2	-	< 5	-
Bromochloromethane	74-97-5	-	< 1	-
Chloroform	67-66-3	-	< 1	-
1,1,1-Trichloroethane	71-55-6	-	< 1	-
Carbon Tetrachloride	56-23-5	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	-
Benzene	71-43-2	-	< 1	-
1,2-Dichloroethane	107-06-2	-	< 1	-
Trichloroethene	79-01-6 **	-	< 1	-
1,2-Dichloropropane	78-87-5	-	< 1	-
Dibromomethane	74-95-3	-	< 1	-
Bromodichloromethane	75-27-4	-	< 1	-
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-
Toluene	108-88-3	-	< 5	-
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-
1,1,2-Trichloroethane	79-00-5	-	< 1	-
Tetrachloroethene	127-18-4	5.16	4	М
1,3-Dichloropropane	142-28-9	-	< 1	-
Dibromochloromethane	124-48-1	-	< 1	-
1,2-Dibromoethane	106-93-4	-	< 1	-
Chlorobenzene	108-90-7	-	< 1	-
Ethylbenzene	100-41-4	-	< 2	-
1,1,2-Tetrachloroethane	630-20-6	-	< 1	-
m and p-Xylene	108-38-3/106-42-3	-	< 4	-

Directory/Quant file:	223VOC.MS19\	Initial Calibration	Matrix:	Soil
Date Booked in:	22-Dec-15		Method:	Headspace
Date Analysed:	24-Dec-15		Multiplier:	1.08

Position:

20

ΤP

Target Compounds	CAS#	R.T.	Concentration	% Fit
o-Xylene	95-47-6	(min.)	μ g/kg < 2	
Styrene	100-42-5	-	< 1	-
Bromoform	75-25-2	-	< 1	
iso-Propylbenzene	98-82-8	-	< 1	-
1,1,2,2-Tetrachloroethane	79-34-5 **	-	< 1	-
Propylbenzene	103-65-1	_	< 1	-
Bromobenzene	108-86-1	-	< 1	-
1,2,3-Trichloropropane	96-18-4	-	< 1	-
2-Chlorotoluene	95-49-8	-	< 1	-
1,3,5-Trimethylbenzene	108-67-8	-	< 1	-
4-Chlorotoluene	106-43-4	-	< 1	-
tert-Butylbenzene	98-06-6	-	< 1	-
1,2,4-Trimethylbenzene	95-63-6	-	< 1	-
sec-Butylbenzene	135-98-8	-	< 1	-
p-Isopropyltoluene	99-87-6	-	< 1	-
1,3-Dichlorobenzene	541-73-1	-	< 1	-
1,4-Dichlorobenzene	106-46-7	-	< 1	-
n-Butylbenzene	104-51-8 *	-	< 1	-
1,2-Dichlorobenzene	95-50-1	-	< 1	-
1,2-Dibromo-3-chloropropane	96-12-8 **	-	< 1	-
1,2,4-Trichlorobenzene	120-82-1 *	-	< 3	-
Hexachlorobutadiene	87-68-3 **	-	< 2	-
Naphthalene	91-20-3	-	< 5	-
1,2,3-Trichlorobenzene	87-61-6	-	< 3	-

Compounds marked * are not MCERTS accredited Compounds marked ** are not UKAS or Mcerts accredited "M" denotes that % fit has been manually interpreted

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	4.01	92	Dibromofluoromethane	D
1,4-Difluorobenzene	4.35	94	Toluene-d8	100
Chlorobenzene-d5	5.46	89		
Bromofluorobenzene	5.86	77		
1,4-Dichlorobenzene-d4	6.26	67		

40

7.09

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling.

Where individual results are flagged see report notes for status.

UKAS accredited?: Yes

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS402 ES 2 1.20

LIMS ID Number: CL1573561 **Job Number:** S15_8776

1,1,1,2-Tetrachloroethane

m and p-Xylene

Target Compounds	CAS#	R.T.	Concentration	% Fit
District Participation	75 74 0 **	(min.)	μg/kg	
Dichlorodifluoromethane	75-71-8 **	-	< 1	-
Chloromethane	74-87-3 *	-	< 3	-
Vinyl Chloride	75-01-4	-	< 1	-
Bromomethane	74-83-9	-	< 1	-
Chloroethane	75-00-3	-	< 2	-
Trichlorofluoromethane	75-69-4	-	< 1	-
1,1-Dichloroethene	75-35-48 *	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	-	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	-
MTBE	1634-04-4	-	< 1	-
2,2-Dichloropropane	594-20-7	-	< 1	-
cis 1,2-Dichloroethene	156-59-2	-	< 5	-
Bromochloromethane	74-97-5	-	< 1	-
Chloroform	67-66-3	-	< 1	-
1,1,1-Trichloroethane	71-55-6	-	< 1	-
Carbon Tetrachloride	56-23-5	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	-
Benzene	71-43-2	-	< 1	-
1,2-Dichloroethane	107-06-2	-	< 1	-
Trichloroethene	79-01-6 **	-	< 1	-
1,2-Dichloropropane	78-87-5	-	< 1	-
Dibromomethane	74-95-3	-	< 1	-
Bromodichloromethane	75-27-4	-	< 1	-
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-
Toluene	108-88-3	-	< 5	-
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-
1,1,2-Trichloroethane	79-00-5	-	< 1	_
Tetrachloroethene	127-18-4	-	< 3	-
1,3-Dichloropropane	142-28-9	-	<1	-
Dibromochloromethane	124-48-1	-	< 1	-
1,2-Dibromoethane	106-93-4	-	< 1	-
Chlorobenzene	108-90-7	_	< 1	_
Ethylbenzene	100-41-4	_	< 2	
Luiyiborizorio	100-41-4	_	` ` `	

630-20-6

108-38-3/106-42-3

Directory/Quant file:	223VOC.MS19\	Initial Calibration	Matrix:	Soil
Date Booked in:	22-Dec-15		Method:	Headspace
Date Analysed:	24-Dec-15		Multiplier:	1.01
Operator:	TP		Position:	21

Target Compounds	CAS#	R.T. (min.)	Concentration µg/kg	% Fit
o-Xylene	95-47-6	-	< 2	-
Styrene	100-42-5	-	< 1	-
Bromoform	75-25-2	-	< 1	-
iso-Propylbenzene	98-82-8	-	< 1	-
1,1,2,2-Tetrachloroethane	79-34-5 **	-	< 1	-
Propylbenzene	103-65-1	-	< 1	-
Bromobenzene	108-86-1	-	< 1	-
1,2,3-Trichloropropane	96-18-4	-	< 1	-
2-Chlorotoluene	95-49-8	-	< 1	-
1,3,5-Trimethylbenzene	108-67-8	-	< 1	-
4-Chlorotoluene	106-43-4	-	< 1	-
tert-Butylbenzene	98-06-6	-	< 1	-
1,2,4-Trimethylbenzene	95-63-6	-	< 1	-
sec-Butylbenzene	135-98-8	-	< 1	-
p-Isopropyltoluene	99-87-6	-	< 1	-
1,3-Dichlorobenzene	541-73-1	-	< 1	-
1,4-Dichlorobenzene	106-46-7	-	< 1	-
n-Butylbenzene	104-51-8 *	-	< 1	-
1,2-Dichlorobenzene	95-50-1	-	< 1	-
1,2-Dibromo-3-chloropropane	96-12-8 **	-	< 1	-
1,2,4-Trichlorobenzene	120-82-1 *	-	< 3	-
Hexachlorobutadiene	87-68-3 **	-	< 2	-
Naphthalene	91-20-3	-	< 5	-
1,2,3-Trichlorobenzene	87-61-6	-	< 3	-

Compounds marked * are not MCERTS accredited Compounds marked ** are not UKAS or Mcerts accredited "M" denotes that % fit has been manually interpreted

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	4.01	78	Dibromofluoromethane	103
1,4-Difluorobenzene	4.35	78	Toluene-d8	97
Chlorobenzene-d5	5.46	74		
Bromofluorobenzene	5.86	65		
1,4-Dichlorobenzene-d4	6.26	51		

22

7.09

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling.

Where individual results are flagged see report notes for status.

< 1

< 4

Directory/Quant file:

UKAS accredited?: Yes

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS403 ES 2 1.25

LIMS ID Number: CL1573562 **Job Number:** S15 8776

Target Compounds	CAS#	R.T.	Concentration	% Fit
-		(min.)	μg/kg	
Dichlorodifluoromethane	75-71-8 **	-	< 1	-
Chloromethane	74-87-3 *	-	< 3	-
Vinyl Chloride	75-01-4	-	< 1	-
Bromomethane	74-83-9	-	< 1	-
Chloroethane	75-00-3	-	< 2	-
Trichlorofluoromethane	75-69-4	-	< 1	-
1,1-Dichloroethene	75-35-48 *	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	-	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	-
MTBE	1634-04-4	-	< 1	-
2,2-Dichloropropane	594-20-7	-	< 1	-
cis 1,2-Dichloroethene	156-59-2	-	< 5	-
Bromochloromethane	74-97-5	-	< 1	-
Chloroform	67-66-3	-	< 1	-
1,1,1-Trichloroethane	71-55-6	-	< 1	-
Carbon Tetrachloride	56-23-5	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	-
Benzene	71-43-2	-	< 1	-
1,2-Dichloroethane	107-06-2	-	< 1	-
Trichloroethene	79-01-6 **	-	< 1	-
1,2-Dichloropropane	78-87-5	-	< 1	-
Dibromomethane	74-95-3	-	< 1	-
Bromodichloromethane	75-27-4	-	< 1	-
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-
Toluene	108-88-3	-	< 5	-
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-
1,1,2-Trichloroethane	79-00-5	-	< 1	-
Tetrachloroethene	127-18-4	-	< 3	-
1,3-Dichloropropane	142-28-9	-	< 1	-
Dibromochloromethane	124-48-1	-	< 1	-
1,2-Dibromoethane	106-93-4	-	< 1	-
Chlorobenzene	108-90-7	-	< 1	-
Ethylbenzene	100-41-4	-	< 2	-
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-
m and p-Xylene	108-38-3/106-42-3	-	< 4	-

Date Booked in: Date Analysed: Operator:	22-Dec-15 24-Dec-15 TP	Method: Multiplier: Position:		Headspace 1.02 22
Target Compounds	CAS#	R.T. (min.)	Concentration µg/kg	% Fit
o-Xylene	95-47-6	-	< 2	-
Styrene	100-42-5	-	< 1	-
Bromoform	75-25-2	-	< 1	-

223VOC.MS19\ Initial Calibration

Matrix:

Soil

		(min.)	μg/kg	
o-Xylene	95-47-6	-	< 2	-
Styrene	100-42-5	-	< 1	-
Bromoform	75-25-2	-	< 1	-
iso-Propylbenzene	98-82-8	-	< 1	-
1,1,2,2-Tetrachloroethane	79-34-5 **	-	< 1	-
Propylbenzene	103-65-1	-	< 1	-
Bromobenzene	108-86-1	-	< 1	-
1,2,3-Trichloropropane	96-18-4	-	< 1	-
2-Chlorotoluene	95-49-8	-	< 1	-
1,3,5-Trimethylbenzene	108-67-8	-	< 1	-
4-Chlorotoluene	106-43-4	-	< 1	-
tert-Butylbenzene	98-06-6	-	< 1	-
1,2,4-Trimethylbenzene	95-63-6	-	< 1	-
sec-Butylbenzene	135-98-8	-	< 1	-
p-Isopropyltoluene	99-87-6	-	< 1	-
1,3-Dichlorobenzene	541-73-1	-	< 1	-
1,4-Dichlorobenzene	106-46-7	-	< 1	-
n-Butylbenzene	104-51-8 *	-	< 1	-
1,2-Dichlorobenzene	95-50-1	-	< 1	-
1,2-Dibromo-3-chloropropane	96-12-8 **	-	< 1	-
1,2,4-Trichlorobenzene	120-82-1 *	-	< 3	-
Hexachlorobutadiene	87-68-3 **	-	< 2	-
Naphthalene	91-20-3	-	< 5	-
1,2,3-Trichlorobenzene	87-61-6	-	< 3	-

Compounds marked * are not MCERTS accredited Compounds marked ** are not UKAS or Mcerts accredited "M" denotes that % fit has been manually interpreted

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	4.01	92	Dibromofluoromethane	100
1,4-Difluorobenzene	4.35	90	Toluene-d8	95
Chlorobenzene-d5	5.46	76		
Bromofluorobenzene	5.86	61		
1,4-Dichlorobenzene-d4	6.26	45		

16

7.09

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling.

Where individual results are flagged see report notes for status.

UKAS accredited?: No

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS404 ES 1 0.10

LIMS ID Number: CL1573563 **Job Number:** S15 8776

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min.)	μg/kg	
Dichlorodifluoromethane	75-71-8	-	< 1	-
Chloromethane	74-87-3	-	< 3	-
Vinyl Chloride	75-01-4	-	< 1	-
Bromomethane	74-83-9	-	< 1	-
Chloroethane	75-00-3	-	< 2	-
Trichlorofluoromethane	75-69-4	-	< 1	-
1,1-Dichloroethene	75-35-48	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	-	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	-
MTBE	1634-04-4	-	< 1	-
2,2-Dichloropropane	594-20-7	-	< 1	-
cis 1,2-Dichloroethene	156-59-2	-	< 5	-
Bromochloromethane	74-97-5	-	< 1	-
Chloroform	67-66-3	-	< 1	-
1,1,1-Trichloroethane	71-55-6	-	< 1	-
Carbon Tetrachloride	56-23-5	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	-
Benzene	71-43-2	-	< 1	-
1,2-Dichloroethane	107-06-2	-	< 1	-
Trichloroethene	79-01-6	-	< 1	-
1,2-Dichloropropane	78-87-5	-	< 1	-
Dibromomethane	74-95-3	-	< 1	-
Bromodichloromethane	75-27-4	-	< 1	-
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-
Toluene	108-88-3	-	< 5	-
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-
1,1,2-Trichloroethane	79-00-5	-	< 1	-
Tetrachloroethene	127-18-4	-	< 3	-
1,3-Dichloropropane	142-28-9	-	< 1	-
Dibromochloromethane	124-48-1	-	< 1	-
1,2-Dibromoethane	106-93-4	-	< 1	-
Chlorobenzene	108-90-7	-	< 1	-
Ethylbenzene	100-41-4	-	< 2	-
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-
m and p-Xylene	108-38-3/106-42-3	-	< 4	-

Directory/Quant file:	223VOC.MS19\	Initial Calibration	Matrix:	Soil
Date Booked in:	22-Dec-15		Method:	Headspace
Date Analysed:	24-Dec-15		Multiplier:	1.02

Position:

23

Operator: TP

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min.)	μg/kg	
o-Xylene	95-47-6	-	< 2	-
Styrene	100-42-5	-	< 1	-
Bromoform	75-25-2	-	< 1	-
iso-Propylbenzene	98-82-8	-	< 1	-
1,1,2,2-Tetrachloroethane	79-34-5 **	-	< 1	-
Propylbenzene	103-65-1	-	< 1	-
Bromobenzene	108-86-1	-	< 1	-
1,2,3-Trichloropropane	96-18-4	-	< 1	-
2-Chlorotoluene	95-49-8	-	< 1	-
1,3,5-Trimethylbenzene	108-67-8	-	< 1	-
4-Chlorotoluene	106-43-4	-	< 1	-
tert-Butylbenzene	98-06-6	-	< 1	-
1,2,4-Trimethylbenzene	95-63-6	-	< 1	-
sec-Butylbenzene	135-98-8	-	< 1	-
p-Isopropyltoluene	99-87-6	-	< 1	-
1,3-Dichlorobenzene	541-73-1	-	< 1	-
1,4-Dichlorobenzene	106-46-7	-	< 1	-
n-Butylbenzene	104-51-8 *	-	< 1	-
1,2-Dichlorobenzene	95-50-1	-	< 1	-
1,2-Dibromo-3-chloropropane	96-12-8 **	-	< 1	-
1,2,4-Trichlorobenzene	120-82-1 *	-	< 3	-
Hexachlorobutadiene	87-68-3 **	-	< 2	-
Naphthalene	91-20-3	-	< 5	-
1,2,3-Trichlorobenzene	87-61-6	-	< 3	-

Compounds marked * are not MCERTS accredited Compounds marked ** are not UKAS or Mcerts accredited "M" denotes that % fit has been manually interpreted

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	4.01	92	Dibromofluoromethane	29
1,4-Difluorobenzene	4.35	97	Toluene-d8	95
Chlorobenzene-d5	5.46	88		
Bromofluorobenzene	5.86	78		
1,4-Dichlorobenzene-d4	6.26	67		

44

7.09

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling.

Where individual results are flagged see report notes for status.

UKAS accredited?: Yes

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS404 ES 2 1.10

LIMS ID Number: CL1573564 **Job Number:** S15_8776

m and p-Xylene

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min.)	μg/kg	
Dichlorodifluoromethane	75-71-8 **	-	< 1	-
Chloromethane	74-87-3 *	-	< 3	-
Vinyl Chloride	75-01-4	-	< 1	-
Bromomethane	74-83-9	-	< 1	-
Chloroethane	75-00-3	-	< 2	-
Trichlorofluoromethane	75-69-4	-	< 1	-
1,1-Dichloroethene	75-35-48 *	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	-	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	-
MTBE	1634-04-4	-	< 1	-
2,2-Dichloropropane	594-20-7	-	< 1	-
cis 1,2-Dichloroethene	156-59-2	-	< 5	-
Bromochloromethane	74-97-5	-	< 1	-
Chloroform	67-66-3	-	< 1	-
1,1,1-Trichloroethane	71-55-6	-	< 1	-
Carbon Tetrachloride	56-23-5	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	-
Benzene	71-43-2	-	< 1	-
1,2-Dichloroethane	107-06-2	-	< 1	-
Trichloroethene	79-01-6 **	-	< 1	-
1,2-Dichloropropane	78-87-5	-	< 1	-
Dibromomethane	74-95-3	-	< 1	-
Bromodichloromethane	75-27-4	-	< 1	-
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-
Toluene	108-88-3	-	< 5	-
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-
1,1,2-Trichloroethane	79-00-5	-	< 1	-
Tetrachloroethene	127-18-4	-	< 3	-
1,3-Dichloropropane	142-28-9	-	< 1	-
Dibromochloromethane	124-48-1	-	< 1	-
1,2-Dibromoethane	106-93-4	-	< 1	-
Chlorobenzene	108-90-7	-	< 1	-
Ethylbenzene	100-41-4	-	< 2	-
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-

108-38-3/106-42-3

Tarrest Carrenaum de	040.4	D.T.	0	0/ 5:4
Operator:	TP		Position:	24
Date Analysed:	24-Dec-15		Multiplier:	0.96
Date Booked in:	22-Dec-15		Method:	Headspace
Directory/Quant file:	223VOC.MS19\	Initial Calibration	Matrix:	Soil

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min.)	μg/kg	
o-Xylene	95-47-6	-	< 2	-
Styrene	100-42-5	-	< 1	-
Bromoform	75-25-2	-	< 1	-
iso-Propylbenzene	98-82-8	-	< 1	-
1,1,2,2-Tetrachloroethane	79-34-5 **	-	< 1	-
Propylbenzene	103-65-1	-	< 1	-
Bromobenzene	108-86-1	-	< 1	-
1,2,3-Trichloropropane	96-18-4	-	< 1	-
2-Chlorotoluene	95-49-8	-	< 1	-
1,3,5-Trimethylbenzene	108-67-8	-	< 1	-
4-Chlorotoluene	106-43-4	-	< 1	-
tert-Butylbenzene	98-06-6	-	< 1	-
1,2,4-Trimethylbenzene	95-63-6	-	< 1	-
sec-Butylbenzene	135-98-8	-	< 1	-
p-Isopropyltoluene	99-87-6	-	< 1	-
1,3-Dichlorobenzene	541-73-1	-	< 1	-
1,4-Dichlorobenzene	106-46-7	-	< 1	-
n-Butylbenzene	104-51-8 *	-	< 1	-
1,2-Dichlorobenzene	95-50-1	-	< 1	-
1,2-Dibromo-3-chloropropane	96-12-8 **	-	< 1	-
1,2,4-Trichlorobenzene	120-82-1 *	-	< 3	-
Hexachlorobutadiene	87-68-3 **	-	< 2	-
Naphthalene	91-20-3	-	< 5	-
1,2,3-Trichlorobenzene	87-61-6	-	< 3	-

Compounds marked * are not MCERTS accredited Compounds marked ** are not UKAS or Mcerts accredited "M" denotes that % fit has been manually interpreted

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	4.01	60	Dibromofluoromethane	107
1,4-Difluorobenzene	4.35	57	Toluene-d8	97
Chlorobenzene-d5	5.46	53		
Bromofluorobenzene	5.86	46		
1,4-Dichlorobenzene-d4	6.26	38		

17

7.09

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling.

Where individual results are flagged see report notes for status.

< 4

371 Millbrook Rd West Southampton SO15 OHW

Tel: 02380 786979

Name of Client: ESG Environmental Chemistry Test Certificate No: 116-17

Address: PO Box 100, Burton upon Trent, Staffordshire, DE15 0XD

0

ANALYSIS OF PCDDs and PCDFs

Job Reference: S158776

 Sample Identifier:
 WS404 0.10, S1573563
 Date of Receipt:
 04/01/16

 Sample No:
 116-17
 Date of Analysis:
 14/01/16

 Order No:
 B85551BEC
 Date of Report:
 14/01/16

Sample Type: Ash **Sample Condition:** normal

Instrument : Micromass Ultima NT Test Method : 2002

GC Column: DB5 Blank: 40116
Calibration File: 130116 Sample Size: 2.0

expressed as ng / kg

Congener	Conc	DL	Rec %	Congener	Conc	DL	Rec %
2378-TCDF	0.127	0.118	78	2378-TCDD	*	0.137	76
12378-PCDF	0.319	0.147	82	12378-PCDD	*	0.162	83
23478-PCDF	0.211	0.132	87	123478-HxCDD	0.137	0.0588	85
123478-HxCDF	0.299	0.0588	91	123678-HxCDD	0.245	0.0637	86
123678-HxCDF	0.314	0.0539	91	123789-HxCDD	0.245	0.0588	
234678-HxCDF	0.23	0.0588	81	1234678-HpCDD	3.21	0.049	81
123789-HxCDF	0.191	0.0637	87	OCDD	16.4	0.172	55
1234678-HpCDF	2.17	0.0392	79				
1234789-HpCDF	0.211	0.0441	77				
OCDF	2.02	0.098					
Total 2,3,7,8-Furans	6.09			Total 2,3,7,8-Dioxins	20.2		
		TEQ ¹	TEQ ²			TEQ ¹	TEQ ²
TEQ (I-TEQ)		0.593	0.375	TEQ (WHO)- Mammals TEQ (WHO)- Fish TEQ (WHO)- Birds		0.612 0.631 0.834	0.313 0.332 0.535

*	Isomer Not detected	Concentration of Non Detected	TEQ ¹
TEQ	Toxic Equivalent Value	Congeners at Detection Limit	
TEF	Toxic Equivalent Factor	Concentration of Non Detected	TEQ ²
Conc	Concentration	Congeners at Zero	

DL Detection Value

Reported by: K Pettit Signature
Position: Technical Manager

Signature :

371 Millbrook Rd West Southampton SO15 OHW

Tel: 02380 786979

Name of Client: ESG Environmental Chemistry Test Certificate No: 116-18

Address: PO Box 100, Burton upon Trent, Staffordshire, DE15 0XD

0

ANALYSIS OF PCBs

 Sample Identifier:
 WS404 0.10, S1573563
 Date of Receipt:
 04/01/16

 Sample No:
 116-18
 Date of Analysis:
 14/01/16

 Order No:
 B85551BEC
 Date of Report:
 14/01/16

Sample Type: Ash

Sample Condition: normal

Instrument : Micromass Ultima NTTest Method :2002GC Column : DB5Blank :40116Calibration File : 120116Sample Size :2.0

expressed as ng / kg

Congener	Conc			DL	Rec %	
PCB-81	0.221			0.132	100	
PCB-77	3.3			0.127	110	
PCB-123	0.608			0.147	85	
PCB-118	33.1			0.147	85	
PCB-114	0.946			0.147	86	
PCB-105	14.2			0.172	81	
PCB-126	0.299			0.172	90	
PCB-167	2.17			0.103	86	
PCB-156	5.4			0.098	83	
PCB-157	1.19			0.0931	88	
PCB-169	0.191			0.0833	95	
PCB-189	1.01			0.221	87	
		TEQ ¹	TEQ ²			
TEQ (WHO)- Mammals		0.0378	0.0378			
TEQ (WHO)- Fish		0.0022	0.0022			
TEQ (WHO)- Birds		0.22	0.22			

* Isomer Not detected TEQ1 Concentration of Non Detected Conc Concentration

DL Detection Value

TEQ1 Concentration of Non Detected Concentration of Non Detected Concentration

TEQ2 Concentration of Non Detected Concentration

Concentration Congeners at Zero

Reported by: K Pettit

Position: Technical Manager

Page 1 of 1

Signature:

66

NAACR = Not Analysed at Clients Request

* visible to naked eye

ASBESTOS ANALYSIS RESULTS - SOIL ANALYSIS

ESG Asbestos Limited Certificate of Analysis for Asbestos in Soils

Name:

Position:

Detection limit of Method SCI-ASB-020 is 0.001%

Sampling has been carried out by a third party

									TESTING	
									1089	
Client:			ESG Enviro	nmental Cher	nistry				Page 1 of 1	
Address:			Etwall Hous	se, Bretby Bus	iness Park, A	shby Road, Bur	on upon Trent	Report No:	ANO-0488-11696	
For the atten	tion of:		ESG Donca		•		•		Report Date:	31/12/2015
Site Address	:		A63 Castle	Street					Project Number:	S158776
Sample Number	Sample Date	Sample Location	Test Date	Total Sample Dry Weight (g)	Weight of <2mm Fraction (g)	Asbestos(g) in >8mm+>2mm	Asbestos(g) in <2mm	% Ashastas hu	,	Asbestos Fibre Types Identified
CL/1573558	18/12/15	WS401 0.30	31/12/2015					Screen Only		NAIIS
CL/1573559	18/12/15	WS401 1.60	31/12/2015					Screen Only		NAIIS
CL/1573560	18/12/15	WS402 0.10	31/12/2015					Screen Only		NAIIS
CL/1573561	18/12/15	WS402 1.20	31/12/2015					Screen Only		NAIIS
CL/1573562	18/12/15	WS403 1.25	31/12/2015					Screen Only		NAIIS
CL/1573563	18/12/15	WS404 0.10	31/12/2015					Screen Only		NAIIS
CL/1573564	18/12/15	WS404 1.10	31/12/2015					Screen Only		NAIIS
						1	1			

The sample analysis for the above results was carried out using the procedures detailed in ESG Asbestos Limited in house method (SCI-ASB-020) based on HSE document MDHS 90 - Asbestos Contaminated Land - Draft 5 - November 1997 (withdrawn). Fibre identification was carried out using ESG Asbestos Limited in house method of transmitted/polarised light microscopy and centre stop dispersion staining (SCI-ASB-007), based on HSE's HSG 248. The analysis of fine fraction for asbestos content only includes fibres and does not discriminate non-asbestos fibres. All fibres are assumed, unless specified, to be amphiboles. All tests were carried out at ESG Asbestos Laboratory, Ashbourne House, Bretby Business Park, Ashby Road, Burton-upon-Trent, Staffordshire. DE15 0XD, UKAS Laboratory Number 1089.

NAIIS = No Asbestos Identified in Sample (Screens Only)

NADIS = No Asbestos Detected in Sample (ID & Quant Only)

Authorised Signatory:

Stacey Innes

Lab Analyst

Keys

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer **ESG Doncaster** Site **A63 Castle Street** Consignment No S52596 Date Logged 22-Dec-2015

Report No S158776

Report Due 31-Dec-2015

i e	1		_			_				Dec-2	-0.0											_	_	_			
		MethodID	CEN Leachate			CustServ	GROHSA	ICPBOR	ICPMSS													ICPSOIL	KONECR	PAHMSUS	PCBUSECDAR	РНЕНРСС	PHSOIL
ID Number	Description	Sampled	CEN Leac(P)C	Fraction of non-crushable material %	Fraction of sample above 4 mm %	REPORT A	GRO (AA) by HSA GC-FID	Boron (H20 Soluble)	Antimony (MS)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Manganese (MS)	Mercury (MS)	Molybdenum (MS)	Nickel (MS)	Selenium (MS)	Vanadium (MS)	Zinc (MS)	Beryllium.	Chromium vi:	PAH (16) by GCMS	PCB-12 Congeners Analysis	Phenol - HPLC	pH units (AR)
							✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓		✓		✓	✓
CL/1573558	WS401 0.30	18/12/15																									
CL/1573559	WS401 1.60	18/12/15																									
CL/1573560	WS402 0.10	18/12/15																									
CL/1573561	WS402 1.20	18/12/15																									
CL/1573562	WS403 1.25	18/12/15																									
CL/1573563	WS404 0.10	18/12/15																									
CL/1573564	WS404 1.10	18/12/15																									

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- В С The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Where individual results are flately as Subsection of the subsecti

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer Site

ESG Doncaster A63 Castle Street

Date Logged 22-Dec-2015

Report No S158776

Report Due 31-Dec-2015

Consignment No S52596

							Repo	лı Du	C 31-	DCC-2	-013		
		MethodID	SFAPI		Sub002a	Sub030		SVOCMSUS	TPHUSSI	VOCHSAS			WSLM59
ID Number	Description	Sampled	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos Screen	^Dioxins & Furans MW	^Dioxins like PCBs	SVOC by GCMS (AR)	TPH by GCFID (AR/Si)	BTEX-HSA GCMS analysis	VOC HSA-GCMS	Ethyl Benzene (μg/kg)	Total Organic Carbon
			✓	✓	✓			✓	✓	✓	✓	✓	
CL/1573558	WS401 0.30	18/12/15											
CL/1573559	WS401 1.60	18/12/15											
CL/1573560	WS402 0.10	18/12/15											
CL/1573561	WS402 1.20	18/12/15											
CL/1573562	WS403 1.25	18/12/15											
CL/1573563	WS404 0.10	18/12/15											
CL/1573564	WS404 1.10	18/12/15											

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- В С The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Where individual results are flately as Subsection of the subsecti

Report Number : EFS/158776

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the
Wethou Code	Sample ID	data contained within this report
VOCHSAS	CL1573558 to CL1573564	The Primary process control result associated with this Test has not wholly met the requirements of the Laboratory Quality Management System (QMS). The Laboratory believes that the validity of the data has not been affected but in line with our QMS policy we have removed accreditation from the affected analytes (1,2-Dibromo-3-chloropropane). These circumstances should be taken into consideration when utilising the data.
VOCHSAS	CL1573562 CL153564	Due to matrix interference, the Internal Standard recovery for this Test is below the required QMS specification. This has been confirmed by historical data. All other Laboratory Process Controls meet the requirements of the QMS. These circumstances should be taken into consideration when utilising the data

Report Number: EFS/158776

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	CEN Leachate	As Received	Determination of Oversize and Inert Material Content prior to leaching sample
Soil	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons (GRO) by Headspace GCFID
Soil	ICPBOR	Oven Dried @ < 35°C	Determination of Boron in soil samples by hot water extraction followed by ICPOES detection
Soil	ICPMSS	Oven Dried @ < 35°C	Determination of Metals in soil samples by aqua regia digestion followed by ICPMS
Soil	ICPSOIL	Oven Dried @ < 35°C	Determination of Metals in soil samples by aqua regia digestion followed by ICPOES detection
Soil	KONECR	Oven Dried @ < 35°C	Determination of Chromium vi in soil samples by water extraction followed by colorimetric detection
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHEHPLC	As Received	Determination of Phenols by methanol extraction followed by HPLC detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub- contractor.
Soil	SVOCMSUS	As Received	Determination of Semi Volatile Organic Compounds in soil samples by Dichloromethane/Acetone extraction followed by GCMS detection
Soil	TPHUSSI	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection including quantitation of Aromatic and Aliphatic fractions.
Soil	VOCHSAS	As Received	Determination of Volatile Organic Compounds (VOC) by Headspace GCMS
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 50 of 50 EFS/158776 Ver. 2

Sample Descriptions

Client : ESG Doncaster
Site : A63 Castle Street
Report Number : S15_8776

Note: major constituent in upper case

CLIFSTSSSS W561 ES 1 10 MADE GROUND CLIFSTSSSS W561 ES 2 1 20 CAPY CLIFSTSSSS W561 ES 2 1 20 CAPY CLIFSTSSSS W561 ES 2 1 20 CAPY CLIFSTSSSS W561 ES 2 1 20 CAPY CLIFSTSSSS W561 ES 2 1 20 CAPY CLIFSTSSSS W561 ES 2 1 20 CAPY CLIFSTSSSS W561 ES 1 20 CAPY CLIFSTSSSS W561 ES 1 20 CAPY CLIFSTSSSS W561 ES 2 1 20 CAPY CLIFSTSSSS CAPY CLIFSTSSSS W561 ES 2 1 20 CAPY CLIFSTSSSS CAPY CLIFSTSSSS CAPY CLIFSTSSSS CAPY CLIFSTSSSS CAPY CLIFSTSSSS CAPY CLIFSTSSSS CAPY CLIFSTSSSS CAPY CLIFSTSSSS CAPY CLIFSTSSSS CAPY CLIFSTSSSS CAPY CLIFSTSSSS CAPY CLIFSTSSSS CAPY CLIFSTSSS APY CLIFSTSS CAPY CLIFSTS CAPY CLIFT CAPY CLIFSTS CAPY CLIFSTS CAPY CLIFSTS CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CLIFT CAPY CL	Lab ID Number	Client ID	Description
CL/1573559 WS401 ES 3 1.60 MADE GROUND CL/1573560 WS402 ES 1 0.10 MADE GROUND CL/1573561 WS402 ES 2 1.20 CLAY CL/1573562 WS403 ES 2 1.25 CLAY CL/1573563 WS404 ES 1 0.10 STONE			
CL/1573560 WS402 ES 1 0.10 MADE GROUND CL/1573561 WS402 ES 2 1.20 CLAY CL/1573562 WS403 ES 2 1.25 CLAY CL/1573563 WS404 ES 1 0.10 STONE	CL/1573550	WS401 ES 1 0.30	MADE GROUND
CL/1573561 W\$402 ES 2 1.20 CLAY CL/1573562 W\$403 ES 2 1.25 CLAY CL/1573563 W\$404 ES 1 0.10 STONE	CL/15/3559	WS401 ES 3 1.00	MADE CROUND
CL/1573563 WS404 ES 1 0.10 STONE	CL/1573560	WS402 ES 1 0.10	WADE GROUND
CL/1573563 WS404 ES 1 0.10 STONE	CL/15/3561	WS402 ES 2 1.20	CLAY
CU1973994 W990H ES 2 1.10 STUTE CU1973994 W990H ES 2 1.10 GIAV	CL/15/3562	WS403 ES 2 1.25	CLAY
CL1978964 W8404 ES 21:10 CLAY	CL/1573563	WS404 ES 1 0.10	SIONE
	CL/1573564	WS404 ES 2 1.10	CLAY
		1	

Appendix A Page 1 of 1 18/01/2016EFS/158776 Ver. 2

TEST REPORT

Report No. EFS/160146 (Ver. 1)

ESG Doncaster ESG Doncaster Askern Road Carcroft Doncaster South Yorkshire DN6 8DG

Site: A63 Castle Street

The 2 samples described in this report were registered for analysis by ESG on 11-Jan-2016. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 15-Jan-2016

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 4)
Table of PCB Congener Results (Page 5)
GC-FID Chromatograms (Pages 6 to 7)
Table of WAC Analysis Results (Pages 8 to 9)
Analytical and Deviating Sample Overview (Page 10)
Table of Method Descriptions (Page 11)
Table of Report Notes (Page 12)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Date of Issue: 15-Jan-2016

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	%	mg/kg	mg/kg	μg/kg	% M/M	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/kg			
		od Codes :	TMSS	TPHFIDUS	TPHFIDUS		WSLM59	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	PAHMSUS			
	Method Reporti	ng Limits : ccredited :	0.2 Yes	10 Yes	10 Yes	No	0.04 No	10 Yes	10 Yes	10 Yes	30 Yes	20 No	20 Yes	10 Yes	Yes			
LABID Number CL/	Client Sample Description	Sample Date	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	PCB-7 Congeners Analysis	Total Organic Carbon	Benzene	Toluene	Ethyl Benzene	Xylenes	MTBE	m/p Xylenes	o Xylene	PAH (17) by GCMS			
1600681	Trench N5 Wac 1 D 0.90	06-Jan-16	11.4	192	193	Req	1.50	<10	<10	<10	<30	<20	<20	<10	Req			
1600682	Trench N2 Wac 2 D 1.00	07-Jan-16	20.8	416	417	Req	3.40	<10	<10	<10	<30	<20	<20	<10	Req			
ESG & Clien			Client N	Client Name ESG Doncaster					Sample Analysis									
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Contact		Mr N Coo	A63 C	astle	Stree	t			Date Prin Report N Table Nu	lumber			-Jan-2016 S/160146		

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: Job Number: S16_0146 Trench N5 Wac 1 D 0.90 LIMS ID Number: CL1600681 Date Booked in: 11-Jan-16 QC Batch Number: 160020 **Date Extracted:** 12-Jan-16 **Quantitation File: Initial Calibration** Date Analysed: 13-Jan-16 Directory: 316MS17.PAH\ Matrix: Soil Dilution: Ext Method: Ultrasonic 1.0

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	6.01	0.32	98
Anthracene	120-12-7	6.06	0.09	100
Fluoranthene	206-44-0	7.39	0.59	92
Pyrene	129-00-0	7.69	0.50	92
Benzo[a]anthracene	56-55-3	9.40	0.30	96
Chrysene	218-01-9	9.45	0.34	97
Benzo[b]fluoranthene	205-99-2	10.94	0.44	98
Benzo[k]fluoranthene	207-08-9	10.97	0.17	97
Benzo[a]pyrene	50-32-8	11.37	0.36	97
Indeno[1,2,3-cd]pyrene	193-39-5	12.76	0.30	97
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	13.10	0.31	94
Coronene	191-07-1 *	15.50	0.08	95
Total (USEPA16) PAHs	-	-	< 4.12	-

^{*} Denotes compound is not UKAS accredited

[&]quot;M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	88
Acenaphthene-d10	87
Phenanthrene-d10	88
Chrysene-d12	95
Perylene-d12	102

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	109
Terphenyl-d14	79

Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: Job Number: S16_0146 Trench N2 Wac 2 D 1.00 LIMS ID Number: CL1600682 Date Booked in: 11-Jan-16 QC Batch Number: 160020 **Date Extracted:** 12-Jan-16 **Quantitation File: Initial Calibration** Date Analysed: 13-Jan-16 Directory: 316MS17.PAH\ Matrix: Soil Dilution: Ext Method: Ultrasonic 1.0

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	6.01	0.46	98
Anthracene	120-12-7	6.06	0.13	94
Fluoranthene	206-44-0	7.39	0.77	92
Pyrene	129-00-0	7.69	0.75	88
Benzo[a]anthracene	56-55-3	9.39	0.38	96
Chrysene	218-01-9	9.44	0.42	98
Benzo[b]fluoranthene	205-99-2	10.94	0.55	98
Benzo[k]fluoranthene	207-08-9	10.97	0.19	98
Benzo[a]pyrene	50-32-8	11.37	0.43	97
Indeno[1,2,3-cd]pyrene	193-39-5	12.77	0.36	98
Dibenzo[a,h]anthracene	53-70-3	12.79	0.10	94
Benzo[g,h,i]perylene	191-24-2	13.10	0.37	90
Coronene	191-07-1 *	15.50	0.09	91
Total (USEPA16) PAHs	-	-	< 5.23	-

^{*} Denotes compound is not UKAS accredited

[&]quot;M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	84
Acenaphthene-d10	84
Phenanthrene-d10	85
Chrysene-d12	92
Perylene-d12	99

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	124
Terphenyl-d14	87

Concentrations are reported on a wet weight basis.

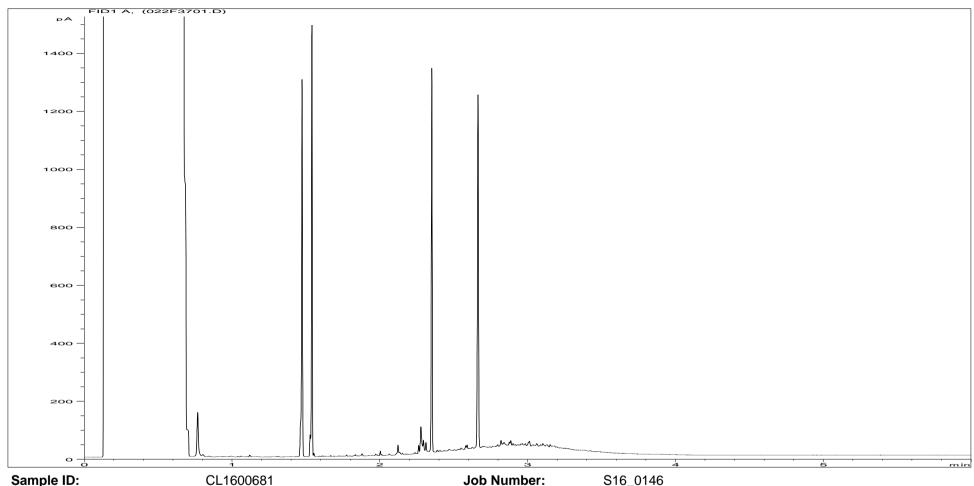
The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: ESG Doncaster: A63 Castle Street Matrix: SOIL

 Job Number:
 S16_0146
 Date Booked in:
 11-Jan-16

 QC Batch Number:
 160020
 Date Extracted:
 12-Jan-16


 Directory:
 0113PCB.GC8
 Date Analysed:
 14-Jan-16

Method: Ultrasonic

* This sample data is not UKAS accredited.

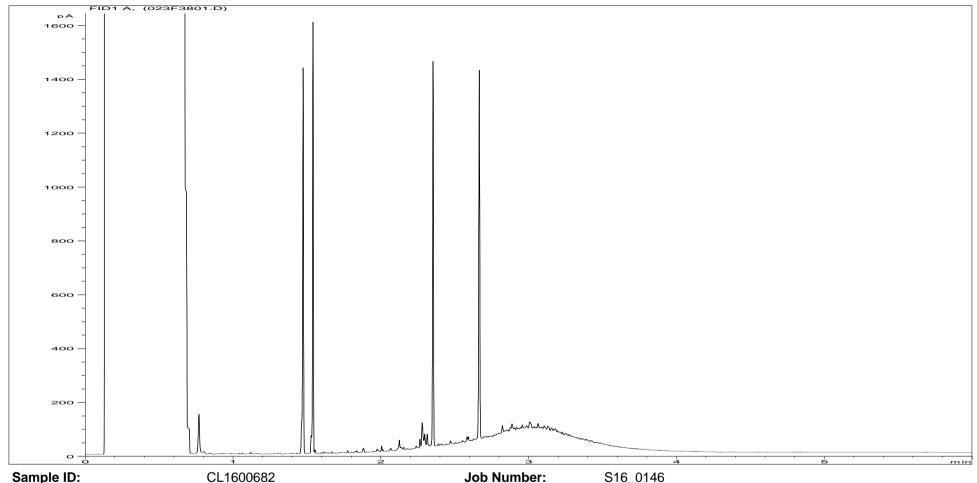
				Cor	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
* CL1600681	Trench N5 Wac 1 D 0.90	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
* CL1600682	Trench N2 Wac 2 D 1.00	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0

Petroleum Hydrocarbons (C8 to C40) by GC/FID

Sample ID:CL1600681Multiplier:8Dilution:1

Dilution:1Site:A63 Castle StreetAcquisition Method:5UL_RUNF.MClient Sample Ref:Trench N5 Wac 1 D 0.90

Acquisition Date/Time: 12-Jan-16, 19:00:30


Datafile: D:\TES\DATA\Y2016\011216TPH_GC3\011216 2016-01-12 10-58-44\022F3701.D

Client:

ESG Doncaster

Page 6 of 12 EFS/160146 Ver. 1

Petroleum Hydrocarbons (C8 to C40) by GC/FID

Sample ID: CL1600682 Multiplier: 8 Dilution: **Acquisition Method:** 5UL_RUNF.M

Acquisition Date/Time: 12-Jan-16, 19:13:40

Datafile: D:\TES\DATA\Y2016\011216TPH_GC3\011216 2016-01-12 10-58-44\023F3801.D

Client:

Client Sample Ref:

Site:

ESG Doncaster

A63 Castle Street

Trench N2 Wac 2 D 1.00

Page 7 of 12 EFS/160146 Ver. 1

WASTE ACCEPTANCE CRITERIA TESTING

Client	ESG Doncaster				Leaching Data					
Cilent	ESG Doncaster				Weight of sample (kg)	0.265				
Contact	Mr N Cooke				Moisture content @ 105°C (% of Wet Weight) 11.4					
Contact	IVII IN COOKE				Equivalent Weight based on drying at 105°C (kg) 0.225					
Site	A63 Castle Street				Volume of water required to carry out 2:1 stage (litres)	0.410				
Site	Abs Casile Sifeet				Fraction of sample above 4 mm %	39.100				
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000				
Trongh I	Trench N5 Wac 1 D 0.90		s16 0146 CL/1600681 15-Jan-1		Volume to undertake analysis (2:1 Stage) (litres)	0.300				
rrench	N5 Wac 1 D 0.90	\$10_0146	CL/1600661	15-Jan-16	Weight of Deionised water to carry out 8:1 stage (kg)	1.650				

Note: The >4mm fraction is crushed using a disc mill

				Landfill Waste Acceptance Criteria Limit Values						
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill				
Ν	WSLM59	Total Organic Carbon (% M/M)	1.5	3	5	6				
	LOI450	Loss on Ignition (%)				10				
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.06	6						
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1						
U	TPHFIDUS	Mineral Oil (mg/kg)	217	500						
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<4.7	100						
	PHSOIL	pH (pH units)			>6					
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated				

			2:1 Leachate	R:1 Loachato	Calculated	Calculated cumulative			
		Leachate Analysis	Z. i Ecuolidic	o. i Ecacinate	@ 2:1	amount leached @ 10:1			ria Limit Values for BSEN 12457/3 @ L/S litre kg-1
Accreditation	Method Code		mg/l ex	ccept ⁰⁰	mg/kg (d	dry weight)		g (dry weight)	
U	WSLM3	pH (pH units) 00	8.2	8.5	Coloulated data	not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	349	136	Calculated data i	ioi UKAS Accredited			
U	ICPMSW	Arsenic	0.013	0.016	0.026	0.16	0.5	2	25
U	ICPWATVAR	Barium	0.1	0.21	0.2	2	20	100	300
U	ICPMSW	Cadmium	0.0003	0.0005	0.0006	0.005	0.04	1	5
U	ICPMSW	Chromium	0.005	0.007	0.01	0.07	0.5	10	70
U		Copper	0.041	0.05	0.082	0.49	2	50	100
U	ICPMSW	Mercury	<0.0001	<0.0001	< 0.0002	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.011	0.003	0.022	0.04	0.5	10	30
U		Nickel	0.004	0.006	0.008	0.06	0.4	10	40
U	ICPMSW	Lead	0.155	0.183	0.31	1.79	0.5	10	50
U	ICPMSW	Antimony	0.005	0.003	0.01	0.03	0.06	0.7	5
U		Selenium	<0.001	< 0.001	< 0.002	<0.01	0.1	0.5	7
U		Zinc	0.103	0.194	0.206	1.82	4	50	200
U	KONENS	Chloride	24	11	48	127	800	15000	25000
U		Fluoride	0.8	0.4	1.6	5	10	150	500
U		Sulphate as SO4	28	5	56	81	1000	20000	50000
Ν	WSLM27	Total Dissolved Solids	272	106	544	1281	4000	60000	100000
U	1	Phenol Index	<0.05	<0.05	<0.1	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	21	16	42	167	500	800	1000

Template Ver.

Landfill Waste Acceptance Criteria limit values correct as of 11th March 200

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

WASTE ACCEPTANCE CRITERIA TESTING

Client	ESG Doncaster				Leaching Data					
Cilent	ESG Doncaster				Weight of sample (kg)	0.281				
Contact	Mr N Cooke				Moisture content @ 105°C (% of Wet Weight) 20.8					
Contact	IVII IN COOKE				Equivalent Weight based on drying at 105°C (kg) 0.225					
Site	A63 Castle Street				Volume of water required to carry out 2:1 stage (litres)	0.394				
Site	A63 Castle Street				Fraction of sample above 4 mm %	51.700				
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000				
Tronch	Trench N2 Wac 2 D 1.00		s16 0146 CL/1600682 15-Jan-16		Volume to undertake analysis (2:1 Stage) (litres)	0.300				
rrench	N2 Wac 2 D 1.00	\$16_0146	CL/1600662	15-Jan-16	Weight of Deionised water to carry out 8:1 stage (kg)	1.650				

Note: The >4mm	fraction is crushe	d using a disc mill

				Laı	ndfill Waste Acce	ptance Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	3.51	3	5	6
	LOI450	Loss on Ignition (%)				10
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.035	1		
U	TPHFIDUS	Mineral Oil (mg/kg)	525	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<6.72	100		
	PHSOIL	pH (pH units)			>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

						T	1		1
		Leachate Analysis	2:1 Leachate	8:1 Leachate	Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1			ria Limit Values for BSEN 12457/3 @ L/S l litre kg-1
Accreditation	Method Code		mg/l ex	ccept ⁰⁰	mg/kg (d	dry weight)		g (dry weight)	
U	WSLM3	pH (pH units) 00	8.2	8.4	Coloulated data r	not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	459	163	Calculated data i	ioi UKAS Accredited			
U	ICPMSW	Arsenic	0.004	0.01	0.008	0.09	0.5	2	25
U	ICPWATVAR	Barium	0.07	0.17	0.14	1.6	20	100	300
U	ICPMSW	Cadmium	0.0002	0.0006	0.0004	0.005	0.04	1	5
U	ICPMSW	Chromium	0.004	0.006	0.008	0.06	0.5	10	70
U	ICPMSW	Copper	0.015	0.03	0.03	0.28	2	50	100
U	ICPMSW	Mercury	<0.0001	<0.0001	< 0.0002	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.009	0.003	0.018	0.04	0.5	10	30
U	ICPMSW	Nickel	0.002	0.005	0.004	0.05	0.4	10	40
U	ICPMSW	Lead	0.047	0.26	0.094	2.32	0.5	10	50
U	ICPMSW	Antimony	0.003	0.002	0.006	0.02	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	<0.001	< 0.002	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.129	0.854	0.258	7.57	4	50	200
U	KONENS	Chloride	34	11	68	141	800	15000	25000
U		Fluoride	1.1	0.7	2.2	8	10	150	500
U	ICPWATVAR	Sulphate as SO4	27	8	54	105	1000	20000	50000
Ν	WSLM27	Total Dissolved Solids	358	127	716	1578	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	< 0.05	<0.1	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	17	17	34	170	500	800	1000

Template Ver.

Landfill Waste Acceptance Criteria limit values correct as of 11th March 20

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer **ESG Doncaster A63 Castle Street** Site

Consignment No S52796 Date Logged 11-Jan-2016

S160146 Report No

							Repo	ort Du	e 18-	Jan-2	016		
		MethodID	BTEXHSA		CEN Leachate		CustServ	PAHMSUS	PCBUSECDAR	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	BTEX-HSA + MTBE analysis	MTBE (μg/kg)	CEN Leac(P)1	CEN Leac(P)2	REPORT A	PAH (17) by GCMS	PCB-7 Congeners Analysis	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
		·	✓					✓		✓	✓	✓	
CL/1600681	Trench N5 Wac 1 0.90	06/01/16											
CL/1600682	Trench N2 Wac 2 1.00	07/01/16											

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- В С The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Where individual results are flately as Subsection of the subsecti

Report Number: EFS/160146

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 12 of 12 EFS/160146 Ver. 1

Sample Descriptions

Client: ESG Doncaster
Site: A63 Castle Street
Report Number: S16_0146

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1600681	Trench N5 Wac 1 D 0.90	Brown MADE GROUND Brown Stone SILT
CL/1600682	Trench N2 Wac 2 D 1.00	Brown Stone SILT

Appendix A Page 1 of 1 15/01/2016EFS/160146 Ver. 1

TEST REPORT

Report No. EXR/211674 (Ver. 1)

ESG Doncaster ESG Doncaster Askern Road Carcroft Doncaster South Yorkshire DN6 8DG

Site: A63 Castle Street

The 3 samples described in this report were registered for analysis by ESG on 22-Dec-2015. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 31-Dec-2015

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 4)
Table of PAH (MS-SIM) (10) Results (Pages 5 to 7)
Table of SVOC Results (Pages 8 to 10)
Table of GRO Results (Page 11)
Table of TPH (Si) banding (0.01) (Page 12)
GC-FID Chromatograms (Pages 13 to 18)
Table of VOC (HSA) Results (Pages 19 to 21)
Analytical and Deviating Sample Overview (Pages 22 to 23)
Table of Additional Report Notes (Page 24)
Table of Method Descriptions (Page 25)
Table of Report Notes (Page 26)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG:
Declan Burns

Date of Issue: 31-Dec-2015

Tests marked 'A' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	pH units	mg/l	mg/l	μg/l	mg/l	mg/l	mg/l	mg/l	mg/l	μg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
		od Codes :	WSLM3	Calc_HD	KONENS	VOCHSAW		ICPWATVAR	ICPMSW	ICPMSW	ICPMSW	PAHMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW
	Method Reporti	ng Limits : ccredited :	Yes	7 Yes	1 Yes	1 Yes	1 Yes	1 Yes	0.001 Yes	0.001 Yes	0.0001 Yes	Yes	0.001 Yes	0.001 Yes	0.002 Yes	0.001 Yes	0.0001 Yes	0.001 Yes
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Total Hardness as CaCO3	Chloride as CI w	VOC HSA-GCMS o	Calcium as Ca (Dissolved) a	Magnesium as Mg (Dissolved) a	Nickel as Ni (Dissolved)	Chromium as Cr (Dissolved)	Cadmium as Cd (Dissolved)	PAH GC-MS (16) o	Copper as Cu (Dissolved)	Lead as Pb (Dissolved)	Zinc as Zn (Dissolved)	Arsenic as As (Dissolved)	Mercury as Hg (Dissolved)	Selenium as Se (Dissolved)
1649668	WS401 ES 3 1.60	22-Dec-15	7.7	78	10	Req §	23	5	0.005	0.006	<0.0001	Req §	0.024	0.075	0.041	0.006	<0.0001	<0.001
1649669	WS402 ES 1 0.10	22-Dec-15	11.9	<484	60	Req §	192	<1	0.003	0.02	0.0001	Req §	0.041	0.046	0.052	0.002	<0.0001	<0.001
1649670	WS404 ES 2 1.10	22-Dec-15	7.5	130	98	Req §	42	6	0.036	0.017	0.0008	Req §	0.201	0.42	0.349	0.031	<0.0001	0.003
	ESG & Client				Client Name ESG Doncaster Ontact Mr N Cooke									_eachat	te 10:1			
Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422				A63 Castle Street Date Printed 31-Dec-2015														

		Units :	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
	Metho	od Codes :	ICPMSW	ICPMSW	KONENS	KONENS	SFAPI	SFAPI	TPHFID-Si	ICPWATVAR	GROHSA	SVOCSW			VOCHSAW			
	Method Reporting		0.001	0.001	0.01	0.01	0.02	0.05	0.01	0.01	0.1	0.002	1	1	1	2	1	1
	UKAS A	ccredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes
LAB ID Number EX/	Client Sample Description	Sample Date	Vanadium as V (Dissolved)	Antimony as Sb (Dissolved)	Ammoniacal Nitrogen as N	Chromium VI as Cr	Cyanide (Total) as CN	Phenol Index as C6H5OH	TPH by GC(Si) o	Beryllium as Be (Dissolved) a	GRO-HSA (AA)	Semi Volatile Organic Compounds	Benzene	Toluene	Ethyl Benzene	Xylenes	m/p Xylenes	o Xylene
1649668	WS401 ES 3 1.60	22-Dec-15	0.013	0.002	0.02	<0.01	<0.02	<0.05	Req	<0.01	Req	Req	<1 §	<1 §	<1 §	<2 §	<1 §	<1 §
1649669	WS402 ES 1 0.10	22-Dec-15	0.005	0.001	0.08	0.01	<0.02	<0.05	Req	<0.01	Req	Req	<1 §	<1 §	<1 §	<2 §	<1 §	<1 §
1649670	WS404 ES 2 1.10	22-Dec-15	0.107	0.004	1.9	0.05	<0.02	<0.05	Req	<0.01	Req	Req	<1 §	<1 §	<1 §	<2 §	<1 §	<1 §
	ESG 😥			ent Name ESG Doncaster Mr N Cooke						CEN Leachate 10:1								
	Bretby Business Park, Ashby Road		Contact		Mr N Coo	oke						Date Printed			3,	I-Dec-2015		
Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422				A63 Castle Street					Report N	Number			(R/211674 1					

		Units :	mg/l	mg/l	mg/l	mg/l								
	Method	d Codes :	PHEHPLCVL	PHEHPLCVL	PHEHPLCVL	PHEHPLCVL								
Method Reporting Limits :		g Limits :	0.0005	0.0005	0.0005	0.0005								
	UKAS Acc	credited :	No	No	No	No								
LABID Number EX/	Client Sample Description	Sample Date	Phenol	Cresols	Dimethylphenols	Trimethylphenols								
1649668	WS401 ES 3 1.60	22-Dec-15	<0.0005	<0.0005	<0.0005	<0.0005								
1649669	WS402 ES 1 0.10	22-Dec-15	0.0133	0.0007	<0.0005	<0.0005								
1649670		22-Dec-15												
E20 (8)		Client Name ESG Doncaster				. '	CEN Leachate 10:1							
		Contact	Contact Mr N Cooke							1				
Bretby Business Park, Ashby Road								Date Pri	nted		31-Dec-2015			
Burton-on-Trent, Staffordshire, DE15 0YZ			AG2 Cootle Ctroot				Report N	lumber		EXR/211674				
Tel +44 (0) 1283 554400			A63 Castle Street			Table No			1					
Fax +44 (0) 1283 554422														
	(5, 1200 00 1 122											l		

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS401 ES 3 1.60 Job Number: W21_1674 **LIMS ID Number:** EX1649668 Date Booked in: 22-Dec-15 QC Batch Number: 150876 **Date Extracted:** 29-Dec-15 **Quantitation File:** Initial Calibration **Date Analysed:** 30-Dec-15 **Directory:** 915PAH.MS10\ Matrix: Water **Dilution:** 1.0 **Ext Method: Bottle**

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	ug/l	
Naphthalene	91-20-3	3.32	0.038	98
Acenaphthylene	208-96-8	4.37	0.013	М
Acenaphthene	83-32-9	4.49	0.118	91
Fluorene	86-73-7	4.87	0.123	85
Phenanthrene	85-01-8	5.72	0.109	94
Anthracene	120-12-7	5.77	0.044	93
Fluoranthene	206-44-0	7.07	0.134	94
Pyrene	129-00-0	7.35	0.131	73
Benzo[a]anthracene	56-55-3	-	< 0.010	-
Chrysene	218-01-9	9.09	0.038	94
Benzo[b]fluoranthene	205-99-2	10.58	0.029	78
Benzo[k]fluoranthene	207-08-9	10.62	0.017	81
Benzo[a]pyrene	50-32-8	11.01	0.021	86
Indeno[1,2,3-cd]pyrene	193-39-5	12.39	0.021	72
Dibenzo[a,h]anthracene	53-70-3	-	< 0.010	-
Benzo[g,h,i]perylene	191-24-2	12.69	0.025	56
Total (USEPA16) PAHs	-	-	< 0.881	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	105
Acenaphthene-d10	104
Phenanthrene-d10	109
Chrysene-d12	107
Perylene-d12	105

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	84
Terphenyl-d14	75

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS402 ES 1 0.10 Job Number: W21_1674 **LIMS ID Number:** EX1649669 Date Booked in: 22-Dec-15 QC Batch Number: 150876 **Date Extracted:** 29-Dec-15 **Quantitation File:** Initial Calibration **Date Analysed:** 30-Dec-15 **Directory:** 915PAH.MS10\ Matrix: Water **Dilution:** 1.0 **Ext Method: Bottle**

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	ug/l	
Naphthalene	91-20-3	3.32	0.145	94
Acenaphthylene	208-96-8	4.36	0.062	94
Acenaphthene	83-32-9	4.48	0.236	98
Fluorene	86-73-7	4.87	0.159	99
Phenanthrene	85-01-8	5.72	0.470	97
Anthracene	120-12-7	5.77	0.114	97
Fluoranthene	206-44-0	7.07	0.186	79
Pyrene	129-00-0	7.35	0.127	94
Benzo[a]anthracene	56-55-3	-	< 0.010	-
Chrysene	218-01-9	9.09	0.013	61
Benzo[b]fluoranthene	205-99-2	1	< 0.010	-
Benzo[k]fluoranthene	207-08-9	1	< 0.010	-
Benzo[a]pyrene	50-32-8	1	< 0.010	-
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.010	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.010	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.010	-
Total (USEPA16) PAHs	-	-	< 1.582	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	109
Acenaphthene-d10	109
Phenanthrene-d10	114
Chrysene-d12	108
Perylene-d12	105

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	84
Terphenyl-d14	75

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS404 ES 2 1.10 Job Number: W21_1674 **LIMS ID Number:** EX1649670 Date Booked in: 22-Dec-15 QC Batch Number: 150876 **Date Extracted:** 29-Dec-15 **Quantitation File:** Initial Calibration **Date Analysed:** 30-Dec-15 **Directory:** 915PAH.MS10\ Matrix: Water **Dilution:** 1.0 **Ext Method: Bottle**

UKAS accredited?: No

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	ug/l	
Naphthalene	91-20-3	-	< 0.020	-
Acenaphthylene	208-96-8	-	< 0.010	-
Acenaphthene	83-32-9	4.48	0.029	95
Fluorene	86-73-7	1	< 0.010	-
Phenanthrene	85-01-8	1	< 0.010	-
Anthracene	120-12-7	5.77	0.012	65
Fluoranthene	206-44-0	7.06	0.124	75
Pyrene	129-00-0	7.35	0.113	95
Benzo[a]anthracene	56-55-3	1	< 0.010	-
Chrysene	218-01-9	9.09	0.030	60
Benzo[b]fluoranthene	205-99-2	10.59	0.019	62
Benzo[k]fluoranthene	207-08-9	1	< 0.010	-
Benzo[a]pyrene	50-32-8	11.01	0.014	79
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.010	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.010	-
Benzo[g,h,i]perylene	191-24-2	12.70	0.011	58
Total (USEPA16) PAHs	-	-	< 0.442	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	111
Acenaphthene-d10	110
Phenanthrene-d10	117
Chrysene-d12	115
Perylene-d12	114

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	84
Terphenyl-d14	75

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Semi-Volatile Organic Compounds

UKAS accredited?: No

Customer and Site Details: ESG Doncaster: A63 Castle Street

 Sample Details:
 WS401 ES 3 1.60
 Date Booked in:
 22-Dec-15

 LIMS ID Number:
 EX1649668
 Date Extracted:
 30-Dec-15

 Job Number:
 W21_1674
 Date Analysed:
 30-Dec-15

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/l	
Phenol	108-95-2	-	< 0.020	-
bis(2-Chloroethyl)ether	111-44-4	-	< 0.005	-
2-Chlorophenol	95-57-8	-	< 0.020	-
1,3-Dichlorobenzene	541-73-1	-	< 0.005	-
1,4-Dichlorobenzene	106-46-7	-	< 0.005	-
Benzyl alcohol	100-51-6	-	< 0.005	-
1,2-Dichlorobenzene	95-50-1	-	< 0.005	-
2-Methylphenol	95-48-7	-	< 0.005	-
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.005	-
Hexachloroethane	67-72-1	-	< 0.005	-
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.005	-
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 0.020	-
Nitrobenzene	98-95-3	-	< 0.005	-
Isophorone	78-59-1	-	< 0.005	-
2-Nitrophenol	88-75-5	-	< 0.020	-
2,4-Dimethylphenol	105-67-9	-	< 0.020	-
Benzoic Acid	65-85-0	-	< 0.100	-
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.005	-
2,4-Dichlorophenol	120-83-2	-	< 0.020	-
1,2,4-Trichlorobenzene	120-82-1	-	< 0.005	-
Naphthalene	91-20-3	-	< 0.002	-
4-Chlorophenol	106-48-9	-	< 0.020	-
4-Chloroaniline	106-47-8	-	< 0.005	-
Hexachlorobutadiene	87-68-3	-	< 0.005	-
4-Chloro-3-methylphenol	59-50-7	-	< 0.005	-
2-Methylnaphthalene	91-57-6	-	< 0.002	-
1-Methylnaphthalene	90-12-0	-	< 0.002	-
Hexachlorocyclopentadiene	77-47-4	-	< 0.005	-
2,4,6-Trichlorophenol	88-06-2	-	< 0.020	-
2,4,5-Trichlorophenol	95-95-4	-	< 0.020	-
2-Chloronaphthalene	91-58-7	-	< 0.002	-
Biphenyl	92-52-4	-	< 0.002	-
Diphenyl ether	101-84-8	-	< 0.002	-
2-Nitroaniline	88-74-4	-	< 0.005	-
Acenaphthylene	208-96-8	-	< 0.002	-
Dimethylphthalate	131-11-3	-	< 0.005	-
2,6-Dinitrotoluene	606-20-2	•	< 0.005	-
Acenaphthene	83-32-9	-	< 0.002	-
3-Nitroaniline	99-09-2	-	< 0.005	-

•			
Matrix:	Leachate	QC Batch Number:	274
Ext Method:	Sep. Funnel	Multiplier:	0.005
Operator:	JO	Dilution Factor:	1
Directory/Quant File:	15SVOC.GC11\	GPC (Y/N)	N

Target Compounds	CAS#	R.T.	Concentration	% Fit
			mg/l	
2,4-Dinitrophenol	51-28-5	-	< 0.010	-
Dibenzofuran	132-64-9	-	< 0.005	-
4-Nitrophenol	100-02-7	-	< 0.050	-
2,4-Dinitrotoluene	121-14-2	-	< 0.005	-
Fluorene	86-73-7	-	< 0.002	-
Diethylphthalate	84-66-2	-	< 0.005	-
4-Chlorophenyl-phenylether	7005-72-3	-	< 0.005	-
4,6-Dinitro-2-methylphenol	534-52-1	-	< 0.050	-
4-Nitroaniline	100-01-6	-	< 0.005	-
N-Nitrosodiphenylamine	86-30-6	-	< 0.005	-
4-Bromophenyl-phenylether	101-55-3	-	< 0.005	-
Hexachlorobenzene	118-74-1	-	< 0.005	-
Pentachlorophenol	87-86-5	-	< 0.050	-
Phenanthrene	85-01-8	-	< 0.002	-
Anthracene	120-12-7	-	< 0.002	-
Di-n-butylphthalate	84-74-2	-	< 0.005	-
Fluoranthene	206-44-0	-	< 0.002	-
Pyrene	129-00-0	-	< 0.002	-
Butylbenzylphthalate	85-68-7	-	< 0.005	-
Benzo[a]anthracene	56-55-3	-	< 0.002	-
Chrysene	218-01-9	-	< 0.002	-
3,3'-Dichlorobenzidine	91-94-1	-	< 0.020	-
bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.005	-
Di-n-octylphthalate	117-84-0	-	< 0.002	-
Benzo[b]fluoranthene	205-99-2	-	< 0.002	-
Benzo[k]fluoranthene	207-08-9	-	< 0.002	-
Benzo[a]pyrene	50-32-8	-	< 0.002	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.002	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.002	-
Benzo[g,h,i]perylene	191-24-2	-	< 0.002	-
Coronene	191-07-1	-	< 0.050	-

Internal Standards	% Area
1,4-Dichlorobenzene-d4	101
Naphthalene-d8	104
Acenaphthene-d10	107
Phenanthrene-d10	106
Chrysene-d12	119
Perylene-d12	135

Surrogates	% Rec
2-Fluorophenol	42
Phenol-d5	26
Nitrobenzene-d5	71
2-Fluorobiphenyl	79
2,4,6-Tribromophenol	74
Terphenyl-d14	64

Concentrations are reported on a wet weight basis.

[&]quot;M" denotes that % fit has been manually interpreted

Semi-Volatile Organic Compounds

UKAS accredited?: No

Customer and Site Details: ESG Doncaster: A63 Castle Street

WS402 ES 1 0.10

Date Booked in: 22-Dec-15 Date Extracted:

30-Dec-15

Matrix: Ext Method: Operator:

Leachate Sep. Funnel QC Batch Number: Multiplier: **Dilution Factor:**

274 0.005

Job Number:

Sample Details:

LIMS ID Number:

EX1649669 W21_1674

Date Analysed:

30-Dec-15

Directory/Quant File:

15SVOC.GC11\

GPC (Y/N)

Ν

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/l	
Phenol	108-95-2	-	< 0.020	-
bis(2-Chloroethyl)ether	111-44-4	-	< 0.005	-
2-Chlorophenol	95-57-8	-	< 0.020	-
1,3-Dichlorobenzene	541-73-1	-	< 0.005	-
1,4-Dichlorobenzene	106-46-7	-	< 0.005	-
Benzyl alcohol	100-51-6	-	< 0.005	-
1,2-Dichlorobenzene	95-50-1	-	< 0.005	-
2-Methylphenol	95-48-7	-	< 0.005	-
ois(2-Chloroisopropyl)ether	108-60-1	-	< 0.005	-
Hexachloroethane	67-72-1	-	< 0.005	-
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.005	-
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 0.020	-
Nitrobenzene	98-95-3	-	< 0.005	-
sophorone	78-59-1	-	< 0.005	-
2-Nitrophenol	88-75-5	-	< 0.020	-
2,4-Dimethylphenol	105-67-9	-	< 0.020	-
Benzoic Acid	65-85-0	-	< 0.100	-
ois(2-Chloroethoxy)methane	111-91-1	-	< 0.005	-
2,4-Dichlorophenol	120-83-2	-	< 0.020	-
1,2,4-Trichlorobenzene	120-82-1	-	< 0.005	-
Naphthalene	91-20-3	-	< 0.002	-
4-Chlorophenol	106-48-9	-	< 0.020	-
4-Chloroaniline	106-47-8	-	< 0.005	-
Hexachlorobutadiene	87-68-3	-	< 0.005	-
4-Chloro-3-methylphenol	59-50-7	-	< 0.005	-
2-Methylnaphthalene	91-57-6	-	< 0.002	-
1-Methylnaphthalene	90-12-0	-	< 0.002	-
-lexachlorocyclopentadiene	77-47-4	-	< 0.005	-
2,4,6-Trichlorophenol	88-06-2	-	< 0.020	-
2,4,5-Trichlorophenol	95-95-4	-	< 0.020	-
2-Chloronaphthalene	91-58-7	-	< 0.002	-
Biphenyl	92-52-4	-	< 0.002	-
Diphenyl ether	101-84-8	-	< 0.002	-
2-Nitroaniline	88-74-4	-	< 0.005	-
Acenaphthylene	208-96-8	-	< 0.002	-
Dimethylphthalate	131-11-3	-	< 0.005	-
2,6-Dinitrotoluene	606-20-2	-	< 0.005	-
Acenaphthene	83-32-9	-	< 0.002	-
3-Nitroaniline	99-09-2	-	< 0.005	-

Target Compounds			Concentration mg/l	% Fit	
2,4-Dinitrophenol	51-28-5	-	< 0.010	-	
Dibenzofuran	132-64-9	-	< 0.005	-	
4-Nitrophenol	100-02-7	-	< 0.050	-	
2,4-Dinitrotoluene	121-14-2	-	< 0.005	-	
Fluorene	86-73-7	-	< 0.002	-	
Diethylphthalate	84-66-2	-	< 0.005	-	
4-Chlorophenyl-phenylether	7005-72-3	-	< 0.005	-	
4,6-Dinitro-2-methylphenol	534-52-1	-	< 0.050	-	
4-Nitroaniline	100-01-6	-	< 0.005	-	
N-Nitrosodiphenylamine	86-30-6	-	< 0.005	-	
4-Bromophenyl-phenylether	101-55-3	-	< 0.005	-	
Hexachlorobenzene	118-74-1	-	< 0.005	-	
Pentachlorophenol	87-86-5	-	< 0.050	-	
Phenanthrene	85-01-8	-	< 0.002	-	
Anthracene	120-12-7	-	< 0.002	-	
Di-n-butylphthalate	84-74-2	-	< 0.005	-	
Fluoranthene	206-44-0	-	< 0.002	-	
Pyrene	129-00-0	-	< 0.002	-	
Butylbenzylphthalate	85-68-7	-	< 0.005	-	
Benzo[a]anthracene	56-55-3	-	< 0.002	-	
Chrysene	218-01-9	-	< 0.002	-	
3,3'-Dichlorobenzidine	91-94-1	-	< 0.020	-	
bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.005	-	
Di-n-octylphthalate	117-84-0	-	< 0.002	-	
Benzo[b]fluoranthene	205-99-2	-	< 0.002	-	
Benzo[k]fluoranthene	207-08-9	-	< 0.002	-	
Benzo[a]pyrene	50-32-8	-	< 0.002	-	
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.002	-	
Dibenzo[a,h]anthracene	53-70-3	-	< 0.002	-	
Benzo[g,h,i]perylene	191-24-2	-	< 0.002	-	
Coronene	191-07-1	-	< 0.050	-	

Internal Standards	% Area
1,4-Dichlorobenzene-d4	106
Naphthalene-d8	111
Acenaphthene-d10	113
Phenanthrene-d10	113
Chrysene-d12	125
Perylene-d12	140

Surrogates	% Rec
2-Fluorophenol	44
Phenol-d5	26
Nitrobenzene-d5	76
2-Fluorobiphenyl	85
2,4,6-Tribromophenol	96
Terphenyl-d14	89

[&]quot;M" denotes that % fit has been manually interpreted

Semi-Volatile Organic Compounds

UKAS accredited?: No

Customer and Site Details: ESG Doncaster: A63 Castle Street

WS404 ES 2 1.10

Date Booked in:

Matrix: Ext Method: Operator:

Leachate Sep. Funnel JO

QC Batch Number: Multiplier:

274 0.05

Sample Details: LIMS ID Number: Job Number:

EX1649670 W21_1674

Date Extracted: Date Analysed:

22-Dec-15 30-Dec-15 30-Dec-15

Directory/Quant File:

Dilution Factor:

15SVOC.GC11\

GPC (Y/N)

10 Ν

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/l	
Phenol	108-95-2	-	< 0.200	-
bis(2-Chloroethyl)ether	111-44-4	-	< 0.050	-
2-Chlorophenol	95-57-8	-	< 0.200	-
1,3-Dichlorobenzene	541-73-1	-	< 0.050	-
1,4-Dichlorobenzene	106-46-7	-	< 0.050	-
Benzyl alcohol	100-51-6	-	< 0.050	-
1,2-Dichlorobenzene	95-50-1	-	< 0.050	-
2-Methylphenol	95-48-7	-	< 0.050	-
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.050	-
Hexachloroethane	67-72-1	-	< 0.050	-
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.050	-
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 0.200	-
Nitrobenzene	98-95-3	-	< 0.050	-
Isophorone	78-59-1	-	< 0.050	-
2-Nitrophenol	88-75-5	-	< 0.200	-
2,4-Dimethylphenol	105-67-9	-	< 0.200	-
Benzoic Acid	65-85-0	-	< 1.000	-
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.050	-
2,4-Dichlorophenol	120-83-2	-	< 0.200	-
1,2,4-Trichlorobenzene	120-82-1	-	< 0.050	-
Naphthalene	91-20-3	-	< 0.020	-
4-Chlorophenol	106-48-9	-	< 0.200	-
4-Chloroaniline	106-47-8	-	< 0.050	-
Hexachlorobutadiene	87-68-3	-	< 0.050	-
4-Chloro-3-methylphenol	59-50-7	-	< 0.050	-
2-Methylnaphthalene	91-57-6	-	< 0.020	-
1-Methylnaphthalene	90-12-0	-	< 0.020	-
Hexachlorocyclopentadiene	77-47-4	-	< 0.050	-
2,4,6-Trichlorophenol	88-06-2	-	< 0.200	-
2,4,5-Trichlorophenol	95-95-4	-	< 0.200	-
2-Chloronaphthalene	91-58-7	-	< 0.020	-
Biphenyl	92-52-4	-	< 0.020	-
Diphenyl ether	101-84-8	-	< 0.020	-
2-Nitroaniline	88-74-4	-	< 0.050	-
Acenaphthylene	208-96-8	-	< 0.020	-
Dimethylphthalate	131-11-3	-	< 0.050	-
2,6-Dinitrotoluene	606-20-2	-	< 0.050	-
Acenaphthene	83-32-9	-	< 0.020	-
3-Nitroaniline Concentrations are reported on a	99-09-2	-	< 0.050	-

Target Compounds	arget Compounds CAS #		Concentration mg/l	% Fit	
2,4-Dinitrophenol	51-28-5	-	< 0.100	-	
Dibenzofuran	132-64-9	-	< 0.050	-	
4-Nitrophenol	100-02-7	-	< 0.500	-	
2,4-Dinitrotoluene	121-14-2	-	< 0.050	-	
Fluorene	86-73-7	-	< 0.020	-	
Diethylphthalate	84-66-2	-	< 0.050	-	
4-Chlorophenyl-phenylether	7005-72-3	-	< 0.050	-	
4,6-Dinitro-2-methylphenol	534-52-1	-	< 0.500	-	
4-Nitroaniline	100-01-6	-	< 0.050	-	
N-Nitrosodiphenylamine	86-30-6	-	< 0.050	-	
4-Bromophenyl-phenylether	101-55-3	-	< 0.050	-	
Hexachlorobenzene	118-74-1	-	< 0.050	-	
Pentachlorophenol	87-86-5	-	< 0.500	-	
Phenanthrene	85-01-8	-	< 0.020	-	
Anthracene	120-12-7	-	< 0.020	-	
Di-n-butylphthalate	84-74-2	-	< 0.050	-	
Fluoranthene	206-44-0	-	< 0.020	-	
Pyrene	129-00-0	-	< 0.020	-	
Butylbenzylphthalate	85-68-7	-	< 0.050	-	
Benzo[a]anthracene	56-55-3	-	< 0.020	-	
Chrysene	218-01-9	-	< 0.020	-	
3,3'-Dichlorobenzidine	91-94-1	-	< 0.200	-	
bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.050	-	
Di-n-octylphthalate	117-84-0	-	< 0.020	-	
Benzo[b]fluoranthene	205-99-2	-	< 0.020	-	
Benzo[k]fluoranthene	207-08-9	-	< 0.020	-	
Benzo[a]pyrene	50-32-8	-	< 0.020	-	
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.020	-	
Dibenzo[a,h]anthracene	53-70-3	-	< 0.020	-	
Benzo[g,h,i]perylene	191-24-2	-	< 0.020	-	
Coronene	191-07-1	-	< 0.500	-	

internal Standards	% Area
1,4-Dichlorobenzene-d4	108
Naphthalene-d8	109
Acenaphthene-d10	110
Phenanthrene-d10	109
Chrysene-d12	123
Perylene-d12	134

Surrogates	% Rec
2-Fluorophenol	45
Phenol-d5	29
Nitrobenzene-d5	76
2-Fluorobiphenyl	82
2,4,6-Tribromophenol	60
Terphenyl-d14	58

Concentrations are reported on a wet weight basis.

[&]quot;M" denotes that % fit has been manually interpreted

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details: ESG Doncaster: A63 Castle Street

Job Number: W21_1674

Directory: C:\CHEM32\1\DATA\1224HSA_GC12\122415 2015-12-24 09-47-49\141B4101.D

Method: Headspace GCFID

Matrix:

Leachate

Date Booked in: 22-Dec-15
Date extracted: 24-Dec-15

Date Analysed: 24-Dec-15, 22:4

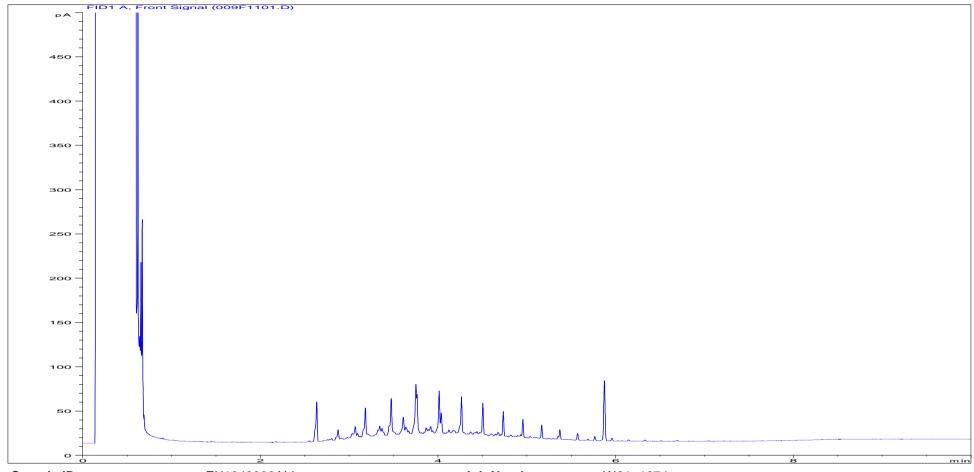
* Sample data with an asterisk are not UKAS accredited.

			Concentration, (mg/l)						Aliphatics		
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
* EX1649668	WS401 ES 3 1.60	<0.005	<0.005	<0.005	<0.005	<0.005	<0.1	<0.1	<0.1	<0.1	<0.1
* EX1649669	WS402 ES 1 0.10	<0.005	<0.005	<0.005	<0.005	<0.005	<0.1	<0.1	<0.1	<0.1	<0.1
* EX1649670	WS404 ES 2 1.10	<0.005	<0.005	<0.005	<0.005	<0.005	<0.1	<0.1	<0.1	<0.1	<0.1

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: ESG Doncaster: A63 Castle Street Matrix: Water

 Job Number:
 W21_1674
 Separation:
 Slica gel
 Date Booked ir
 22-Dec-15

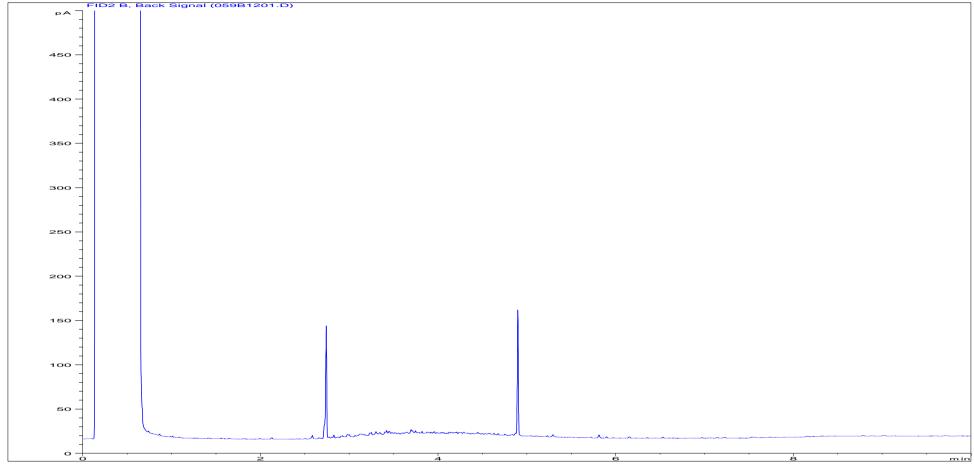

 QC Batch Number:
 150876
 Eluents:
 Hexane, DCM
 Date Extracted
 29-Dec-15

 Directory:
 D:\TES\DATA\Y2015\123015TPH_GC17\123015 2015-12-31 08-31-09\061B1401.D
 Date Analysed:31-Dec-15, 12:38:41

Method: Bottle

		Concentration, (mg/l)											
* This sample data is not UK	AS accredited.	>C8	- C10	>C10	- C12	>C12	- C16	>C16	- C21	>C21	- C35	>C8	- C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
EX1649668	WS401 ES 3 1.60	<0.01	<0.01	<0.01	<0.01	0.099	0.026	0.246	0.07	0.095	0.034	0.443	0.132
EX1649669	WS402 ES 1 0.10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
EX1649670	WS404 ES 2 1.10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.013	<0.01	<0.01	0.012	0.027	0.028

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.

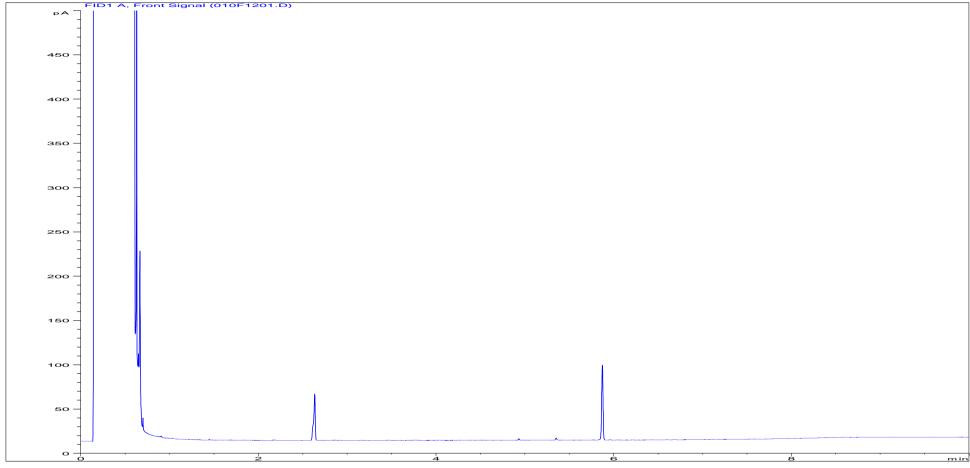

Sample ID:EX1649668ALIJob Number:W21_1674Multiplier:0.0198Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:TPH_RUNF.MClient Sample Ref:WS401 ES 3 1.60

Acquisition Date/Time: 31-Dec-15, 11:42:44

Datafile: D:\TES\DATA\Y2015\123015TPH_GC17\123015 2015-12-31 08-31-09\009F1101.D

Page 13 of 26 EXR/211674 Ver. 1

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.

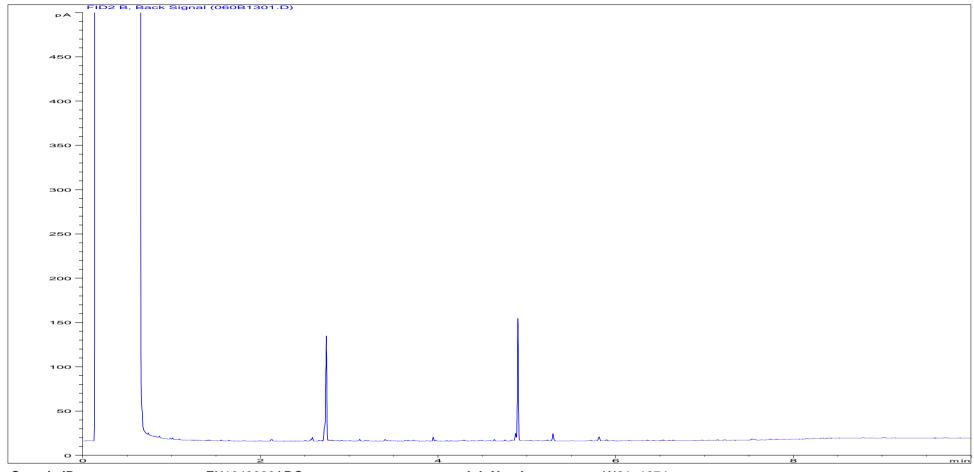

Sample ID:EX1649668AROJob Number:W21_1674Multiplier:0.015Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:TPH_RUNF.MClient Sample Ref:WS401 ES 3 1.60

Acquisition Date/Time: 31-Dec-15, 12:01:18

Datafile: D:\TES\DATA\Y2015\123015TPH_GC17\123015 2015-12-31 08-31-09\059B1201.D

Page 14 of 26 EXR/211674 Ver. 1

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.

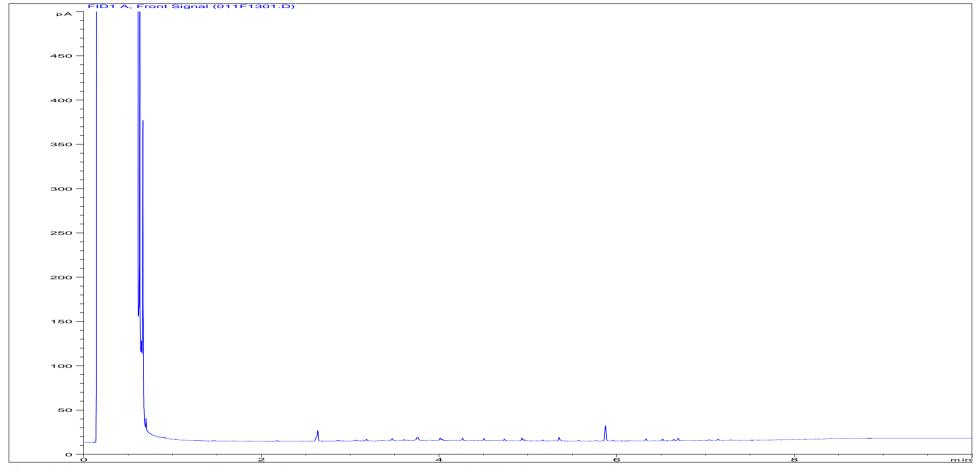

Sample ID:EX1649669ALIJob Number:W21_1674Multiplier:0.0198Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:TPH_RUNF.MClient Sample Ref:WS402 ES 1 0.10

Acquisition Date/Time: 31-Dec-15, 12:01:18

Datafile: D:\TES\DATA\Y2015\123015TPH_GC17\123015 2015-12-31 08-31-09\010F1201.D

Page 15 of 26 EXR/211674 Ver. 1

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.

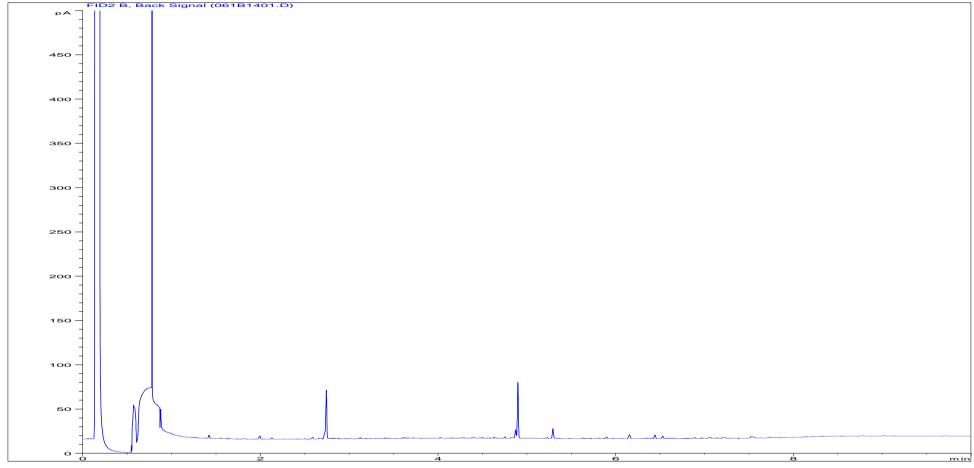

Sample ID:EX1649669AROJob Number:W21_1674Multiplier:0.0148Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:TPH_RUNF.MClient Sample Ref:WS402 ES 1 0.10

Acquisition Date/Time: 31-Dec-15, 12:19:56

Datafile: D:\TES\DATA\Y2015\123015TPH_GC17\123015 2015-12-31 08-31-09\060B1301.D

Page 16 of 26 EXR/211674 Ver. 1

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.


Sample ID:EX1649670ALIJob Number:W21_1674Multiplier:0.0198Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:TPH_RUNF.MClient Sample Ref:WS404 ES 2 1.10

Acquisition Date/Time: 31-Dec-15, 12:19:56

Datafile: D:\TES\DATA\Y2015\123015TPH_GC17\123015 2015-12-31 08-31-09\011F1301.D

Page 17 of 26 EXR/211674 Ver. 1

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.

Sample ID:EX1649670AROJob Number:W21_1674Multiplier:0.0148Client:ESG DoncasterDilution:1Site:A63 Castle StreetAcquisition Method:TPH_RUNF.MClient Sample Ref:WS404 ES 2 1.10

Acquisition Date/Time: 31-Dec-15, 12:38:41

Datafile: D:\TES\DATA\Y2015\123015TPH_GC17\123015 2015-12-31 08-31-09\061B1401.D

Page 18 of 26 EXR/211674 Ver. 1

Volatile Organic Compounds by HSA-GCMS

Directory/Quant file:

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

Hexachlorobutadiene

Naphthalene

Date Booked in:

Date Analysed:

Operator:

UKAS accredited?: No

Customer and Site Details: ESG Doncaster: A63 Castle Street

WS401 ES 3 1.60 Sample Details:

LIMS ID Number: EX1649668 Job Number: W21 1674

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min.)	μg/l	
Dichlorodifluoromethane	75-71-8 *	-	< 1	-
Chloromethane	74-87-3	-	< 1	-
Vinyl Chloride	75-01-4	-	< 1	-
Bromomethane	74-83-9 *	-	< 5	-
Chloroethane	75-00-3	-	< 5	-
Trichlorofluoromethane	75-69-4	-	< 1	-
1,1-Dichloroethene	75-35-4	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	-	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	-
2,2-Dichloropropane	594-20-7 *	-	< 1	-
cis 1,2-Dichloroethene	156-59-2	-	< 1	-
Bromochloromethane	74-97-5	-	< 1	-
Chloroform	67-66-3	-	< 1	-
1,1,1-Trichloroethane	71-55-6	-	< 1	-
Carbon Tetrachloride	56-23-5	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	-
Benzene	71-43-2	-	< 1	-
1,2-Dichloroethane	107-06-2	-	< 1	-
Trichloroethene	79-01-6	-	< 5	-
1,2-Dichloropropane	78-87-5	-	< 1	-
Dibromomethane	74-95-3	-	< 1	-
Bromodichloromethane	75-27-4	-	< 1	-
cis 1,3-Dichloropropene	10061-01-5 *	-	< 1	-
Toluene	108-88-3	-	< 1	-
trans 1,3-Dichloropropene	10061-02-6 *	-	< 1	-
1,1,2-Trichloroethane	79-00-5	-	< 1	ı
Tetrachloroethene	127-18-4	-	< 5	1
1,3-Dichloropropane	142-28-9	-	< 1	-
Dibromochloromethane	124-48-1	-	< 1	ı
1,2-Dibromoethane	106-93-4	-	< 1	ı
Chlorobenzene	108-90-7	-	< 1	-
Ethylbenzene	100-41-4	-	< 1	•
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	1
m and p-Xylene	108-38-3/106-42-3	-	< 1	•
o-Xylene	95-47-6	-	< 1	-

oporator.		1 0000000				
Target Compounds	CAS#	R.T. (min.)	Concentration µg/l	% Fit		
Styrene	100-42-5	-	< 1	-		
Bromoform	75-25-2	-	< 1	-		
iso-Propylbenzene	98-82-8	-	< 1	-		
1,1,2,2-Tetrachloroethane	79-34-5 *	-	< 1	1		
Propylbenzene	103-65-1	-	< 1	-		
Bromobenzene	108-86-1	-	< 1	1		
1,2,3-Trichloropropane	96-18-4	-	< 1	-		
2-Chlorotoluene	95-49-8	-	< 1	1		
1,3,5-Trimethylbenzene	108-67-8	-	< 1	1		
4-Chlorotoluene	106-43-4	-	< 1	1		
tert-Butylbenzene	98-06-6	-	< 1	1		
1,2,4-Trimethylbenzene	95-63-6	-	< 1	1		
sec-Butylbenzene	135-98-8	-	< 1	1		
p-Isopropyltoluene	99-87-6	-	< 1	1		
1,3-Dichlorobenzene	541-73-1	-	< 1	-		
1,4-Dichlorobenzene	106-46-7	-	< 1	-		
n-Butylbenzene	104-51-8	-	< 1	-		
1,2-Dichlorobenzene	95-50-1	-	< 5	1		
1,2-Dibromo-3-chloropropane	96-12-8 *	-	< 5	-		
-						

Initial Calibration

Leachate

12

Headspace

Matrix:

Method:

Multiplier:

Position:

< 5

< 5

< 5

< 5

1224VOC.MS8\

120-82-1

87-68-3

91-20-3

87-61-6

22-Dec-15

24-Dec-15

PR

Compounds marked * are not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	3.32	107	Dibromofluoromethane	25
1,4-Difluorobenzene	3.69	105	Toluene-d8	101
Chlorobenzene-d5	4.85	108	Bromofluorobenzene	88
1,4-Dichlorobenzene-d4	5.65	86		

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling. Where individual results are flagged see report notes for status.

Volatile Organic Compounds by HSA-GCMS

UKAS accredited?: No

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS402 ES 1 0.10

LIMS ID Number: EX1649669 Job Number: W21_1674

Target Compounds	CAS#	R.T. (min.)	Concentration µg/l	% Fit
Dichlorodifluoromethane	75-71-8	-	< 1	-
Chloromethane	74-87-3	-	< 1	-
Vinyl Chloride	75-01-4	-	< 1	-
Bromomethane	74-83-9	=	< 5	-
Chloroethane	75-00-3	-	< 5	-
Trichlorofluoromethane	75-69-4	-	< 1	-
1,1-Dichloroethene	75-35-4	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	=	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	-
2,2-Dichloropropane	594-20-7	-	< 1	-
cis 1,2-Dichloroethene	156-59-2	-	< 1	-
Bromochloromethane	74-97-5	-	< 1	-
Chloroform	67-66-3	=	< 1	-
1,1,1-Trichloroethane	71-55-6	-	< 1	-
Carbon Tetrachloride	56-23-5	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	-
Benzene	71-43-2	=	< 1	-
1,2-Dichloroethane	107-06-2	-	< 1	-
Trichloroethene	79-01-6	-	< 5	-
1,2-Dichloropropane	78-87-5	-	< 1	-
Dibromomethane	74-95-3	-	< 1	-
Bromodichloromethane	75-27-4	-	< 1	-
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-
Toluene	108-88-3	-	< 1	-
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-
1,1,2-Trichloroethane	79-00-5	-	< 1	-
Tetrachloroethene	127-18-4	-	< 5	-
1,3-Dichloropropane	142-28-9	-	< 1	-
Dibromochloromethane	124-48-1	-	< 1	-
1,2-Dibromoethane	106-93-4	-	< 1	-
Chlorobenzene	108-90-7	-	< 1	-
Ethylbenzene	100-41-4	-	< 1	-
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-
m and p-Xylene	108-38-3/106-42-3	-	< 1	-
o-Xylene	95-47-6	_	< 1	-

Directory/Quant file:	1224VOC.MS8\	Initial Calibration	Matrix:	Water
Date Booked in:	22-Dec-15		Method:	Headspace
Date Analysed:	24-Dec-15		Multiplier:	1
Operator:	PR		Position:	13

Target Compounds	CAS#	R.T. (min.)	Concentration µg/l	% Fit
Styrene	100-42-5	-	< 1	1
Bromoform	75-25-2	-	< 1	•
iso-Propylbenzene	98-82-8	-	< 1	-
1,1,2,2-Tetrachloroethane	79-34-5 *	-	< 1	1
Propylbenzene	103-65-1	-	< 1	-
Bromobenzene	108-86-1	-	< 1	1
1,2,3-Trichloropropane	96-18-4	-	< 1	•
2-Chlorotoluene	95-49-8	-	< 1	1
1,3,5-Trimethylbenzene	108-67-8	-	< 1	1
4-Chlorotoluene	106-43-4	-	< 1	-
tert-Butylbenzene	98-06-6	-	< 1	-
1,2,4-Trimethylbenzene	95-63-6	-	< 1	-
sec-Butylbenzene	135-98-8	-	< 1	-
p-Isopropyltoluene	99-87-6	-	< 1	-
1,3-Dichlorobenzene	541-73-1	-	< 1	-
1,4-Dichlorobenzene	106-46-7	-	< 1	-
n-Butylbenzene	104-51-8	-	< 1	-
1,2-Dichlorobenzene	95-50-1	-	< 5	-
1,2-Dibromo-3-chloropropane	96-12-8 *	-	< 5	-
1,2,4-Trichlorobenzene	120-82-1	-	< 5	-
Hexachlorobutadiene	87-68-3	-	< 5	-
Naphthalene	91-20-3	-	< 5	-
1,2,3-Trichlorobenzene	87-61-6	-	< 5	-

Compounds marked * are not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	3.32	106	Dibromofluoromethane	1
1,4-Difluorobenzene	3.69	103	Toluene-d8	101
Chlorobenzene-d5	4.85	107	Bromofluorobenzene	90
1,4-Dichlorobenzene-d4	5.65	89		

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling.

Where individual results are flagged see report notes for status.

Volatile Organic Compounds by HSA-GCMS

UKAS accredited?: No

Customer and Site Details: ESG Doncaster: A63 Castle Street

Sample Details: WS404 ES 2 1.10

LIMS ID Number: EX1649670 Job Number: W21_1674

o-Xylene

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min.)	μg/l	
Dichlorodifluoromethane	75-71-8	-	< 1	-
Chloromethane	74-87-3	-	< 1	-
Vinyl Chloride	75-01-4	-	< 1	-
Bromomethane	74-83-9	-	< 5	-
Chloroethane	75-00-3	-	< 5	-
Trichlorofluoromethane	75-69-4	-	< 1	-
1,1-Dichloroethene	75-35-4	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	-	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	-
2,2-Dichloropropane	594-20-7	-	< 1	-
cis 1,2-Dichloroethene	156-59-2	-	< 1	-
Bromochloromethane	74-97-5	-	< 1	-
Chloroform	67-66-3	-	< 1	-
1,1,1-Trichloroethane	71-55-6	-	< 1	-
Carbon Tetrachloride	56-23-5	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	-
Benzene	71-43-2	-	< 1	-
1,2-Dichloroethane	107-06-2	-	< 1	-
Trichloroethene	79-01-6	-	< 5	-
1,2-Dichloropropane	78-87-5	-	< 1	-
Dibromomethane	74-95-3	-	< 1	-
Bromodichloromethane	75-27-4	-	< 1	-
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-
Toluene	108-88-3	-	< 1	-
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-
1,1,2-Trichloroethane	79-00-5	-	< 1	-
Tetrachloroethene	127-18-4	-	< 5	-
1,3-Dichloropropane	142-28-9	-	< 1	-
Dibromochloromethane	124-48-1	-	< 1	-
1,2-Dibromoethane	106-93-4	-	< 1	-
Chlorobenzene	108-90-7	-	< 1	-
Ethylbenzene	100-41-4	-	< 1	-
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-
m and p-Xylene	108-38-3/106-42-3	-	< 1	-

95-47-6

1224 / 00.1/136	Illiliai Calibration	Matrix.	vvalei
22-Dec-15		Method:	Headspace
24-Dec-15		Multiplier:	1
PR		Position:	14
	22-Dec-15 24-Dec-15	22-Dec-15 24-Dec-15	22-Dec-15 Method: 24-Dec-15 Multiplier:

Target Compounds	CAS#	R.T. (min.)	Concentration µg/l	% Fit
Styrene	100-42-5	-	< 1	1
Bromoform	75-25-2	-	< 1	•
iso-Propylbenzene	98-82-8	-	< 1	-
1,1,2,2-Tetrachloroethane	79-34-5 *	-	< 1	1
Propylbenzene	103-65-1	-	< 1	-
Bromobenzene	108-86-1	-	< 1	1
1,2,3-Trichloropropane	96-18-4	-	< 1	•
2-Chlorotoluene	95-49-8	-	< 1	1
1,3,5-Trimethylbenzene	108-67-8	-	< 1	1
4-Chlorotoluene	106-43-4	-	< 1	-
tert-Butylbenzene	98-06-6	-	< 1	-
1,2,4-Trimethylbenzene	95-63-6	-	< 1	-
sec-Butylbenzene	135-98-8	-	< 1	-
p-Isopropyltoluene	99-87-6	-	< 1	-
1,3-Dichlorobenzene	541-73-1	-	< 1	-
1,4-Dichlorobenzene	106-46-7	-	< 1	-
n-Butylbenzene	104-51-8	-	< 1	-
1,2-Dichlorobenzene	95-50-1	-	< 5	-
1,2-Dibromo-3-chloropropane	96-12-8 *	-	< 5	-
1,2,4-Trichlorobenzene	120-82-1	-	< 5	-
Hexachlorobutadiene	87-68-3	-	< 5	-
Naphthalene	91-20-3	-	< 5	-
1,2,3-Trichlorobenzene	87-61-6	-	< 5	-

Compounds marked * are not UKAS accredited "M" denotes that % fit has been manually interpreted

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	3.32	96	Dibromofluoromethane	98
1,4-Difluorobenzene	3.69	92	Toluene-d8	100
Chlorobenzene-d5	4.85	95	Bromofluorobenzene	90
1,4-Dichlorobenzene-d4	5.65	80		

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling.

Where individual results are flagged see report notes for status.

< 1

CEN Leachate 10:1 Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W211674

Customer Site Report No **ESG Doncaster** A63 Castle Street

W211674

Consignment No S52596 Date Logged 22-Dec-2015

Report Due 31-Dec-2015

			MethodID	Calc_HD	CUSTSERV	GROHSA	ICPMSW											ICPWATVAR			KONENS
ID Number	Description	Matrix Type	Sampled	Total Hardness as CaCO3 (CALC)	Report A (CEN)C	GRO-HSA GCFID (AA)	Nickel as Ni MS (Dissolved)	Chromium as Cr MS (Dissolved)	Cadmium as Cd MS (Dissolved)	Copper as Cu MS (Dissolved)	Lead as Pb MS (Dissolved)	Zinc as Zn MS (Dissolved)	Arsenic as As MS (Dissolved)	Mercury as Hg MS (Dissolved)	Selenium as Se MS (Dissolved)	Vanadium as V MS (Dissolved)	Antimony as Sb MS (Dissolved)	Calcium as Ca (Dissolved) VAR	Magnesium as Mg (Dissolved) VAR	Beryllium as Be (Dissolved) VAR	Chloride as Cl (Kone)
				✓			✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓
	WS401 1.60	Laboratory Produced Leachate	22/12/15																		
EX/1649669	WS402 0.10	Laboratory Produced Leachate	22/12/15																		
EX/1649670	WS404 1.10	Laboratory Produced Leachate	22/12/15																		

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- С Headspace present in the sample container
- D E F The sampling date was not supplied so holding time may be compromised - applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

CEN Leachate 10:1 Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W211674

Customer Site **Report No** **ESG Doncaster** A63 Castle Street Consignment No S52596 Date Logged 22-Dec-2015

W211674

Report Due 31-Dec-2015

									16 31-												
			MethodID	KONENS		LeachPrep	PAHMSW	PHEHPLCVL	SFAPI		SVOCSW	TPHFID-Si	VOCHSAW								WSLM3
ID Number	Description	Matrix Type	Sampled	Ammoniacal Nitrogen (Kone)	Chromium VI. as Cr (Kone)	Leachate Prep	PAH GC-MS (16)	Phenols by HPLC (Low Level)	Cyanide (Total) as CN SFA	Phenol Index SFA	SVOC	TPH by GC(Si)	BTEX Analysis HSA GC-MS	Benzene (μg/l)	Toluene (μg/l)	Ethyl Benzene (µg/l)	Xylenes (μg/l)	m/p Xylenes (μg/l)	o Xylene (μg/l)	VOC HSA-GCMS	pH units
	1			✓	✓				✓	✓		✓								!	✓
	WS401 1.60	Laboratory Produced Leachate	22/12/15																		
EX/1649669	WS402 0.10	Laboratory Produced Leachate	22/12/15																		
EX/1649670	WS404 1.10	Laboratory Produced Leachate	22/12/15																		

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
 - The sample was received without the correct preservation for this analysis
- С Headspace present in the sample container
- D E F The sampling date was not supplied so holding time may be compromised - applicable to all analysis
- Sample processing did not commence within the appropriate holding time
- Sample processing did not commence within the appropriate handling time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number : W/EXR/211674

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
VOCHSAW	EX1649668 EX164669	Due to matrix interference, the Surrogate (Dibromofluoromethane) recovery for this Test is below the required QMS specification. This has been confirmed by testing the pH of the sample which was above pH7.0. Surrogate is known to degrade in alkaline samples. All other Laboratory Process Controls meet the requirements of the QMS. These circumstances should be taken into consideration when utilising the data
PAHMSW	EX1649670	Due to matrix interference, the Surrogate recovery for this Test is below the required QMS specification. All other Laboratory Process Controls meet the requirements of the QMS. These circumstances should be taken into consideration when utilising the data.

Report Number: W/EXR/211674

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	·
Water	Calc_HD	As Received	Calculation based on Dissolved metals analysis by ICPOES
Water	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons (GRO) by Headspace FID
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	PAHMSW	As Received	Determination of PolyAromatic Hydrocarbons in water by pentane
			extraction GCMS quantitation
Water	PHEHPLCVL	As Received	Determination of Phenols by HPLC
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	SVOCSW	As Received	Determination of Semi Volatile Organic Compounds (SVOC) by
			DCM extraction followed by GCMS detection
Water	TPHFID-Si	As Received	Determination of speciated pentane extractable hydrocarbons in water by GCFID
Water	VOCHSAW	As Received	Determination of Volatile Organics Compounds by Headspace GCMS
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- **\$\$** Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 26 of 26 EXR/211674 Ver. 1

Sample Descriptions

Client : ESG Doncaster
Site : A63 Castle Street
Report Number : W21_1674

Lab ID Number	Client ID	Description
		Description
EX/1649668	WS401 ES 3 1.60	Laboratory Produced Leachate Laboratory Produced Leachate Laboratory Produced Leachate
EX/1649669	WS402 ES 1 0.10	Laboratory Produced Leachate
EX/1649670	WS404 ES 2 1.10	Laboratory Produced Leachate

Appendix A Page 1 of 1 31/12/2015EXR/211674 Ver. 1

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

Deeside CH5 3US Tel: (01244) 528700

Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

Environmental Services Group Limited Askern Road Carcroft Doncaster South Yorkshire DN6 8DG

Attention: Neil Cooke

CERTIFICATE OF ANALYSIS

 Date:
 31 December 2015

 Customer:
 H_ESG_DON

 Sample Delivery Group (SDG):
 151215-53

 Your Reference:
 A5085

Location: A63 Castle Street GI

Report No: 343994

We received 2 samples on Tuesday December 15, 2015 and 2 of these samples were scheduled for analysis which was completed on Thursday December 31, 2015. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Operations Manager

Validated

 SDG:
 151215-53

 Job:
 H_ESG_DON-2

 Client Reference:
 A5085

SG_DON-2 Customer: Attention:

A63 Castle Street GI

Environmental Services Group Limited Neil Cooke

Order Number: Report Number: Superseded Report: A17150 343994

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
12645683	BH402	ES1	0.60	09/12/2015
12645682	BH404	ES1	0.80	08/12/2015

Only received samples which have had analysis scheduled will be shown on the following pages.

Location:

Validated

151215-53 A63 Castle Street GI SDG: Location: Job:

A17150 Order Number: H_ESG_DON-2 Customer: **Environmental Services Group Limited** 343994 Report Number: Client Reference: A5085 Attention: Neil Cooke Superseded Report:

Client Reference: A5085			Attention	:	- 1	۷e	il C	coc	١k
SOLID Results Legend X Test		Lab Sample I	No(s)			12645683			12645682
No Determination Possible	;	Custome Sample Refer				BH402			BH404
		AGS Refere	nce			ES1			ES1
		Depth (m)			0.60	0.80		0.80
		Containe	r	1kg TUB	250g Amber Jar (AL	60g VOC (ALE215)	1kg TUB	250g Amber Jar (AL	60a VOC (ALE215)
ANC at pH4 and ANC at pH 6	All		NDPs: 0 Tests: 2		x			X	
Anions by Kone (w)	All		NDPs: 0 Tests: 2	X			X		
Asbestos ID in Solid Samples	All		NDPs: 0 Tests: 2	x			X		
Boron Water Soluble	All		NDPs: 0 Tests: 2		x			X	
CEN Readings	All		NDPs: 0 Tests: 2	X			X		
Cyanide Comp/Free/Total/Thiocyanate	All		NDPs: 0 Tests: 2	X			X		
Dissolved Metals by ICP-MS	All		NDPs: 0 Tests: 2	X			X		
Dissolved Organic/Inorganic Carbon	All		NDPs: 0 Tests: 2	X			X		
EPH CWG (Aliphatic) GC (S)	All		NDPs: 0 Tests: 2		X			X	
EPH CWG (Aromatic) GC (S)	All		NDPs: 0 Tests: 2		X			X	
Fluoride	All		NDPs: 0 Tests: 2	X			X		
GRO by GC-FID (S)	All		NDPs: 0 Tests: 2			X			X
Loss on Ignition in soils	All		NDPs: 0 Tests: 2		X			X	
Mercury Dissolved	All		NDPs: 0 Tests: 2	X			X		
Metals in solid samples by OES	All		NDPs: 0 Tests: 2		X			X	

Validated

A17150 SDG: 151215-53 Location: A63 Castle Street GI Order Number: H_ESG_DON-2 343994 Job: **Customer: Environmental Services Group Limited** Report Number: Superseded Report:

ES1

0.60

ES1

0.80

Client Reference: A5085 Attention: Neil Cooke **SOLID** 12645682 Results Legend Lab Sample No(s) X Test No Determination Possible Customer BH402 BH404 Sample Reference

_	4	_ :	

NDPs: 0 Tests: 2

NDPs: 0 Tests: 2

NDPs: 0 Tests: 2

NDPs: 0 Tests: 2

AGS Reference

Depth (m)

			_				
	Containe	1kg TUB	250g Amber Jar (AL	60g VOC (ALE215)	1kg TUB	ZOUG AITIDEL Jal (AL	
Mineral Oil	All	NDPs: 0 Tests: 2	F	X)
PAH Value of soil	All	NDPs: 0 Tests: 2		x			
PCBs by GCMS	All	NDPs: 0 Tests: 2		^)
			L	X)
pH	All	NDPs: 0 Tests: 2					
Dharala hii IIDI O (O)	All		X			X	
Phenols by HPLC (S)	All	NDPs: 0 Tests: 2	L				L
			X		L	X	
Phenols by HPLC (W)	All	NDPs: 0					

All

All

All

All

Sample description

Total Dissolved Solids

Total Organic Carbon

TPH CWG GC (S)

Validated

151215-53 SDG: Job: H_ESG_DON-2 Client Reference: A5085

Location: **Customer:** Attention:

A63 Castle Street GI **Environmental Services Group Limited**

Neil Cooke

Order Number: Report Number: A17150 343994

Superseded Report:

Sample Descriptions

Grain Sizes

ve	ry fine	<0.	063mm	fine	0.063m	nm - 0.1mm	me	edium	0.1mm	n - 2mm	coai	rse	2mm - 1	0mm	very coa	rse	>10mi	
La	ab Sample	No(s)	Custom	er Sample Re	ef.	Depth (m)		Co	lour	Descrip	tion	G	rain size	Inclu	ısions	Inc	lusions 2	
	1264568	33		BH402		0.60		Dark	Brown	Sandy L	.oam	0.	1 - 2 mm	Crushe	ed Brick	Ve	getation	
	1264568	32		BH404		0.80		Dark	Brown	Sandy C Loan	•	0.06	3 - 0.1 mm	Sto	ones	Ve	getation	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Validated

A17150

151215-53 A63 Castle Street GI SDG: Location:

Order Number: Job: H_ESG_DON-2 **Customer: Environmental Services Group Limited** Report Number: 343994

Client Reference: A5085 Attention: Neil Cooke Superseded Report: Customer Sample R BH404 BH402 ISO17025 accredited mCERTS accredited. Aqueous / settled sample Depth (m) 0.60 0.80 diss.filt Dissolved / filtered sample Total / unfiltered sample Sample Type Soil/Solid Soil/Solid Date Sampled 09/12/2015 08/12/2015 % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within Sample Time 15/12/2015 15/12/2015 SDG Ref 151215-53 151215-53 samples aren't corrected for the recovery Trigger breach confirmed 12645683 12645682 Lab Sample No.(s) ES1 Sample deviation (see appendix) ES1 AGS Reference Component LOD/Units Method Moisture Content Ratio (% PM024 28 18 of as received sample) Loss on ignition <0.7 % TM018 6.78 6.88 М М Mineral oil >C10-C40 TM061 12 7.57 <1 mg/kg @ Mineral Oil Surrogate % % TM061 85.7 89 recovery** Phenol <0.01 TM062 (S) <0.01 <0.01 @ M mg/kg @ M <0.01 <0.01 Cresols TM062 (S) < 0.01 mg/kg @ M @ M TM062 (S) < 0.015 < 0.015 **Xylenols** < 0.015 mg/kg @ M @ M Phenols, Total Detected < 0.035 TM062 (S) < 0.035 <0.035 monohydric mg/kg @ M @ M Organic Carbon, Total <0.2 % TM132 1.51 1.4 М M рΗ 1 pH TM133 8.79 8.28 Units М М Cyanide, Total <1 mg/kg TM153 <1 <1 M Μ <3 µg/kg PCB congener 28 TM168 <3 <3 M M PCB congener 52 TM168 <3 <3 <3 µg/kg M Μ PCB congener 101 TM168 <3 <3 µg/kg <3 Μ Μ PCB congener 118 TM168 <3 <3 <3 µg/kg Μ Μ PCB congener 138 TM168 <3 µg/kg <3 <3 Μ Μ PCB congener 153 <3 µg/kg TM168 <3 <3 М M PCB congener 180 <3 µg/kg TM168 <3 <3 M М Sum of detected PCB 7 <21 µg/kg TM168 <21 <21 Congeners Antimony <0.6 TM181 2.26 1.57 # # mg/kg Arsenic <0.6 TM181 18.6 16.1 mg/kg M M Beryllium TM181 1.43 1.41 < 0.01 mg/kg Μ Μ Cadmium <0.02 TM181 0.237 0.4

Chromium

Manganese

Molybdenum

Mercury

Nickel

Selenium

Vanadium

Copper

Lead

Μ

M

Μ

M

M

M

#

Μ

#

#

33.5

29.2

86.6

807

<0.14

0.808

34.5

<1

48.8

Μ

Μ

М

Μ

M

M

#

M

29.8

27.4

154

700

<0.14

1.09

34.3

<1

50.7

mg/kg

< 0.9

mg/kg

<14

mg/kg

< 0.7

mg/kg

< 0.13

ma/ka

<0.14

mg/kg

<0.1

mg/kg

<0.2

mg/kg

<1 mg/kg

< 0.2

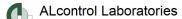
mg/kg

TM181

TM181

TM181

TM181


TM181

TM181

TM181

TM181

TM181

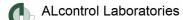
Validated

A17150 SDG: 151215-53 Location: A63 Castle Street GI Order Number: H_ESG_DON-2 **Environmental Services Group Limited** 343994 Job: **Customer:** Report Number:

Client Reference: A5085 Attention: Neil Cooke Superseded Report:

Results Legend # ISO17025 accredited.	Cus	stomer Sample R	BH402	BH404		
M mCERTS accredited.						
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.60	0.80 Soil/Solid		
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Soil/Solid 09/12/2015	Soil/Solid 08/12/2015		
** % recovery of the surrogate standa check the efficiency of the method	ard to	Sample Time				
results of individual compounds w	ithin	Date Received SDG Ref	15/12/2015 151215-53	15/12/2015 151215-53		
samples aren't corrected for the re (F) Trigger breach confirmed	covery La	ab Sample No.(s)	12645683	12645682		
1-5&+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method	ES1	ES1		
Zinc	<1.9	TM181	108	122		
	mg/kg		M	М		
ANC @ pH 4	<0.03	TM182	1.07	0.351		
	mol/kg					
ANC @ pH 6	<0.03	TM182	0.252	0.109		
Polyaromatic	mol/kg <10	TM213	<10	<10		
hydrocarbons, Total 17	mg/kg	1101213	10	110		
Boron, water soluble	<1 mg/kg	TM222	<1	<1		
			M	М		

Validated


151215-53 SDG: Job:

Location: A63 Castle Street GI H_ESG_DON-2 Customer:

Environmental Services Group Limited Attention: Neil Cooke

Order Number: Report Number: A17150 343994

# ISO17025 accredited.	3H402				
# ISO17025 accredited.	3H402				
		BH404			
* Subcontracted test. Date Sampled 09/ ** % recovery of the surrogate standard to Sample Time	0.60 oil/Solid /12/2015	0.80 Soil/Solid 08/12/2015			
results of individual compounds within samples aren't corrected for the recovery SDG Ref	/12/2015 1215-53 2645683	15/12/2015 151215-53 12645682			
1-5&+§@ Sample deviation (see appendix) AGS Reference	ES1	ES1			
Component LOD/Units Method GRO Surrogate % % TM089	80	57			
recovery**					
Corrected)		<44 M	M		
Methyl tertiary butyl ether <5 μg/kg TM089 (MTBE)	<5	<5 #	#		
Benzene <10 μg/kg TM089	<10	<10 M	M		
Toluene <2 μg/kg TM089	<2 N	<2 M	М		
Ethylbenzene <3 μg/kg TM089	<3	<3 M	М		
m,p-Xylene <6 μg/kg TM089	<6	<6 M	М		
o-Xylene <3 μg/kg TM089	<3	<3 M	М		
sum of detected mpo <9 µg/kg TM089 xylene by GC	<9	<9			
	<24	<24			
	<10	<10			
Aliphatics >C6-C8 <10 μg/kg TM089	<10	<10			
Aliphatics >C8-C10 <10 µg/kg TM089	<10	<10			
Aliphatics >C10-C12 <10 μg/kg TM089	<10	<10			
Aliphatics >C12-C16 <100 TM173 2 μg/kg	2500	598			
	8950	163			
	7700	7730			
	2130	<100			
	31300	8490			
Aromatics >EC5-EC7 <10 μg/kg TM089	<10	<10			
Aromatics >EC7-EC8 <10 μg/kg TM089	<10	<10			
Aromatics >EC8-EC10 <10 μg/kg TM089	<10	<10			
Aromatics >EC10-EC12 <10 μg/kg TM089	<10	<10			
Aromatics >EC12-EC16 <100 TM173 2 μg/kg	2420	<100			
	9600	209			
	2400	7190			
	7100	1010			
	6110	<100			
	02000	8410			
100	33000	16900			
Paris					

Validated

151215-53 A17150 SDG: Location: A63 Castle Street GI Order Number: H_ESG_DON-2 **Environmental Services Group Limited** 343994 Job: **Customer:** Report Number: Client Reference: A5085

Attention: Neil Cooke Superseded Report:

Asbestos Identification - Solid Samples

		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BH402 ES 1 0.60 SOLID 09/12/2015 00:00:00 21/12/2015 14:12:35 151215-53 12645683 TM048	29/12/2015	Rebecca Rawlings	·	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BH404 ES 1 0.80 SOLID 08/12/2015 00:00:00 21/12/2015 14:05:24 151215-53 12645682 TM048	29/12/2015	Rebecca Rawlings	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

Validated

REF: BS EN 12457/2

151215-53 SDG:

Job: H_ESG_DON-2 Client Reference: A5085

A63 Castle Street GI Location:

Customer: Environmental Services Group Limited Attention:

Neil Cooke

Order Number: Report Number: Superseded Report:

A17150 343994

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS

Client Reference Mass Sample taken (kg) 0.110 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

A63 Castle Street GI Site Location **Natural Moisture Content (%)** 22 82 **Dry Matter Content (%)**

> 500 100

Case **SDG** 151215-53 Lab Sample Number(s) 12645682 **Sampled Date** 08-Dec-2015 **Customer Sample Ref.** BH404 ES1 Depth (m) 0.80

Inert Waste Landfill	Stable Non-reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
3	5	6
-	-	10
6	-	-

Landfill Waste Acceptance Criteria Limits

Solid Waste Analysis	Result
Total Organic Carbon (%)	1.27
Loss on Ignition (%)	6.88
Sum of BTEX (mg/kg)	<0.024
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg)	7.57
PAH Sum of 17 (mg/kg)	<10
pH (pH Units)	8.27
ANC to pH 6 (mol/kg)	0.109
ANC to pH 4 (mol/kg)	0.351
	1

Eluate Analysis	C ₂ Conc ⁿ in 1	.0:1 eluate (mg/l)	A 2 10:1 conc	ⁿ leached (mg/kg)	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg			
	Result	Limit of Detection	Result	Limit of Detection	_			
Arsenic	0.0141	<0.00012	0.141	0.141 <0.0012		2	25	
Barium	0.00177	<0.00003	0.0177	<0.0003	20	100	300	
Cadmium	<0.0001	<0.0001	<0.001	<0.001	0.04	1	5	
Chromium	0.00115	<0.00022	0.0115	<0.0022	0.5	10	70	
Copper	0.00295	<0.00085	0.0295	<0.0085	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	0.00175	<0.00024	0.0175	<0.0024	0.5	10	30	
Nickel	0.00125	<0.00015	0.0125	<0.0015	0.4	10	40	
Lead	0.000273	<0.00002	0.00273	<0.0002	0.5	10	50	
Antimony	0.000519	<0.00016	0.00519	<0.0016	0.06	0.7	5	
Selenium	<0.00039	<0.00039	<0.0039	<0.0039	0.1	0.5	7	
Zinc	0.00236	<0.00041	0.0236	<0.0041	4	50	200	
Chloride	12.2	<2	122	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000	
Total Dissolved Solids	86	<5	860	<50	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	3.09	<3	30.9	<30	500	800	1000	

Leach Test Information

5

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

31/12/2015 13:27:03

13:26:56 31/12/2015

Validated

REF: BS EN 12457/2

151215-53 SDG: Job: H_ESG_DON-2 Client Reference:

Customer: A5085 Attention:

Location:

A63 Castle Street GI **Environmental Services Group Limited** Order Number: Report Number: A17150 343994

Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

Neil Cooke

WAC ANALYTICAL RESULTS

Client Reference Mass Sample taken (kg) 0.125 Mass of dry sample (kg) 0.175 Particle Size <4mm >95%

A63 Castle Street GI Site Location **Natural Moisture Content (%)** 38.9 72 **Dry Matter Content (%)**

Case **SDG** 151215-53 Lab Sample Number(s) 12645683 **Sampled Date** 09-Dec-2015 **Customer Sample Ref.** BH402 ES1 Depth (m) 0.60

Inert Waste Landfill	Stable Non-reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
3	5	6
3	5	0
-	-	10
6	-	-
1	-	-
500	-	-
100	-	-
-	<6	-
	_	_

Landfill Waste Acceptance Criteria Limits

1 51	
1.51	
6.78	
<0.024	
<0.021	
12	
<10	
8.83	
0.252	
1.07	
	<0.024 <0.021 12 <10 8.83 0.252

Eluate Analysis	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A2 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection	_		
Arsenic	0.000971	<0.00012	0.00971	<0.0012	0.5	2	25
Barium	0.00797	<0.00003	0.0797	<0.0003	20	100	300
Cadmium	<0.0001	<0.0001	<0.001	<0.001	0.04	1	5
Chromium	0.00205	<0.00022	0.0205	<0.0022	0.5	10	70
Copper	0.00297	<0.00085	0.0297	<0.0085	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	0.0058	<0.00024	0.058	<0.0024	0.5	10	30
Nickel	0.000964	<0.00015	0.00964	<0.0015	0.4	10	40
Lead	0.000292	<0.00002	0.00292	<0.0002	0.5	10	50
Antimony	0.000365	<0.00016	0.00365	<0.0016	0.06	0.7	5
Selenium	0.00119	<0.00039	0.0119	<0.0039	0.1	0.5	7
Zinc	0.00164	<0.00041	0.0164	<0.0041	4	50	200
Chloride	23.6	<2	236	<20	800	15000	25000
Fluoride	0.704	<0.5	7.04	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	183	<5	1830	<50	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	4.52	<3	45.2	<30	500	800	1000

Leach Test Information

Date Prepared	22-Dec-2015
pH (pH Units)	8.57
Conductivity (µS/cm)	228.00
Temperature (°C)	18.90
Volume Leachant (Litres)	0.865

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

31/12/2015 13:27:03

13:26:56 31/12/2015

Validated

A17150 SDG: 151215-53 Location: A63 Castle Street GI Order Number: H_ESG_DON-2 **Environmental Services Group Limited** 343994 Job: **Customer:** Report Number: Client Reference: A5085 Attention: Neil Cooke Superseded Report:

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogat Correcte
ASB_PREP			Sample	Correcte
PM001		Preparation of Samples for Metals Analysis		
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step		
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition		
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM062 (S)	National Grid Property Holdings Methods for the Collection & Analysis of Samples from National Grid Sites version 1 Sec 3.9	Determination of Phenols in Soils by HPLC		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water		
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the Skalar SANS+ System Segmented Flow Analyser		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM173	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID		
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES		
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM213	In-house Method	Rapid Determination of PAHs by GC-FID		
TM222	In-House Method	Determination of Hot Water Soluble Boron in Soils (10:1 Water:soil) by IRIS Emission Spectrometer		
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC		

Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

Validated

A17150 SDG: 151215-53 Location: A63 Castle Street GI Order Number: H_ESG_DON-2 **Environmental Services Group Limited** 343994 Job: **Customer:** Report Number: Client Reference: A5085 Attention: Neil Cooke Superseded Report:

Test Completion Dates

	ies
12645683	12645682
BH402	BH404
ES1	ES1
0.60	0.80
SOLID	SOLID
23-Dec-2015	23-Dec-2015
29-Dec-2015	22-Dec-2015
29-Dec-2015	29-Dec-2015
24-Dec-2015	24-Dec-2015
22-Dec-2015	18-Dec-2015
23-Dec-2015	21-Dec-2015
23-Dec-2015	23-Dec-2015
24-Dec-2015	23-Dec-2015
24-Dec-2015	22-Dec-2015
23-Dec-2015	23-Dec-2015
23-Dec-2015	23-Dec-2015
24-Dec-2015	24-Dec-2015
22-Dec-2015	22-Dec-2015
30-Dec-2015	31-Dec-2015
29-Dec-2015	22-Dec-2015
23-Dec-2015	24-Dec-2015
24-Dec-2015	21-Dec-2015
29-Dec-2015	29-Dec-2015
24-Dec-2015	20-Dec-2015
30-Dec-2015	30-Dec-2015
24-Dec-2015	24-Dec-2015
29-Dec-2015	22-Dec-2015
18-Dec-2015	17-Dec-2015
24-Dec-2015	22-Dec-2015
24-Dec-2015	24-Dec-2015
30-Dec-2015	30-Dec-2015
	BH402 ES1 0.60 SOLID 23-Dec-2015 29-Dec-2015 29-Dec-2015 24-Dec-2015 23-Dec-2015 23-Dec-2015 24-Dec-2015 24-Dec-2015 24-Dec-2015 23-Dec-2015 24-Dec-2015 24-Dec-2015 22-Dec-2015 24-Dec-2015

13:26:56 31/12/2015

Page 13 of 14

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

SDG:151215-53Location:A63 Castle Street GIOrder Number:A17150Job:H_ESG_DON-2Customer:Environmental Services Group LimitedReport Number:343994Client Reference:A5085Attention:Neil CookeSuperseded Report:

Appendix General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. Alcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP -No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.
- 11. Results relate only to the items tested
- 12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 14. **Product analyses** -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- $16. \quad Total \quad of \quad 5 \quad speciated \quad phenols \quad by \quad HPLC \quad includes \quad Phenol, \quad 2,3,5-Trimethyl \quad Phenol, \\ 2-Isopropylphenol, \quad Cresols \quad and \quad Xylenols \quad (as \quad detailed in 15).$
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5 -C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Sample Deviations

1	Container with Headspace provided for volatiles analysis	
2	Incorrect container received	
3	Deviation from method	
4	Holding time exceeded before sample received	
5	Samples exceeded holding time before presevation was performed	
§	Sampled on date not provided	
•	Sample holding time exceeded in laboratory	
@	Sample holding time exceeded due to sampled on date	
&	Sample Holding Time exceeded - Late arrival of instructions.	

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	White Asbestos
Amoste	BrownAsbestos
Orodobite	Blue Asbestos
Fibrous Adinoite	-
Fibrous Anthophylite	-
Fibrous Trendile	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

APPENDIX H PHOTOGRAPHS

Rotary Cores
Split and Described Samples

Plate 1 and 2 Photographs 1 to 173

Photographs

Project A63 CASTLE STREET IMPROVEMENT – MAIN GI

Project No. A5085-15
Carried out for Balfour Beatty

Photographs

Project A63 CASTLE STREET IMPROVEMENT – MAIN GI

Project No. A5085-15
Carried out for Balfour Beatty

Notes:

MAIN GI

A5085-15

BH No. 402

UT6

2-45 To 2-90 M

MAIN GI A5085-15

BH No. 402

UT 16

8.40 To 9.05 M

MAIN GI

A5085-15

BH No. 402 UT20

9:65 To 10:10 M

A63 CASTLE
STREET HULL
MAIN GI

A5085-15

Environmental Scientifics Group

BH No. 402

UT22

10:30 To 10:75 M

MAIN GI

A5085-15

BH No. 402

EUT24

10:95 To 11:40 M

MAIN GI A5085-15 BH No. 402

UT26

11:60 To 12:05 M

BH No. 402

MAIN GI

A5085-15

UT28

12:25 To 12:70 M

BH No. 402

MAIN GI A5085-15

Environmental Scientifics Group

EUT30

13:30 To 13:75 M

A63 CASTLE
STREET HULL
MAIN GI

A5085-15

BH No. 402

UT32

13:95 To 14:40 M

MAIN GI A5085-15

BH No. 402

UT34

14-60-To 15-05 M

BH No. 402

MAIN GI

A5085-15

UT36

15-25 To 15-70 M

MAIN GI A5085-15

UT38

BH No. 402

15:90 To 16:35 M

MAIN GI

A5085-15

BH No. 402 UT40

16-55 To 17-00 M

MAIN GI A5085-15

BH No. 402 UT 42

17-20-To 17-65 M

MAIN GI

A5085-15

BH No. 402 UT44

17:85 To 18:30 M

MAIN GI A5085-15

UT46

BH No. 402

18:50 To 18:95 M

BH No. 402

MAIN GI

A5085-15

UT48

19:10 To 19:55 M

MAIN GI A5085-15

BH No. 402

EUT50

19:75 To 20:20 M

MAIN GI

A5085-15

BH No. 403

UT4

1-65 To 2-10 M

MAIN GI A5085-15

BH No. 403 LUTG

2:30 To 2:75 M

MAIN GI

A5085-15

BH No. 403 UT 8

2-95 To 3-40 M

A63 CASTLE STREET HULL MAIN GI

A5085-15

BH No. 403

8-65 To 9-30 M

MAIN GI A5085-15

BH No. 403

Environmental Scientifics Group

UT22

9-95 To 10-40 M

MAIN GI

A5085-15

BH No. 403

UT24

10-60 To 11-05 M

MAIN GI

A5085-15

UT27

BH No. 403

11:90 To 12:35 M

MAIN GI

A5085-15

BH No. 403 UT29

12-55 To 13-00 M

MAIN GI

A5085-15

BH No. 403

UT32

13:85 To 14:20 M

MAIN GI

A5085-15

BH No. 403 UT34

14-40 To 14-85 M

MAIN GI

A5085-15

Environmental Scientifics Group

BH No. 403 UT36

15:05 To 15:50 M

MAIN GI

A5085-15

BH No. 403 UT38

15:70 To 16:15 M

BH No. 403

MAIN GI

A5085-15

UT40

16:35 To 16:80 M

MAIN GI A5085-15

Environmental Scientifics Group

BH No. 403 UT 42

17-00-To 17-45 M

MAIN GI

A5085-15

BH No. 403 UT44

17-65 To 18-10 M

A63 CASTLE
STREET HULL
MAIN GI
A5

A5085-15

BH No. 403

UT46

18:30 To 18:75 M

MAIN GI A5085-15

BH No. 403

UT48

18:95 To 19:40 M

MAIN GI

A5085-15

BH No. 403 UT54

20-75 To 21-10 M

A63 CASTLE
STREET HULL
MAIN GI A5085-15

BH No. 404 UT3

1-50 TO 1-95 M

MAIN GI A5085-15

BH No. 404

P11

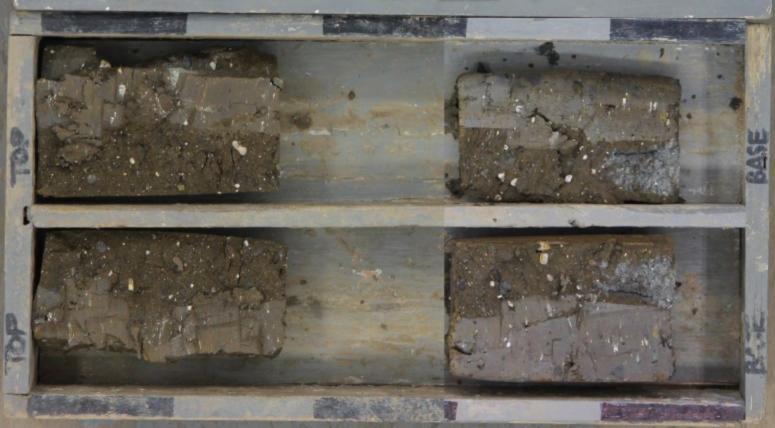
7.00 To 8.00 M

MAIN GI A5085-15

Environmental Scientifics Group

BH No. = 404

9:00 To 10:00 M


A63 CASTLE
STREET HULL
MAIN GI

A5085-15

BH No. 404 -UT26

11:50 To 11:95 M

MAIN GI A5085-15

BH No. 404 UT28

12:00 To 12:45 M

MAIN GI A5085-15

BH No. 404

UT30

12:50 To 12:95 M

BH No. 404

MAIN GI

A5085-15

Environmental Scientifics Group

UT32

13:00 To 13:45 M

BH No. 404

MAIN GI

A5085-15

UT36

14:00 To 14:45 M

MAIN GI

A5085-15

Environmental Scientifics Group

UT38

BH No. 404

14.50 To 14.95 M

BH No. 404

MAIN GI A5085-15

UT40=

-15:00-To-15:45 M

MAIN GI

A5085-15

BH No. 404 UT42

15.50 To 15.95 M

MAIN GI A5085-15

BH No. 404

EUT44

16:00 To 16:45 M

BH No. 404

MAIN GI

A5085-15

UT50

17:50 To 17:95 M

BH No. 404

MAIN GI

A5085-15

UT54

18:50 To 18:95 M

A63 CASTLE
STREET HULL
MAIN GI

A5085-15

BH No. 404 UT56

19:00 To 19:45 M

MAIN GI A5085-15

BH No. = 404 UT 58

19-50-To 19-95 M

BH No. 404

MAIN GI A5085-15

UT60

20-00-To 20-45 M

MAIN GI A5085-15

BH No. 404 **UTI6**4

21-10-To 21-55 M

MAIN GI A5085-15

BH No. 404 UT 68

22-20-To 22-65 M

MAIN GI A5085-15

ESG 6 **Environmental Scientifics Group**

BH No. 405

LUT5

2.50 To 2.95 M

A63 CASTLE
STREET HULL
MAIN GI

A5085-15

BH No. = 405 = P8

4.00 To 5.00 M

BH No. 405

MAIN GI

A5085-15

UT21

10-50 To 10-95 M

BH No. 405

MAIN GI A5085-15

ESG Ø **Environmental Scientifics Group**

UT 27

12-00 To 12-45 M

MAIN GI A5085-15

Environmental Scientifics Group

BH No. 405 UT 29

12-50-To 12-95 M

MAIN GI

A5085-15

BH No. 405

UT31

13:00 To 13:45 M

MAIN GI

A5085-15

BH No. 405

EUT35

14:00 To 14:45 M

BH No. 405

MAIN GI

A5085-15

UT37

14.50 To 14.95 M

BH No. 405

MAIN GI A5085-15

UT39

15-00-To 15-45 M

MAIN GI A5085-15

BH No. = 405 UT 41

15-50-To 15-95 M

A63 CASTLE
STREET HULL
MAIN GI

A5085-15

BH No. 405 UT43

16:00 To 16:45 M

BH No. 405

MAIN GI A5085-15

ESG (**Environmental Scientifics Group**

EUT 45

16:50 To 16:95 M

A63 CASTLE STREET HULL MAIN GI A5085-15

ESG (**Environmental Scientifics Group**

UT48 BH No. 405

17:00 To 17:45 M

A63 CASTLE
STREET HULL
MAIN GI A5085-15

BH No. 405

UT52

18-50 To 18-95 M

A63 CASTLE
STREET HULL
MAIN GI A5085-15

BH No. 405

UT65

23-00 To 23-45 M

BH No. 406

MAIN GI

A5085-15

Environmental Scientifics Group

UT9

2:50 To 2:95 M

MAIN GI

A5085-15

BH No. = 406 UT11

3-00 To 3-45 M

MAIN GI A5085-15 ESG & ronmental Scientifics Group

BH No. 406 P13

3.50 TO 4.50 M

BH No. 406

MAIN GI

A5085-15

UT14

4:50 To 4:95 M

MAIN GI

A5085-15

BH No. 406

UT16

5:00 To 5:45 M

BH No. 406

MAIN GI

A5085-15

Environmental Scientifics Group

UT38

12:50 To 12:95 M

BH No. 406

MAIN GI A5085-15

UT40

13:00 To 13:45 M

A63 CASTLE
STREET HULL
MAIN GI

A5085-15

BH No. 406 UT43

13-50 To 13-95 M

BH No. 406

MAIN GI

A5085-15

Environmental Scientifics Group

UT45

14:00 To 14:45 M

BH No. 406

MAIN GI A5085-15

UT47

14:50 To 14:95 M

A63 CASTLE
STREET HULL
MAIN GI

A5085-15

BH No. 406

UT49

15:00 To 15:45 M

MAIN GI A5085-15

BH No. 406 - UT51

15-50 To 15-95 M



MAIN GI A5085-15

BH No. = 406 UT53

16:00 To 16:45 M

MAIN GI A5085-15

BH No. 406 UT55

16.50 TO 16.95 M

BH No. 406

MAIN GI

A5085-15

UT57

17-00 To 17-45 M

MAIN GI

A5085-15

Environmental Scientifics Group

BH No. 406 UT59

17:50 To 17:95 M

MAIN GI A5085-15

ESG & **Environmental Scientifics Group**

BH No. 406

UT61

18:00 To 18:45 M

MAIN GI A5085-15

ESG Environmental Scientifics Group

BH No. 406

UT63

18:50 To 18:95 M

BH No. 406

MAIN GI

A5085-15

UT65

19:00 To 19:45 M

MAIN GI

A5085-15

BH No. 406 UT67

19:50 To 19:95 M

BH No. 406

MAIN GI A5085-15

UT69

20-00 To 20-45 M

BH No. 406

MAIN GI A5085-15

ESG (**Environmental Scientifics Group**

UT74

21:50 To 21:95 M

MAIN GI A5085-15

BH No. = 407 UT 5

1-70 To 2-15 M

MAIN GI

A5085-15

BH No. 407

UT9

2:55 To 3:10 M

MAIN GI

A5085-15

BH No. 407 UT12

5-00 To 5-45 M

MAIN GI A5085-15

BH No. 407

UT 14

5-60 To 6-05 M

MAIN GI A5085-15

BH No. 407

UT 17

7-10 To 7-55 M

MAIN GI

A5085-15

BH No. 407 UT18

7-60 To 8-05 M

MAIN GI

A5085-15

BH No. 407 UT21

8-50 To 8-95 M

A63 CASTLE
STREET HULL
MAIN GI

A5085-15

BH No. 407 UT23

10:00 To 10:45 M

MAIN GI

A5085-15

BH No. 407

UT25

10:50 To 10:95 M

BH No. = 407

MAIN GI A5085-15

UT27

11:00 To 11:45 M

A63 CASTLE
STREET HULL
MAIN GI A508

A5085-15

BH No. 407 UT29

11:50 To 11:95 M

MAIN GI

A5085-15

BH No. 407 UT31

12-00 To 12-45 M

BH No. 407

MAIN GI A5085-15

UT33

12-50-To 12-95 M

MAIN GI A5085-15

BH No. 407 - UT35

13.00 To 13:45 M

MAIN GI

BH No.

A5085-15

UT37

13-50 To 13-95 M

407

MAIN GI A5085-15

BH No. 407 UT39

14:00 To 14:45 M

MAIN GI A5085-15

SG comental Scientifics Group

BH No. 407 UT41

14:50 To 14:95 M

MAIN GI A5085-15

BH No. 407 UT43

15:00 To 15:45 M

MAIN GI

A5085-15

Environmental Scientifics Group

BH No. 407 UT45

15-50 To 15-95 M

MAIN GI

A5085-15

BH No. 407

EUT47

16:00 To 16:45 M

MAIN GI A5085-15

BH No. 407 UT49

16-50-To 16-95 M

MAIN GI A5085-15

BH No. = 407 - UT51

17:00 To 17:45 M

MAIN GI

A5085-15

ESG (**Environmental Scientifics Group**

BH No. 407 UT53

17:50 To 17:95 M

MAIN GI A5085-15

BH No. 407 UT55

18:00 To 18:45 M

MAIN GI A5085-15

BH No. = 407 - UT 57

18-50 To 18-95 M

MAIN GI A5085-15

BH No. 407 UT60

19.50 TO 19.95 M

MAIN GI

A5085-15

BH No. = 407 = UT62

20:00 To 20:45 M

STREET HULL

MAIN GI A5085-15

BH No. 407 UT66

21:00 To 21:45 M

MAIN GI A5085-15

BH No. = 407 - UT70

22:00 To 22:45 M

MAIN GI A5085-15

BH No. = 407 - UT 75

23-50 To 23-95 M

MAIN GI A5085-15

BH No. 407 UT79

24-50 To 24-95 M

MAIN GI

A5085-15

UT3

BH No. = 408

2-00 To 2-45 M

MAIN GI

A5085-15

BH No. 408 UT5

2:70 To 3:15 M

BH No. 408

MAIN GI A5085-15

EUT7

3:35 To 3:80 M

MAIN GI

A5085-15

BH No. 408 UT9

4-00 To 4-45 M

BH No. 408

MAIN GI A5085-15

ESG 6 **Environmental Scientifics Group**

- P11

4-90 To 5-90 M

MAIN GI

A5085-15

BH No. 408 UT13

6-00 To 6-45 M

MAIN GI

A5085-15

BH No. 408 UT15

6-70 To 7-15 M

MAIN GI

A5085-15

BH No. 408

UT17

7.40 To 7.85 M

A63 CASTLE
STREET HULL
MAIN GI

A5085-15

BH No. 408 UT21

10-10 To 10-55 M

BH No. 408

MAIN GI

A5085-15

UT23

10-80 To 11-25 M

MAIN GI A5085-15

BH No. = 408 U

UT25

11-50 To 11-95 M

BH No. 408

MAIN GI

A5085-15

UT30

12-60 To 13-05 M

MAIN GI A5085-15

ESG & **Environmental Scientifics Group**

BH No. 408 UT34

13:70 To 14:15 M

MAIN GI A5085-15

BH No. = 408 UT35

14-15 To 14-60 M

MAIN GI A5085-15

BH No. = 408 UT37

14-80 To 15-25 M

MAIN GI

A5085-15



BH No.

408

UT39

15:45 To 15:90 M

MAIN GI

A5085-15

BH No. 408 UT41

16-10 To 16-55 M

MAIN GI

BH No.

A5085-15

408

UT43

16:75 To 17:20 M

A63 CASTLE
STREET HULL
MAIN GI

A5085-15

BH No. 408 UT 45

17-40 To 17-85 M

MAIN GI A5085-15

BH No. = 408 - UT 47

18-05-To 18-50 M

MAIN GI A5085-15

BH No. 408 UT 49

18-70 TO 9-15 M

MAIN GI A5085-15

BH No. = 408 - UT51

19-35 To 19-80 M

MAIN GI A5085-15

BH No. 408 UT57

21-35 To 21-80 M

MAIN GI

A5085-15

BH No. 408 UT60

22-45 To 22-90 M

MAIN GI A5085-15

BH No. = 408 UT 64

23-55-To 24-00 M

A63 CASTLE
STREET HULL
MAIN GI

A5085-15

BH No. 417 UT8

2-90 To 3-35 M

MAIN GI A5085-15

BH No. 417 UT12

4-20 TO 4-65 M

MAIN GI

A5085-15

BH No. 417 UT14

4-85 To 5-25 M

MAIN GI

A5085-15

BH No. 417 UT19

7-50-To 7-95 M

A63 CASTLE STREET HULL **MAIN GI**

A5085-15

BH No. 417 UT22

8:50 To 8:95 M

